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Another Characterization of Alephs:
Decompositions of Hyperspace
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Abstract A theorem of Sierpínski of 1919 characterized the cardinality of
the continuum by means of lines in two orthogonal directions in the plane: CH
if and only if there is a subsetS of the plane such that every horizontal cross-
section ofS is countable and every vertical cross-section ofS is co-countable.
A theorem of Sikorski of 1951 characterizes the cardinality of an arbitrary set
by means of hyperplanes in orthogonal directions in finite powers of that set.
A theorem of Davies of 1962 characterizes the cardinality of the continuum by
means of lines in nonorthogonal directions in the plane, which, by another the-
orem of Davies of 1962, may be generalized to finite-dimensional Euclidean
space. The main results of this paper unify these analogous theorems of Siko-
rski and Davies by characterizing the cardinality of an arbitrary set by means of
hyperplanes in nonorthogonal directions in that set.

1 Introduction In 1919, Sierpínski [6] proved the following theorem.

Definition 1.1 Let S ⊆ R2 and A be a set. Then

1. A is a vertical cross-section of S if and only if ∃r ∈ R such thatA =
{(x, y) ∈ S : x = r}, and

2. A is a horizontal cross-section of S if and only if ∃r ∈ R such thatA =
{(x, y) ∈ S : y = r}.

Theorem 1.2 (Sierpínski’s Theorem) CH if and only if ∃S ⊆ R2 such that

1. every horizontal cross-section of S is countable, and
2. every vertical cross-section of S is co-countable, that is, every vertical cross-

section of R2 \ S is countable.

Sierpínski’s Theorem1.2 has subsequently undergone a fascinatingly elaborate de-
velopment. In 1951 one line of investigation issuing from Sierpiński’s Theorem1.2
culminated in the following theorem of Sikorski [7].
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Notation 1.3 Let X be a set andκ be a cardinal. Then

1. [ X]κ = {Y ⊆ X : |Y | = κ},
2. [ X]<κ = {Y ⊆ X : |Y | < κ}.

Definition 1.4 Let X be a set;n, m ∈ ω; � ∈ [n]m; andY be a set. ThenY is a�-set
in nX if and only if ∃ 〈ai〉i∈� ∈ �X such thatY = {x ∈ nX : ∀i ∈ �, xi = ai}.

Terminology 1.5 Let X be a set and C be a collection of sets. Then C coversX if
and only if

⋃
C = X.

Theorem 1.6 (Sikorski’s Theorem) Let X be a nonempty set; n ∈ ω such that n ≥
2; m be such that 0 < m < n; and α be an ordinal. Then |X| < ℵα+m if and only if
there is a sequence 〈S�〉�∈[n]m of sets covering nX such that ∀� ∈ [n]m, every �-set
Y in nX intersects S� in fewer than ℵα points.

Sierpínski’s Theorem1.2is the corollary of Sikorski’s Theorem1.6obtained by set-
ting X = R, n = 2, m = 1, andα = 1.

In 1962, another line of investigation issuing from Sierpiński’s Theorem1.2
reached a culmination when Davies proved, in effect, the following theorem [3, 4].

Theorem 1.7 (Davies’ Theorem) Let n be a nonzero element of ω. Then the fol-
lowing are equivalent.

1. 2ℵ0 ≤ ℵn.

2. ∀k ∈ ω, if k ≥ 2, then for every sequence 〈Li〉i∈n+2 of lines in Rk, no two of
which are parallel, there is a sequence 〈Si〉i∈n+2 of sets covering Rk such that
∀i ∈ n + 2, every line in Rk parallel to Li intersects Si in finitely many points.

3. There is a sequence 〈Li〉i∈n+2 of lines in the plane and a sequence 〈Si〉i∈n+2 of
sets covering R2 such that ∀i ∈ n + 2, every line in R2 parallel to Li intersects
Si in finitely many points.

In 1985, in [5], Freiling formed natural intuitions about randomly selecting real num-
bers into an attractive philosophical argument for a number of set-theoretic principles,
one of the weaker of which, Aℵ0, he showed to be equivalent to the negation of the
continuum hypothesis. It turns out that Freiling’s principles are related to Sierpiński’s
Theorem1.2and that many of them can be derived from Sikorski’s Theorem1.6.1

The main result of this paper is a generalization of Sierpiński’s Theorem1.2that
embraces both Sikorski’s Theorem1.6and Davies’ Theorem1.7.2 The proof of the
main result of this paper is based on the proof of Davies in [3].

The following three sections of this paper establish the main result. The fourth
section applies the main result to Sikorski’s Theorem1.6and to Davies’ Theorem1.7,
establishes a very general result for finite-dimensional vector spaces, and then takes
a look at some of Freiling’s principles. The concluding section of this paper presents
a succinct recapitulation of Freiling’s philosophical argument for Aℵ0 and indicates
how it might lead one to believe that 2ℵ0 is weakly inaccessible.

2 From decompositions to cardinalities This section shows how to use certain
coverings of a set to say something about its cardinality.
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Definition 2.1 H is anS-indexedhyperspace on X if and only ifH is anS-indexed
sequence

〈
HS

〉
S∈S of partitions ofX.

A hyperspace may be thought of as a list of hyperplanes in a space, a hyperplane being
identified with the set of hyperplanes parallel to it.

Convention 2.2 Let
〈
HS

〉
S∈S be an S-indexed hyperspace on X and S ∈ S. We con-

found HS with its associated equivalence relation. Thus, in particular,

1. ∀x ∈ X, [x]HS
stands for the unique H ∈ HS such that x ∈ H, and

2. ∀x, y ∈ X, x HS y means that [x]HS
= [y]HS

.

Definition 2.3 Let H be anS-indexed hyperspace onX. Then H is an S-hyper-
plane of H if and only if

1. S ∈ S, and
2. H ∈ HS.

Definition 2.4 Let H be anS-indexed hyperspace onX; S ′, S ′′ ⊆ S; and A ⊆ X.
Then

1. t is anS ′′-invariant S ′-translation of A in H if and only if

(a) t : A
1-1→ X,

(b) ∀x ∈ A ∀S′ ∈ S ′, x HS′ t (x), and

(c) ∀x, y ∈ A ∀S ′′ ∈ S ′′: x HS′′ y if and only if t (x) HS′′ t (y).

2. T is an S ′′-invariant S ′-translate of A in H if and only if there is anS ′′-
invariantS ′-translationt of A in H such thatT = R (t).

Definition 2.5 Let H be anS-indexed hyperspace onX; S ′, S ′′ ⊆ S; andκ be a
cardinal. ThenS ′ κ-translates overS ′′ in H if and only if ∀A ∈ [ X]<κ, there is an
S ′′-invariantS ′-translateT of A in H such thatT ∩ A = ∅.

Proposition 2.6 Let H be an S-indexed hyperspace on X; S ′, S ′′ ⊆ S; κ be an
infinite cardinal; and A ∈ [ X]<κ. Suppose that S ′ κ-translates over S ′′ in H . Then
there is a sequence 〈Aα〉α∈κ of pairwise disjoint S ′′-invariant S ′-translates of A in
H .

Proof: By induction onα < κ. Suppose thatα < κ and that∀β < α, Aβ has been
defined. LetB = A ∪ ⋃

β<α Aβ. Then|B| = |A| (1+ |α|) < κ. SinceS ′ κ-translates
overS ′′ in H , there is anS ′′-invariantS ′-translationt of B in H such thatB ∩ t [ B] =
∅. Let Aα = t [ A]. �

Definition 2.7 E is an S-indexeddecomposition of X if and only if E is an S-
indexed sequence〈ES〉S∈S such thatX = ⋃

S∈S ES.

Definition 2.8 Let H be anS-indexed hyperspace
〈
HS

〉
S∈S on X, Y ⊆ X, S ′ ⊆ S, E

be anS ′-indexed decomposition〈ES〉S∈S ′ of Y , andσ be a cardinal. ThenE is σ-fine
in H if and only if ∀S ∈ S ′ ∀H ∈ HS, |H ∩ ES| < σ.

Notation 2.9 Let σ be a cardinal. Then
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1. σ+0 = σ, and
2. ∀n ∈ ω, σ+(n+1) = (

σ+n
)+

.

Notation 2.10 Let 〈Xi〉i∈I be a sequence of sets. Then
∏

i∈I Xi is the set of all func-
tions f such that

1. D ( f ) = I, and
2. ∀i ∈ I, f (i) ∈ Xi.

Theorem 2.11 Let X be a nonempty set, H be an S-indexed hyperspace on X, n ∈
ω, and κ and σ be infinite cardinals. Suppose that 〈S i〉i<n+1 is a sequence of subsets
of S such that

1.
⋃

i<n+1 S i = S, and
2. ∀i < n + 1,

(a) S i κ-translates over
⋃

j<i S j in H , and

(b) |S i| < cf
(
σ+i

)
.

Then, if there is a σ-fine S-indexed decomposition of X in H , it follows that κ < σ+n.

Proof: Assume, on the contrary, that〈ES〉S∈S is aσ-fine S-indexed decomposition
of X in H , but thatκ ≥ σ+n. Note that sinceX is nonempty,S is nonempty, too. We

construct a sequence of sequences
〈〈

x�α
〉
�α∈∏

j<i σ
+ j

〉
i<n+2

such that

1. x〈〉 ∈ X,
2. ∀i < n + 1 ∀β < σ+i, there is a

⋃
j<i S j-invariantS i-translationt of{

x�α : �α ∈
∏
j<i

σ+ j

}

such that
∀�α ∈

∏
j<i

σ+ j, x�α�〈β〉 = t
(
x�α

)
, and

3. ∀i < n + 2, thex�α of
〈
x�α

〉
�α∈∏

j<i σ
+ j are pairwise distinct.

Let x〈〉 be any element ofX. Let i < n + 1 and suppose that thex�α for �α ∈ ∏
j<i σ

+ j

have been defined. Let

A =
{

x�α : �α ∈
∏
j<i

σ+ j

}
.

Then|A| < σ+i ≤ σ+n ≤ κ. SinceS i κ-translates over
⋃

j<i S j in H , there is a se-
quence

〈
tβ

〉
β<σ+i of

⋃
j<i S j-invariantS i-translations ofA in H such that theR

(
tβ

)
are pairwise disjoint.∀β < σ+i ∀�α ∈ ∏

j<i σ
+ j, let x�α�〈β〉 = tβ

(
x�α

)
. Next we con-

struct a sequence
〈γi〉i<n+1 ∈

∏
j<n+1

σ+ j

such that

∀i < n + 1∀S ∈ Sn−i∀�α ∈
∏

j<n−i

σ+ j, x�α∪〈γ j〉 j∈(n+1)\(n−i)
/∈ ES,
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by induction oni.
Suppose thati < n + 1 and that∀ j ∈ (n + 1) \ (n − i + 1), γ j has been con-

structed. Let�α ∈ ∏
j<n−i σ

+ j. Let S ∈ Sn−i. Now,

∀β < σ+(n−i), x�α HS x�α�〈β〉,

so
∀β, β′ < σ+(n−i), x�α�〈β〉 HS x�α�〈β′〉,

whence
x�α�〈β〉∪〈γ j〉 j∈(n+1)\(n−i+1)

HS x�α�〈β′〉∪〈γ j〉 j∈(n+1)\(n−i+1)
.

Let
A�α =

{
x�α�〈β〉∪〈γ j〉 j∈(n+1)\(n−i+1)

: β < σ+(n−i)
}

.

Let H�α be theS-hyperplane[
x�α�〈0〉∪〈γ j〉 j∈(n+1)\(n−i+1)

]
HS

in H . Then A�α ⊆ H�α. By hypothesis,∣∣A�α ∩ ES

∣∣ ≤ ∣∣H�α ∩ ES

∣∣ < σ.

Let A = ⋃
�α∈∏

j<n−i σ
+ j A�α.

Subclaim 2.12 |A ∩ ES| < σ+(n−i).

Subproof: To see this, first suppose thati < n. Then

σ ≤
∣∣∣∣∣

∏
j<n−i

σ+ j

∣∣∣∣∣ < σ+(n−i),

so

|A ∩ ES| ≤
∣∣∣∣∣

∏
j<n−i

σ+ j

∣∣∣∣∣ · σ < σ+(n−i).

Next suppose thati = n. Then

|A ∩ ES| = ∣∣A〈〉 ∩ ES

∣∣ < σ = σ+(n−i).

�
Now, by assumption|Sn−i| < cf

(
σ+(n−i)

)
. Thus,∣∣∣∣∣A ∩

⋃
S∈Sn−i

ES

∣∣∣∣∣ < σ+(n−i).

Now, ∀β ∈ σ+(n−i), let

Aβ =
{

x�α�〈β〉∪〈γ j〉 j∈(n+1)\(n−i+1)
: �α ∈

∏
j<n−i

σ+ j

}
.
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By construction,A is the disjoint union of theAβ. Accordingly, there is aβ < σ+(n−i)

such that ∣∣∣∣∣Aβ ∩
⋃

S∈Sn−i

ES

∣∣∣∣∣ = ∅.

Let γn−i be any suchβ. Accordingly,∀S ∈ S, x�γ /∈ ES. But 〈ES〉S∈S is a decomposi-
tion of X, so this is a contradiction. �

3 From cardinalities to decompositions This section shows how to use the cardi-
nality of a set to say something about its decompositions, giving a general converse
to Theorem2.11.

Definition 3.1 Let H be anS-indexed hyperspace onX, n ∈ ω, andτ be a cardinal.
ThenH is τ-fine to depth n if and only if ∀x ∈ X, for every linear ordering� of{
[x]HS

: S ∈ S
}
, there is a subsetH ′ of

{
[x]HS

: S ∈ S
}

of sizen such that∀H ′ ∈ H ′,∣∣⋂{
H � H ′ : ¬∃H ′′ ∈ H ′ such thatH ≺ H ′′ ≺ H ′}∣∣ ≤ τ.

Theorem 3.2 Let H be an S-indexed hyperspace on X, n ∈ ω, and τ be a cardinal.
Suppose that S is nonempty and finite and that H is τ-fine to depth n. Let σ be an in-
finite cardinal greater than τ. Then if |X| < σ+n, it follows that there is an S-indexed
decomposition of X that is σ-fine in H .

Proof: Note first that the result is trivial ifn = 0. Assume, therefore, thatn > 0. Let
us say thatH is ahyperplane just in caseH ∈ ⋃

S∈S HS. Let N be a set of hyperplanes.
Let us say thatN is anetwork if and only if ∀S ′ ⊆ S ∀〈HS〉S∈S ′ ∈ ∏

S∈S ′
(
HS ∩ N

)
, if∣∣⋂

S∈S ′ HS

∣∣ ≤ τ, then∀x ∈ ⋂
S∈S ′ HS∀S ∈ S, [x]HS

∈ N. Clearly, an intersection of
networks is a network.

Sublemma 3.3 Let M be a set of hyperplanes and N be the smallest network such
that N ⊇ M. Then |N| ≤ max{|M| , σ}.

Subproof: Define〈Ni〉i∈ω by induction oni as follows. LetN0 = M. Suppose that
Ni has been defined. Then let

Ni+1 = Ni ∪
{

H : ∃S ′ ⊆ S ∃ 〈HS〉S∈S ′ ∈
∏
S∈S ′

(
HS ∩ Ni

)∃x ∈
⋂
S∈S ′

HS∃S ∈ S

such that ∣∣∣∣∣
⋂
S∈S ′

HS

∣∣∣∣∣ ≤ τ & H = [x]HS

}

Clearly, N = ⋃
i∈ω Ni. Moreover, |N0| ≤ max{|M| , σ}, and ∀i ∈ ω, if |Ni| ≤

max{|M| , σ}, then
∣∣Ni+1

∣∣ ≤ max{|M| , σ} · τ = max{|M| , σ}. Thus, |N| ≤ ω ·
max{|M| , σ} = max{|M| , σ}. �

Sublemma 3.4 Let k ∈ ω and N be a network such that |N| ≤ σ+k. Then there is
a well-ordering ≺ of N such that

(∗k) ∀H ∈ N, there are fewer than σ finite sets H ′ of hyperplanes such that
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(1k) H is the ≺-greatest element of H ′,
(2k)

⋂
H ′ �= ∅, and

(3k) ∃H ′′ ∈ [
H ′]k+1

such that ∀H ′′ ∈ H ′′,
∣∣⋂{

H ′ ∈ H ′ : H ′ � H ′′ &
¬∃H ′′′∈ H ′′ such that H ′ ≺ H ′′′ ≺ H ′′}∣∣ ≤ τ.

Subproof: By induction onk. First assume thatk = 0. Then|N| ≤ σ. Let ≺ be any
well-ordering ofN. Then below anyH there are, of course, fewer thanσ finite sets
of whatever kind. Next, assume that the sublemma is true fork. We seek to show it
true for k + 1. To this end, assume thatN is a network and that|N| ≤ σ+(k+1). If
|N| < σ+(k+1), then the result is trivial by the induction hypothesis, so assume that
|N| = σ+(k+1). Let 〈Hα〉α<σ+(k+1) enumerateN. ∀α ∈ σ+(k+1) \ σ+k, let Nα be the
smallest network containing

{
Hβ : β < α

}
. Then, by the preceding sublemma,∀α ∈

σ+(k+1) \ σ+k, |Nα| = σ+k. ∀α ∈ σ+(k+1) \ σ+k, let ≺α be a well-ordering ofNα as
guaranteed by the induction hypothesis. Now,∀H ∈ N, let α (H) be the leastα such
that H ∈ Nα. Finally, define the well-ordering≺ by H1 ≺ H2 if and only if either

α (H1) < α (H2)

or
α (H1) = α (H2) & H1 ≺α(H1) H2.

We need to show
(∗k+1

)
. To this end, letH ∈ N and suppose thatH ′ is a finite set

of hyperplanes that satisfies
(
1k+1

)
–

(
3k+1

)
. Let H ′′ be as in

(
3k+1

)
, so that in par-

ticular,H ′′ is of sizek + 2, and letH ′′ be the≺-least element ofH ′′.
We show thatα

(
H ′′) = α (H). For suppose otherwise. Thenα

(
H ′′) < α (H),

and moreover, by
(
3k+1

)
,
∣∣⋂{

H ′ ∈ H ′ : H ′ � H ′′}∣∣ ≤ τ. But then, by
(
2k+1

)
, H ∈

Nα(H ′′), whenceα (H) ≤ α
(
H ′′), which contradicts our supposition. Accordingly,{

H ′ ∈ H ′ : H ′ � H ′′} satisfies(1k) – (3k) with respect to≺α(H). Now there are by
construction of≺α(H), fewer thanσ finite setsH ∗ of hyperplanes satisfying(1k) –
(3k) with respect to≺α(H). Let H ∗ be such a set.∀x ∈ ⋂

H∗, there are only finitely
many supersetsH ∗∗ of H ∗ satisfying(2k) with respect to≺α(H) and such thatx ∈⋂

H ∗∗. Since, by(3k),
∣∣⋂H ∗∣∣ ≤ τ < σ, there are fewer thanσ finite setsH ′ satis-

fying
(
1k+1

)
–

(
3k+1

)
with respect to≺α(H). �

Now we continue with the proof of the theorem. We have assumed thatn > 0. Thus,
|X| ≤ σ+(n−1), whence

∣∣⋃
S∈S HS

∣∣ ≤ σ+(n−1). Apply the preceding sublemma with
k = n − 1, getting a well-ordering of≺ of the networkN of all hyperplanes satis-
fying (∗n−1). In particular, in(3n−1), k + 1 = (n − 1) + 1 = n. Now, ∀H ∈ N, let
EH = {x ∈ X : H is the≺-greatest element ofN includingx}. Then EH ⊆ H, and
since≺ satisfies(∗n−1) andH is τ-fine to depthn, |EH | < σ. Now, ∀S ∈ S, let
ES = ⋃

H∈HS
EH . Then∀H ∈ HS, H ∩ ES = EH , so |H ∩ ES| < σ. But the EH

and hence, sinceS is nonempty, theES decomposeX. Thus,〈ES〉S∈S is anS-indexed
decomposition ofX that isσ-fine in H . �

4 Cardinalities and decompositions This section presents the main theorem of this
paper and proves it by combining the results of the previous two sections. Before
proceeding, it is convenient to introduce a special family of hyperspaces.
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Definition 4.1 Let X andn be sets and letS ⊆ n. ThenH is anS-hyperplane in nX
if and only if ∃ f : n \ S → X such thatH = {x ∈ nX : ∀i ∈ n \ S, xi = f (i)}.
Definition 4.2 Let X be a nonempty set andm andn be cardinals such thatm ≤ n.
Then Sn

m (X), that is, theSikorski hyperspace of m-dimensional hyperplanes innX, is
the sequence

〈
HS

〉
S∈[n]m such that∀S ∈ [n]m, HS is the set ofS-hyperplanes innX.

Clearly, Sn
m (X) is an[n]m-indexed hyperspace onnX. The main theorem of this paper

is as follows.

Theorem 4.3 (Main Theorem) Let X be an infinite set, σ be an infinite cardinal,
and n ∈ ω. Then the following are equivalent.

1. |X| < σ+n.
2. For every τ < σ and for every S-indexed hyperspace H on X such that S is

nonempty and finite, if H is τ-fine to depth n, then there is an S-indexed de-
composition of X that is σ-fine in H .

3. There is an S-indexed hyperspace H on X for which there are an S-indexed
decomposition of X that is σ-fine in H and a sequence 〈S i〉i<n+1 of subsets of
S such that

(a)
⋃

i<n+1 S i = S, and

(b) ∀i < n + 1,

(i) S i |X|-translates over
⋃

j<i S j in H , and

(ii) |S i| < cf
(
σ+i

)
.

Proof: That (1) implies (2) is atrivial consequence of the Theorem3.2. That (2)
implies (3) may be seen as follows. SinceX is infinite, assume without loss of gen-
erality that X = n+1Y . Let H = Sn+1

1 (Y ) and S = [n + 1]1. Then H is an S-
indexed hyperspace onX, S is finite, andH is 1-fine to depthn. Next,∀i < n + 1,
let S i = {{i}}. Now, let i < n + 1 and A ⊆ X such that|A| < |Y |. Then let B =
{b ∈ Y : ∃x ∈ A such thatxi = b} and f : B 1−1−→Y \ B. Definet to be the function from
A into X such that∀x ∈ X, t (x) = the elementy of X such thatyi = f (xi) and such
that∀ j < n, if j �= i, theny j = x j. Then t is a

⋃
j<i S j-invariantS i translation ofA

in H . Accordingly,∀i ∈ n + 1, S i |Y |-translates over
⋃

j<i S j in H . Therefore, by
(2), there is anS-indexed decomposition ofX that isσ-fine in H . Since |X| = |Y |,
we are done. That (3) implies (1) is a trivial consequence of the Theorem2.11. �
This theorem may be expressed in measure-theoretic terms by means of the second
theorem following, that is, Theorem4.7.

Definition 4.4 Let H be a set of subsets ofX, σ be a cardinal, andA ⊆ X. Then

1. A is σ-null over H if and only if ∀H ∈ H , |A ∩ H| < σ, and
2. A is σ-full over H if and only if X \ A is σ-null overH .

Definition 4.5 Let H be anS-indexed hyperspace onX, σ be a cardinal, andA ⊆
X. Then

1. A is σ-null in H if and only if ∃S ∈ S such thatA is σ-null overHS, and
2. A is σ-full in H if and only if ∃S ∈ S such thatA is σ-full over HS.
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Theorem 4.6 Let X be a set, κ be an infinite cardinal, A be a κ-algebra on X, τ be
an infinite cardinal no greater than κ, and µ be a τ-additive measure on A . Suppose
that M ⊆ P (X) such that

1. ∀M ′ ∈ [
M

]<κ
,
⋃

M ′ ∈ M , and
2. ∀A ∈ A , if ∃M ∈ M such that A ⊆ M, then µ (A) = 0.

Then there is a unique measure ν on the κ-algebra generated by A ∪ M that extends
µ and is such that ∀M ∈ M , ν (M) = 0. Moreover, this measure ν is τ-additive.

Proof: Let N = {
N : ∃M ∈ M such thatN ⊆ M

}
. ThenN satisfies (1) and (2)

above, too; that is,

1. ∀N ′ ∈ [
N

]<κ
,
⋃

N ′ ∈ N , and
2. ∀A ∈ A , if ∃N ∈ M such thatA ⊆ N, thenµ (A) = 0.

Webegin by showing that there is an extensionµ̄ of µ to theκ-algebra generated by
A ∪ N such that∀N ∈ N , µ̄ (N) = 0.

Let B = {
A � N : A ∈ A & N ∈ N

}
. We show thatB is aκ-algebra. To this

end, suppose first thatB ∈ B. Then there areA ∈ A andN ∈ N such thatB = A �
N. Moreover,X \ B = (X \ A) � N, so X \ B ∈ B. Accordingly,B is closed under
complements.

Suppose next that|I| < κ and that∀i ∈ I, Bi ∈ B. Then∀i ∈ I, there areAi ∈
A and Ni ∈ N such thatBi = Ai � Ni. Let C = (⋃

i∈I Ai
) \ (⋃

i∈I Bi
)
, andD =(⋃

i∈I Bi
) \ (⋃

i∈I Ai
)
. Then

⋃
i∈I Bi = (⋃

i∈I Ai
) � (C ∪ D) .

Now, C, D ⊆ ⋃
i∈I Ni, so, by (1) (for N ) and the fact that every subset of an

element ofN is an element ofN , C ∪ D ∈ N , whence
⋃

i∈I Bi ∈ B. Accordingly,
B is closed under unions of fewer thanκ sets, soB is indeed aκ-algebra.

Now, supposeB ∈ B; A1, A2 ∈ A ; N1, N2 ∈ N ; and A1 � N1 = B = A2 �
N2. Then A1 � A2 = N1 � N2 ∈ N , so,by (2) (for N ), µ (A1 � A2) = 0, whence
µ (A1) = µ (A2). Accordingly, defineµ̄ to be the unique function onB such that
∀A ∈ A ∀N ∈ N ,

µ̄ (A � N) = µ (A).

Clearly,µ̄ is an extension ofµ. We show thatµ̄ is τ-additive. To this end, suppose
that |I| < τ and that〈Bi〉i∈I is a sequence of pairwise disjoint sets drawn fromB.
Then∀i ∈ I, there areAi ∈ A and Ni ∈ N such thatBi = Ai � Ni. As above, let
C = (⋃

i∈I Ai
) \ (⋃

i∈I Bi
)

andD = (⋃
i∈I Bi

) \ (⋃
i∈I Ai

)
, so thatC ∪ D ∈ N and⋃

i∈I Bi = (⋃
i∈I Ai

) � (C ∪ D). Thenµ̄
(⋃

i∈I Bi
) = µ

(⋃
i∈I Ai

)
. Now, let E =⋃

i, j∈I,i �= j

(
Ai ∩ A j

)
. Supposei, j ∈ I andi �= j. Then, sinceBi andB j are disjoint,

Ai ∩ A j ⊆ Ni ∪ N j ∈ N ,

whence
µ

(
Ai ∩ A j

) = 0.

Accordingly,µ (E) = 0, whence

µ

(⋃
i∈I

Ai

)
= µ

((⋃
i∈I

Ai

)
\ E

)
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= µ

(⋃
i∈I

(Ai \ E)

)
=

∑
i∈I

µ (Ai \ E)

=
∑
i∈I

µ (Ai) =
∑
i∈I

µ̄ (Bi) .

Thus,µ̄
(⋃

i∈I Bi
) = ∑

i∈I µ̄ (Bi). Accordingly,µ̄ is τ-additive.
Now letν beµ̄ restricted to theκ-algebraC generated byA ∪ M . Thenν is, as

desired, a measure onC that extendsµ and is 0 onM . To seethatν is unique, suppose
thatν′ is also such a measure. LetC ∈ C . Then C ∈ B, so there areA ∈ A andN ∈ N
such thatC = A � N, and there is anM ∈ M such thatN ⊆ M. Now,ν′ (A) = µ (A)

andν′ (M) = 0. Hence,ν′ (A) = ν′ (A \ M) ≤ ν′ (C) ≤ ν′ (A ∪ M) = ν′ (A). Thus,
ν′ (C) = ν′ (A) = µ (A) = ν (C). Accordingly,ν is unique, and, by construction, it
is τ-additive. �

Theorem 4.7 Let H be an S-indexed hyperspace on X and σ be an infinite
cardinal. Let κ be an infinite cardinal, A be a κ-algebra on X, τ be an infi-
nite cardinal no greater than κ, and µ be a τ-additive measure on A . Let M ={⋃

S∈S AS : ∀S ∈ S, AS is σ-null over HS
}
. Suppose that κ is no greater than cf (σ)

and that ∀A ∈ M , if µ (A) is defined, then µ (A) = 0. Then the following are equiv-
alent.

1. ∀A ∈ A , if µ (A) �= 0, then there is no S-indexed decomposition of A that is
σ-fine in H .

2. There is a τ-additive measure ν defined on the κ-algebra generated by A ∪ M
that extends µ and is such that ∀M ∈ M , ν (M) = 0.

3. There is a finitely additive measure ν on X that extends µ and is such that ∀M ∈
M , ν (M) = 0.

Proof: We first show that (1) implies (2). To this end, assume (1). Note thatM is
closed under unions of fewer than cf(σ) sets. LetA ∈ A and suppose that there is
an M ∈ M such thatA ⊆ M. We seek to show thatµ (A) = 0. Assume otherwise.
SinceM ∈ M , there is a sequence〈MS〉S∈S such that∀S ∈ S, MS is σ-null overHS

and such thatM = ⋃
S∈S MS. But then,〈A ∩ MS〉S∈S is anS-indexed decomposition

of A that isσ-fine in H , which contradicts (1). Accordingly,µ (A) does equal zero.
By the immediately preceding theorem, it follows that (2) is true.

That (3) follows from (2) is trivial. To see that (1) follows from (3), let ν be
as in (3). Let A ∈ A such thatµ (A) �= 0. Suppose〈ES〉S∈S is aσ-fine S-indexed
decomposition ofA in H . Then µ (A) = ν

(⋃
S∈S ES

) = 0, which is a contradiction.
Hence (1) holds. �

5 Applications In this section, we apply Main Theorem4.3 to Sikorski’s Theo-
rem1.6, Davies’ Theorem1.7, finite-dimensional vector spaces, and some of Freil-
ing’s principles. We begin by restating Sikorski’s Theorem1.6and proving it as an
immediate consequence of Main Theorem4.3.

Proposition 5.1 Let n be an element of ω no less than 2, X be a set of size n, m
be such that 0 < m < n, and � be any linear ordering of [ X]m. Then there is a
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subset S of [ X]m of size n − m such that ∀S ∈ S,
⋂{

S′ � S : ¬∃S′′ ∈ S such that
S′ ≺ S′′ ≺ S

} = ∅.

Proof: By induction onn. If n = 2, then the result is trivial. Accordingly, as-
sume that the result is true forn; we seek to show that it is true forn + 1. To
this end, letX be a set of sizen + 1 and� be any linear ordering of[ X]m. If
m = n, then the result is again trivial, so assume thatm < n. ∀S ∈ [ X]m, let [S]≺
stand for

{
S′ : S′ ≺ S

}
. Now let S be the�-first element of[ X]m such thatS ∩⋂

[S]≺ = ∅, let S = [ X]m \ [S]≺, and finally, letx ∈ ⋂
[S]≺. Then[ X \ {x}]m ⊆ S.

By the induction hypothesis, there is a subsetS ′ of [ X \ {x}]m of sizen − m such
that ∀S′ ∈ S ′,

⋂{
S′′ ∈ [ X \ {x}]m : S′′ � S′ & ¬∃S′′′ ∈ S ′ such thatS′′ ≺ S′′′ ≺ S′}

= ∅. Then{S} ∪ S ′ is as desired. �

Theorem 5.2 (Sikorski’s Theorem) Let X be a set, n be a nonzero element of ω, m
be such that 0 < m ≤ n, and σ be an infinite cardinal. Then |X| < σ+(n−m) if and
only if ∃ 〈ES〉S∈[n]m such that

1. nX = ⋃
S∈[n]m ES, and

2. ∀S ∈ [n]m, every S-hyperplane in nX intersects ES in fewer than σ points.

Proof: If X is finite or if n = m, then the theorem is trivial, so assume thatX is
infinite and thatm < n. Let H be Sn

m (X). Let S ⊆ [n]m such that
⋂

S = ∅. Then
∀ 〈HS〉S∈S ∈ ∏

S∈S HS,
∣∣⋂

S∈S HS

∣∣ ≤ 1. Accordingly, by the preceding proposition,
H is 1-fine to depthn − m.

Now,∀i ∈ n − m + 1, letS i = [m + i]m \ [m + (i − 1)]m. Then
⋃

i<n−m+1 S i =
[n]m and∀i < n − m + 1, S i |X|-translates over

⋃
j<i S j in H . Sikorski’s Theorem

is now an easy consequence of Main Theorem4.3. �
Next we restate Davies’ Theorem1.7 and show that it, too, is an immediate conse-
quence of Main Theorem4.3. Before proceeding, it is convenient to introduce an-
other special family of hyperspaces.

Definition 5.3 Let V be a vector space andπ be a subspace ofV . ThenH is aπ-
hyperplane in V if and only if ∃v ∈ V such thatH = v + π, that is, such thatH =
{v + w : w ∈ π}.
Definition 5.4 Let V be a vector space and� be a set of subspaces ofV . Then H
is a�-hyperplane of V if and only if ∃π ∈ � such thatH is aπ-hyperplane inV .

Definition 5.5 Let V be a vector space and� be a set of subspaces ofV . Then
B� (V ), that is, theBagemihl hyperspace3of � hyperplanes ofV , is the sequence〈
Hπ

〉
π∈�

such that∀π ∈ �, Hπ is the set ofπ-hyperplanes inV .

Clearly, B� (V ) is a�-indexed hyperspace onV .

Theorem 5.6 (Davies’ Theorem) Let n ∈ ω, σ be an infinite cardinal, k be a
nonzero element of ω, and 〈Li〉i∈n+1 be a sequence of lines in Rk, no two of which
are parallel. Then 2ℵ0 < σ+n if and only if ∃ 〈Si〉i∈n+1 such that

1. Rk = ⋃
i∈n+1 Si, and

2. ∀i ∈ n + 1, every line in Rk parallel to Li intersects Si in fewer than σ points.
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Proof: If n = 0, then the result is trivial, so suppose thatn > 0, in which casek > 1.
∀i ∈ n + 1, letπi be a nonzero vector inRk parallel toLi; let� = {π : i < n + 1}; and
finally, let H = B�

(
Rk

)
. Then H is a�-indexed hyperspace onRk which is 1-fine

to depthn. Now, ∀i ∈ n + 1, letS i = {πi}. Then
⋃

i<n+1 S i = � and∀i < n + 1, S i

2ℵ0-translates over
⋃

j<i S j in H . Davies’ Theorem is now an easy consequence of
Main Theorem4.3. �

Next we apply Main Theorem4.3to vector spaces in general.

Definition 5.7 Let V be a nontrivial vector space,� be a set of nontrivial subspaces
of V , andn ∈ ω. Then� is n-good if and only if for every linear ordering� of �,
there is a subsetS of � of sizen such that∀π ∈ S,

⋂{
π′ � π : ¬∃π′′ ∈ S such that

π′ ≺ π′′ ≺ π
}

is 0-dimensional.

Lemma 5.8 Let V be a nontrivial vector space over an infinite field F, � be a set
of nontrivial subspaces of V, and n ∈ ω. Suppose that � is n-good, but not (n + 1)-
good. Then ∃ 〈�i〉i<n+1 such that

1. � = ⋃
i<n+1 �i and

2. ∀A ∈ [V ]<|F| ∀i < n + 1 ∃v ∈ ⋂
�i such that A ∩ (v + A) = ∅.

Proof: Since� is not(n + 1)-good, there is a linear ordering� of � for which there
is no subsetS of � of sizen + 1 such that∀π ∈ S,

⋂{
π′ � π : ¬∃π′′ ∈ S such that

π′ ≺ π′′ ≺ π
}

is 0-dimensional. On the other hand, since� is n-good, there is a sub-
setS of � of sizen such that∀π ∈ S,

⋂{
π′ � π : ¬∃π′′ ∈ S such thatπ′ ≺ π′′ ≺ π

}
is 0-dimensional.

Let 〈πi〉i∈n enumerateS in ≺ order. If n = 0, let�0 = �. If n > 0: let �0 =
{π : π ≺ π0}; ∀i such that 0< i < n, let �i = {π : πi−1 � π ≺ πi}; and let�n =
{π : πn−1 � π}. By choice of≺, wemay assume that∀i < n, πi is the≺-first element
of � not in

{
π j : j < i

}
such that

⋂{
π′ � πi : ¬∃π′′ ∈ S such thatπ′ ≺ π′′ ≺ πi

}
is

0-dimensional, in which case∀i < n,
⋂

�i is nontrivial. Moreover, by choice of≺,⋂
�n is nontrivial.

Now, ∀i < n + 1, let vi be a nonzero element of
⋂

�i. Let A ∈ [V ]<|F| and
i < n + 1. Then letW = {w1 − w2 : w1,w2 ∈ A}. Since|F| is infinite, |W| < |F|.
Accordingly, there is a scalar multiplev of vi such thatv /∈ W. ThenA andv + A are
disjoint. �

Theorem 5.9 Let F be a field, V be a vector space over F, n ∈ ω, and σ be an
infinite cardinal. Suppose that the dimension of V is at least 2 and that |V | = |F|
(which is the case, for example, when F is infinite and V is finite dimensional). Then
the following are equivalent.

1. |V | < σ+n.

2. For every nontrivial finite set � of nontrivial subspaces of V that is n-good,
there is a sequence 〈Eπ〉π∈� such that

(a) V = ⋃
π∈� Eπ and

(b) ∀π ∈ � ∀v ∈ V, |(v + π) ∩ Eπ| < σ.
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3. There is a nontrivial finite set � of nontrivial subspaces of V that is not (n + 1)-
good for which there is a sequence 〈Eπ〉π∈� such that

(a) V = ⋃
π∈� Eπ and

(b) ∀π ∈ � ∀v ∈ V, |(v + π) ∩ Eπ| < σ.

Proof: Note first that since it is assumed that|V | = |F| and that the dimension ofV
is at least 2,F is automatically assumed to be infinite. We show first that (1) implies
(2). To this end, assume (1) and suppose that� is a nontrivial finite set of nontrivial
subspaces ofV that isn-good. LetH = B� (V ). Weshow thatH is 1-fine to depth
n. To this end, letv ∈ V and∀π ∈ �, let Hπ be the unique element ofHπ such that
v ∈ Hπ, that is, letHπ = v + π.

Let � be any linear ordering of{Hπ : π ∈ �}. Since theHπ are distinct, this in-
duces a linear ordering≺′ on�. Since� is n-good, there is a subsetS of � of sizen
such that∀π ∈ S,

⋂{
π′ �′ π : ¬∃π′′ ∈ S such thatπ′ ≺′ π′′ ≺′ π

}
is 0-dimensional.

But then∀π ∈ S,
⋂{

H ′ � Hπ : ¬∃π′′ ∈ S such thatH ′ ≺ Hπ′′ ≺ Hπ

} = {v}. Ac-
cordingly,H is 1-fine to depthn, whence by Main Theorem4.3, (2) holds.

We show next that (2) implies (3). Assume (2). Since the dimension ofV is at
least 2, there is a sequence〈Li〉i∈n+1 of pairwise distinct lines inV through the origin.
Let � = {Li : i ∈ n + 1}. Then� is n-good, but not(n + 1)-good. By (2), there is a
sequence〈Eπ〉π∈� such that

1. V = ⋃
π∈� Eπ and

2. ∀π ∈ � ∀v ∈ V , |(v + π) ∩ Eπ| < σ.

Thus (3) holds. By the preceding lemma and Main Theorem4.3, (3) implies (1). �
This is certainly not the most general theorem that can be proved about vector spaces
but it is, in the present context, probably the most interesting one. A question that
needs to be addressed is, Which� aren-good? Here we can make several observa-
tions.

First, suppose that 0< m ≤ n ∈ ω and that〈vi〉i<n is a sequence ofn linear inde-
pendent vectors drawn fromV . ∀S ∈ [n]m, let πS be them-dimensional subspace of
V spanned by{vi : i ∈ S}. Then∀S ⊆ [n]m,

⋂
S∈S πS is trivial if and only if

⋂
S = ∅.

Let� = {πS : S ∈ [n]m}. By Proposition5.1, � is (n − m)-good. It is also easy to see
that� is not(n − m + 1)-good—let≺ be any ordering of� such that∀S, S′ ∈ [n]m,
if max S < maxS′, thenπS ≺ πS′ . Since for every infinite cardinality, there is a field
of that cardinality, Sikorski’s Theorem5.2follows from the preceding theorem.

Next, let� be a set of(n + 1) lines through the origin. Then, as noted in the
proof of the preceding theorem,� is n-good, but not(n + 1)-good. Thus, a general-
ized version of Davies’ Theorem5.6also follows from the preceding theorem.

To see something new—something not involving hyperplanes all of the same
dimension—letV = R3 and� consist of thex, y-plane and thez-axis. Then� is
1-good, but not 2-good. Hence, for example, CH if and only if there are setsEz and
Exy such that

1. R3 = Ez ∪ Exy,
2. every line parallel to thez-axis intersectsEz in countably many points, and
3. every plane parallel to thex, y-plane intersectsExy in countably many points.
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To see something else new—something like Davies’ Theorem5.6, but for nontriv-
ial hyperplanes—letV = R3; v0, v1, andv2 be nonzero vectors in thex-, y-, and
z-directions; andv3 be a nonzero vector not in any of the coordinate planes, for ex-
ample, the vector〈1,1,1〉. Define� to be the set of six planes generated by pairs of
these vectors. Then it is easy to verify that� is 2-good, but not 3-good. Hence, for
example, CH if and only if there is a decomposition〈Eπ〉π∈� of R3 such that∀π ∈ �,
every plane parallel toπ intersectsEπ in only finitely many points.

In principle, we can compute of a given a set of hyperplanes just how “good”
it is and see thereby just what kinds of Sierpiński-type theorems we can get for it. It
is particularly interesting to re-express these results for finite-dimensional Euclidean
space in terms of Lebesgue measure.

Notation 5.10

1. λ is the Lebesgue measure onR.
2. ∀k ∈ ω, λk is the Lebesgue measure onRk.

Proposition 5.11 Let σ be an infinite cardinal—such as ℵ0 or ℵ1—such that ∀A ∈
[R]<σ, λ (A) = 0; κ = min{ℵ1, cf (σ)}; and n ∈ ω. Let k ∈ ω such that k ≥ 2. Then
the following are equivalent.

1. 2ℵ0 ≥ σ+n.
2. For every nontrivial finite set � of nontrivial subspaces of Rk, if � is n-good,

then there is a κ-additive measure ν such that

(a) ν ⊇ λk, and

(b) ∀A ⊆ Rk, if ∃π ∈ � such that every hyperplane in Rk parallel to π in-
tersects A in fewer than σ points, then ν (A) = 0.

3. There is a nontrivial finite set � of nontrivial subspaces of Rk that is not
(n + 1)-good for which there is a a finitely-additive measure ν such that

(a) ν ⊇ λk, and

(b) ∀A ⊆ Rk, if ∃π ∈ � such that every hyperplane in Rk parallel to π in-
tersects A in fewer than σ points, then ν (A) = 0.

Proof: The result is immediate by Main Theorem4.3, its measure-theoretic refor-
mulation Theorem4.7, and the Fubini Theorem for Lebesgue measure. �

Corollary 5.12 The following are equivalent.

1. ¬CH.
2. There is a countably-additive measure ν that extends the Lebesgue measure for

the plane and that gives measure 0 to every subset of the plane all of whose
vertical or all of whose horizontal cross-sections are countable.

3. There is a finitely-additive measure ν that extends the Lebesgue measure for the
plane and that gives measure 0 to every subset of the plane all of whose vertical
or all of whose horizontal cross-sections are countable.

Let us conclude this section by turning to Freiling’s principles. In [5] Freiling proved
the following theorems related to Sikorski’s Theorem1.6.
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Definition 5.13 A<2ℵ0 if and only if∀ f : 2ℵ0 −→ [
2ℵ0

]<2ℵ0 ∃x1, x2 ∈ 2ℵ0 such that
bothx2 /∈ f (x1) & x1 /∈ f (x2).

Proposition 5.14 ¬A<2ℵ0 .

Definition 5.15 Let n be a nonzero element ofω. Then An
ℵ0

if and only if ∀ f :[
2ℵ0

]n−1 −→ [
2ℵ0

]<ℵ1 ∃X ∈ [
2ℵ0

]n
such that∀x ∈ X, x /∈ f (X \ {x}).

Proposition 5.16 Let n be an element of ω not less than 2. Then An
ℵ0

if and only if
2ℵ0 ≥ ℵn.

Freiling [5] remarks, without proof, that the following proposition is true.

Definition 5.17 Let n be a nonzero element ofω. Then An
f inite if and only if ∀ f :[

2ℵ0
]n−1 −→ [

2ℵ0
]<ℵ0 ∃X ∈ [

2ℵ0
]n

such that∀x ∈ X, x /∈ f (X \ {x}).

Proposition 5.18 Let n be an element of ω no less than 2. Then An+1
f inite if and only

if 2ℵ0 ≥ ℵn.

Wemay generalize Freiling’s results as follows.

Definition 5.19 Let X be a set andσ, n, andm be cardinals. Then F(X, σ, n, m)

if and only if ∀ f : [ X]n −→ [
[ X]m+1

]<σ ∃A ∈ [ X]n+m+1 such that∀B ∈ [ A]m+1,
B /∈ f (A \ B).

Clearly,

A<2ℵ0 ⇐⇒ F
(
2ℵ0,2ℵ0,1,0

)
, (1)

An
ℵ0

⇐⇒ F
(
2ℵ0,ℵ1, n − 1,0

)
, and (2)

An
finite ⇐⇒ F

(
2ℵ0,ℵ0, n − 1,0

)
. (3)

Proposition 5.20 Let X be an infinite set, σ be an infinite cardinal, and n, m ∈ ω.
Then |X| ≥ σ+n if and only if F (X, σ, n, m).

Proof: Note first that the proposition is trivial ifn = 0; hence, assume thatn > 0.
We begin with the left-to-right direction. To this end, assume that|X| ≥ σ+n. Let
H = Sn+m+1

m+1 (X). By Sikorski’s Theorem5.2, there is no[n + m + 1]m+1-indexed
decomposition ofn+m+1X that isσ-fine in H . Let

D = {
x ∈ n+m+1X : ∃i, j ∈ n + m + 1 such thati �= j & xi = x j

}
.

Now let µ be the smallest probability measure onn+m+1X that assigns 0 toD, that
is, letµ be the function whose domain is

{
∅, D, n+m+1X \ D, n+m+1X

}
, that assigns

the value 0 to∅ and toD, and that assigns the value 1 ton+m+1X \ D and ton+m+1X.
Since there is no[n + m + 1]m+1-indexed decomposition ofn+m+1X that isσ-fine in
H , there is no[n + m + 1]m+1-indexed decomposition ofn+m+1X \ D that isσ-fine
in H . Hence, by Theorem4.7, there is a finitely-additive measureν on n+m+1X that
extendsµ and that assigns the value 0 to every subset ofn+m+1X that isσ-null in H .
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Wenow show that F(X, σ, n, m) is true. To this end, suppose thatf : [ X]n −→[
[ X]m+1

]<σ
. Now, ∀S ∈ [n + m + 1]m+1, let

FS = {
x ∈ n+m+1X : {xi : i ∈ S} ∈ f ({xi : i ∈ (n + m + 1) \ S})} .

Let
F =

⋃
S∈[n+m+1]m+1

FS.

ThenF is a finite union of setsσ-null in H , soν (F) = 0. Hence,

ν
(

n+m+1X \ (F ∪ D)
) = 1,

so there is anx ∈ n+m+1X \ (F ∪ D). Let A = {xi : i < n + m + 1}. Then A is as
desired.

Next we prove the right-to-left direction. To this end, assume that|X| <

σ+n. Let H be as before. Then, by Sikorski’s Theorem5.2 again, there is an
[n + m + 1]m+1-indexed decomposition〈ES〉S∈[n+m+1]m+1 of n+m+1X that isσ-fine in
H . Let

F = {
x ∈ n+m+1X : ∃S ∈ [n + m + 1]m+1 ∃π : n + m + 1

1−1−→
onto n + m + 1

such that
π [n] = (n + m + 1) \ S &

〈
xπ(i)

〉
i<n+m+1 ∈ ES

}
.

F is a finite union of setsσ-null overH(n+m+1)\n. Moreover, sinceE is a decompo-
sition of n+m+1X,

∀x ∈ n+m+1X∃π : n + m + 1
1−1−→
onto n + m + 1

such that 〈
xπ(i)

〉
i<n+m+1 ∈ F.

Let f : [ X]n −→ [ X]m+1 whose graph as a subset ofn+m+1X is F \ D, whereD is
defined as above. Thenf is a counterexample to F(X, σ, n, m). �
It is possible to prove the preceding proposition in one or more direct ways that avoid
using measure-theoretic techniques, but the proof given has the advantage of showing
that if F(X, σ, n, m) and f : [ X]n −→ [

[ X]m+1
]<σ

, then there is not only one, but
measure one setsA ∈ [ X]n+m+1 such that∀B ∈ [ A]m+1, B /∈ f (A \ B).

6 Is 2ℵ0 weakly inaccessible? Freiling’s principle Aℵ0 is the special case A2ℵ0
of

his principle An
ℵ0

. The principle Aℵ0 is then, the same as F
(
2ℵ0,ℵ1,1,0

)
which we

have just seen, is equivalent to¬CH.
The gist of Freiling’s philosophical argument for Aℵ0 is as follows. LetI be the

closed unit interval[0,1] of real numbers. Letf : I −→ [I]<ℵ1. Pick x andy at ran-
dom fromI. Now,∀a ∈ I, P (y ∈ f (x) | x = a), that is, the probability thaty ∈ f (x)

given thatx = a, is 0. Hence—and here is the crux of the argument—P (y ∈ f (x)),
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that is, the probability thaty ∈ f (x), is 0. By symmetry,P (x ∈ f (y)) = 0, too.
Thus,

P (y ∈ f (x) or x ∈ f (y)) ≤ P (y ∈ f (x)) + P (x ∈ f (y)) = 0,

whence
P (y /∈ f (x) & x /∈ f (y)) = 1.

Accordingly,∃x, y ∈ I such thaty /∈ f (x) & x /∈ f (y) .

For every nonzero elementn of ω, Freiling presents a similarly attractive argu-
ment for F

(
2ℵ0,ℵ1, n,0

)
: let f : [I]n −→ [I]<ℵ1; pick x0, x1, . . . , xn−1, andy at ran-

dom fromI; and check to see whethery ∈ f ({x0, x1, . . . , xn−1}). F
(
2ℵ0,ℵ1, n,0

)
is,

as we know, equivalent to the proposition that 2ℵ0 ≥ ℵn+1. Thus, Freiling has pre-
sented an attractive argument for believing that 2ℵ0 > ℵω.

Sikorski’s Theorem5.2indicates how little the principles F
(
2ℵ0,ℵ1, n,0

)
have

to do with the reals per se: if one is willing to believe that 2ℵ0 > ℵω, then perhaps
one might as well believe that for every ordinalα, 2ℵα > ℵα+ω.

In any case, if one believes that small subsets of the reals, that is, sets of car-
dinality less than that of the continuum, should havemeasure 0, and if one believes
in Freiling’s argument for F

(
2ℵ0,ℵ1,1,0

)
, then perhaps one ought to believe as well

that F
(
2ℵ0,2ℵ0,1,0

)
. However, this proposition is simply false. On the other hand,

one might simply believe that∀σ < 2ℵ0, F
(
2ℵ0, σ+,1,0

)
. This has the interesting

consequence that 2ℵ0 ≥ ℵω1.

Proposition 6.1 Let κ be an infinite cardinal. Then κ is a limit cardinal if and only
if ∀σ < κ, F

(
κ, σ+,1,0

)
.

Proof: Trivial. �

Corollary 6.2 Suppose that ∀σ < 2ℵ0, F
(
2ℵ0, σ+,1,0

)
. Then 2ℵ0 ≥ ℵω1.

Moreover, if one believes that small unions of small sets should be of measure 0, then
2ℵ0 should be regular, whence 2ℵ0 should be weakly inaccessible.

Corollary 6.3 Suppose that ∀σ < 2ℵ0, F
(
2ℵ0, σ+,1,0

)
, and that 2ℵ0 is regular.

Then 2ℵ0 is weakly inaccessible.

For more on Freiling’s philosophical argument against CH, see [9] and[2].4
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NOTES

1. For more on the history of Sierpiński’s Theorem1.2, see [8].

2. [4] actually contains a generalization of Davies’ Theorem1.7 in a direction other than
that taken here. I plan to generalize the results of this paper in that direction in a future
work.
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3. In [1], Bagemihl obtained the first Sierpiński-type results concerning three or more lines
in the plane.

4. For more on decompositions of hyperspace, cf. also [10].
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[4] Davies, R. O., “On a problem of Erdős concerning decompositions of the plane,”Pro-
ceedings of the Cambridge Philosophical Society, vol. 59 (1963), pp. 33–36.
Zbl 0121.25702 MR 26:35 1, 6

[5] Freiling, C., “Axioms of symmetry: throwing darts at the real number line,”The Journal
of Symbolic Logic, vol. 51 (1986), pp. 190–200.Zbl 0619.03035 MR 87f:03148 1, 5,
5
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