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Abstract The paper provides a new semantics forpositive modal logic using
Kripke frames having a quasi ordering≤ on the set of possible worlds and an
accessibility relationR connected to the quasi ordering by the conditions (1)
that the composition of≤ with R is included in the composition ofR with ≤ and
(2) the analogous for the inverse of≤ andR. This semantics has an advantage
over the one used by Dunn in “Positive modal logic,”Studia Logica (1995) and
works fine for extensions of the minimal system of normal positive modal logic.

1 Introduction In [4] Dunn begins the study ofpositive modal logic, modal logic
without negation and without implication—that is, modal logic with the connectives
∧,∨,�,�, and also modal logic with the mentioned connectives plus the proposi-
tional constants� and⊥. The question addressed in the paper is which set of pos-
tulates characterizes the definition of these connectives (and propositional constants)
in the usual Kripke semantics: that is, the semantics where (1) frames are pairs con-
sisting of a set of possible worlds and a binary relation on that set, (2) valuations are
any function from the propositional functions to sets of possible worlds, and (3) the
semantical clauses in the definition of truth in a world are the usual classical ones
for the connectives involved. [4] answers the question by introducing the systems
K+ (with the connectives∧,∨,�,�) and K�⊥+ (with the connectives∧,∨,�,� and
the propositional constants�,⊥) of positive minimal normal modal logic defined
by means of calculi on consequence pairs, that is, pairs of formulas(ϕ,ψ), written
ϕ � ψ, that can be identified with sequents. Dunn’s systems have the following prop-
erty for the formulas in the languages involved:

ϕ1 ∧ · · · ∧ ϕn � ϕ is deducible iff ϕ1, . . . , ϕn |=K ϕ,

where|=K is the local consequence associated to the minimal normal modal logic K,
that is, the one defined by

ϕ1, . . . , ϕn |=K ϕ iff ϕ1 ∧ · · · ∧ ϕn → ϕ is a theorem of K.
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Hence, Dunn’s systems are essentially, and respectively, the∧,∨,�,�-fragment and
the∧,∨,�,�,�,⊥-fragment of the deductive system (on the sets of formulas with
all the connective) KMP whose consequence relation is the relation|=K just men-
tioned.

The semantics for postive modal logic considered by Dunn is, as we said, the
usual Kripke semantics. With this semantics, a consequence pairϕ � ψ is valid in
a model if the set of worlds whereϕ is true is included in the set of worlds where
ψ is true. Dunn not only studies thepositive minimal normal modal logic, but also
several of its extensions by means of consequence pairs like�ϕ � ��ϕ, �ϕ � ϕ and
their duals��ϕ � �ϕ andϕ � �ϕ as well. His semantics has a shortcoming that,
for example, if one adds�ϕ � ��ϕ to his basic system, one obtains a system that is
frame incomplete:��p � �p is valid in all the frames where�p � ��p is valid but
is not deducible in the system. This is not a good feature. It seems that the semantics
must reflect the fact that without negation the consequence pair schemes��ϕ � �ϕ

and�ϕ � ��ϕ are no longer dependent on each other.
Two years ago, unaware of Dunn’s work, we began to study what turned out to

be the(∧,∨,�,�,�,⊥)-fragment of the modal deductive system KMP. Westarted
our study by using a different semantics than Dunn’s in order to develop a duality
theory for bounded distributive lattices with modal operators by extending the well-
known Priestley duality between bounded distributive lattices and Priestley spaces.
This duality theory is mainly the subject of the Ph.D. dissertation [2] of the first author
and will be the subject of another paper. In order to find the semantics, we looked at
the mentioned fragment as a fragment of a possible intuitionistic modal logic with the
axioms

�(ϕ ∨ ψ) → �ϕ ∨ �ψ and �ϕ ∧ �ψ → �(ϕ ∧ ψ).

In Kripke semantics for intuitionistic modal logic, frames are triples with a set of pos-
sible worlds, a quasi ordering≤ on it, and an accessibility relationR, and the valu-
ations used are the increasing ones. So we considered structures of this kind as our
frames and the increasing valuations as our valuations. Moreover, we used the clas-
sical semantic conditions for� and� in the definition of truth in a world, as in [1].
It turns out that (1) both axioms are intuitionistically valid in any frame and (2) any
increasing valuation extends to all formulas in such a way that the set of worlds where
a formula is true is an increasing set (relative to≤) if and only if the two conditions
on frames

(≤ ◦ R) ⊆ (R ◦ ≤)

and
(≤−1 ◦ R) ⊆ (R ◦ ≤−1)

hold. The first condition is the one used by Božić and Dǒsen in [1] (see also [3]) to
define the frames for their system of intuitionistic modal logic HK� and the second
one is the condition used by these authors to define the frames for their system of
intuitionistic modal logic HK�. We imposed these two conditions on our structures,
so our frames are the structures mentioned that satisfy both conditions. We introduced
a deductive system calledSm by means of a Gentzen calculus sound and complete
for this class of frames. This system is equivalent to Dunn’s system K�⊥+ but our
semantics has the advantage that it works well for extensions. For example, with our
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semantics the extensions by the sequents��ϕ � �ϕ and by�ϕ � ��ϕ are both
frame complete. The purpose of this paper is to present the deductive systemSm, the
semantics just mentioned, and the completeness proof, as well as the study of some
canonical extensions.

One specific point should be stressed. Since a (finitary) deductive system can
be seen (as pointed out in Section 2) as a set of sequents, we will extend the usual
notions of truth in a world, validity in a model, and so on, for formulas to sequents.
In this way, even if we do not have a conditional we will be able to express properties
of the accessibility relation. We will not do this by means of formulas but by means
of sequents.

The paper is divided into seven sections, apart from this introduction. In the next
section, thePreliminaries, the basic notions of modal deductive system and Gentzen
system as well as related notions are introduced. In Section 3 the basic deductive
systemSm is introduced by means of a Gentzen calculus. Section 4 deals with the
Kripke semantics forSm and extensions. In Section 5 several sequents are considered
and the properties on frames that correspond to them are studied. Section 6 is devoted
to the proof of the completeness theorems forSm by using the canonical model built
by means of the prime theories. To conclude the paper, Section 7 is devoted to the
study of several canonical extensions ofSm.

2 Preliminaries Wewill deal with the modal propositional languageL with a de-
numerable set of propositional variables whose connectives are the elements of the
set{∧,∨,�,�} and that, in addition, has two propositional constants�,⊥. Fm will
denote indistinctly the set of formulas and the algebra of formulas.

A deductive system is a pairS = 〈Fm,�S〉 where�S is a finitary and structural
consequence relation onFm: that is, a relation that satisfies the following conditions.

1. If ϕ ∈ �, then� �S ϕ.
2. If � �S ϕ and for everyψ ∈ � � �S ψ, then� �S ϕ.
3. For any homomorphismσ from Fm into itself (i.e., a substitution), if� �S ϕ,

thenσ[�] �S σ(ϕ).
4. If � �S ϕ then there is a finite� ⊆ � such that� �S ϕ.

From (1) and (2) it follows that

5. If � �S ϕ and� ⊆ � then� �S ϕ.

Condition 3 is calledthe structurality condition.
A deductive systemS ′ is anextension of a deductive systemS if the relation�S

is a subrelation of the relation�S ′ .
A sequent of L is a pair〈�, ϕ〉 where� is a finite set of formulas andϕ is a for-

mula. As usual we will write� � ϕ for a sequent. The set of all the sequents ofL is
denoted bySeq. A Gentzen system is a pairG = 〈Seq, |∼G〉 where |∼G is a finitary
consequence relation onSeq, that is, a relation that satisfies the conditions analogous
to conditions 1, 2, and 4 but for sequents and sets of sequents instead of formulas and
sets of formulas, and such that it satisfies the following structurality condition: for
any family{�i � ϕi : i ∈ I} ∪ {� � ϕ} of sequents and any substitutionσ,

{σ[�i] � σ(ϕi) : i ∈ I} |∼G σ[�] � σ(ϕ)
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whenever,
{�i � ϕi : i ∈ I} |∼G � � ϕ.

A sequent� � ϕ is derivable in G if ∅ |∼G � � ϕ. Gentzen calculi with all the struc-
tural rules can be used to define Gentzen systems.

A substitution instance of a sequent � � ϕ is any sequentσ[�] � σ(ϕ) whereσ

is a substitution, and asubstitution instance of a formula ϕ is any formulaσ(ϕ) where
σ is a substitution.

Given a deductive systemS, asequent� � ϕ is asequent of S or anS-sequent
if � �S ϕ. The set of sequents of a deductive system is closed under substitution in-
stances and under the Gentzen rules of Reflexivity, Weakening, and Cut:

(Ref.)
ϕ � ϕ

(Weak.)
� � ϕ

�,ψ � ϕ
(Cut)

� � ϕ �, ϕ � ψ

� � ψ

Any set of sequentsΣ closed under substitution instances and Gentzen rules of Re-
flexivity, Weakening, and Cut can be used to define a deductive systemS as follows.

� �S ϕ iff there is a finite� ⊆ � such that the sequent〈�,ϕ〉 ∈ Σ.

Because of these two facts we will identify deductive systems with sets of sequents
closed under substitution instances and the Gentzen rules of Reflexivity, Weakening,
and Cut. Therefore, a deductive system will be identified with its set of sequents.

To any Gentzen systemG we can associate the deductive system

SG = 〈Fm,�SG 〉
defined by

� �SG ϕ iff there is a finite set� ⊆ � such that∅ |∼G � � ϕ.

According to the identification proposed above, this deductive system is the set of
derivable sequents ofG.

Given a deductive systemS and a set of sequents{�i � ϕi : i ∈ I},
S + {�i � ϕi : i ∈ I}

will denote the least deductive systemS ′ that extendsS and is such that for eachi ∈ I
any substitution instance of�i � ϕi is a sequent ofS ′.

3 The basic deductive system Wewill introduce the basic deductive system of the
paper as the deductive system associated to the Gentzen systemGm defined by means
of the Gentzen calculus whose rules are the following:

ϕ � ϕ � � �⊥ � ⊥
� � ϕ

�,ψ � ϕ

� � ⊥
� � ϕ

� � ϕ �, ϕ � ψ

� � ψ

�,ϕ,ψ � α

�, ϕ ∧ ψ � α

� � ϕ � � ψ

� � ϕ ∧ ψ



POSITIVE MODAL LOGIC 5

�, ϕ � α �,ψ � α

�, ϕ ∨ ψ � α

� � ϕ

� � ϕ ∨ ψ

� � ψ

� � ϕ ∨ ψ

[��]
�, ϕ � ψ ∨ α

��,�ϕ � �ψ ∨ �α
[��]

� � ϕ ∨ ψ

�� � �ϕ ∨ �ψ

where for any set� of formulas�� = {�ϕ : ϕ ∈ �}. The following rules are derived
rules.

� � ϕ

�� � �ϕ

�, ϕ � ψ

��,�ϕ � �ψ

The following sequents are derivable sequents (the proofs are left to the reader):

1. �(ϕ ∧ ψ) � �ϕ ∧ �ψ

2. �ϕ ∧ �ψ � �(ϕ ∧ ψ)

3. �(ϕ ∨ ψ) � �ϕ ∨ �ψ

4. �ϕ ∨ �ψ � �(ϕ ∨ ψ)

5. �� � �
6. � ��
7. ⊥ � �⊥
8. �(ϕ ∨ ψ) � �ϕ ∨ �ψ

9. �ϕ ∧ �ψ � �(ϕ ∧ ψ)

The last two sequents are the sequents used by Dunn for his axiomatization of pos-
itive modal logic. The main difference between his presentation and ours is that he
only deals with sequents of the formϕ � ψ (his consequence pairs) and his calculus
is, properly speaking, not a Gentzen calculus but an axiomatic calculus to deal with
sequents of that type.

A property of our calculus is the following: for any formulasϕ1, . . . , ϕn, ϕ,

{ϕ1, . . . , ϕn} � ϕ is derivable iffϕ1 ∧ · · · ∧ ϕn � ϕ is derivable as well.

Using this property it can easily be seen that Dunn’s positive logic is essentially the
same as ours. Let us denote bySm the deductive system just defined. We study this
system and some of its extensions.

4 Kripke semantics for Sm The main difference between our Kripke style seman-
tics and the one used by Dunn lies in the fact that he uses classical Kripke frames, a set
of worlds plus a binary accessibility relation, and we use structures that in addition
have a quasi ordering relation with some special connections with the accessibility
relation. Moreover, for Dunn any valuation is admissible but for us only the increas-
ing valuations relative to the quasi ordering will be admissible. These differences
allow us to have completeness theorems for systems that are incomplete with Dunn’s
semantics: for instance, the deductive systemSm + {�p � ��p}. This is a strong
reason in favor of our semantics.

Definition 4.1 A frame is a tripleF = 〈M,≤, R〉 where≤ is a quasi ordering on
M, that is, a binary reflexive and transitive relation onM, R is a binary relation on
M, and the following two conditions hold:
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1. (≤ ◦ R) ⊆ (R ◦ ≤), and
2. (≤−1 ◦ R) ⊆ (R ◦ ≤−1),

where◦ denotes the composition between binary relations.
Let F = 〈M,≤, R〉 be a frame. A subsetX of M is increasing if for every x ∈

X and everyy ∈ M such thatx ≤ y, it holds thaty ∈ X. An increasing valuation
on the frameF (a valuation from now on) is a functionV from the set of variables
into the set of all increasing subsets ofM. Note that we do not consider arbitrary
valuations, only the increasing ones as in intuitionistic logic. A valuationV can be
extended recursively to the set of all formulas by means of the following clauses:

1. V (�) = M,
2. V (⊥) = ∅,
3. V (ϕ ∧ ψ) = V (ϕ) ∩ V (ψ),
4. V (ϕ ∨ ψ) = V (ϕ) ∪ V (ψ),
5. V (�ϕ) = {x ∈ M : ∀y ∈ M(xRy =⇒ y ∈ V(ϕ))},
6. V (�ϕ) = {x ∈ M : ∃y ∈ M(xRy andy ∈ V (ϕ))}.

First of all we see that any valuation has the property that assigns an increasing set to
each formula.

Lemma 4.2 Let F be a frame and V a valuation on it. Then for any formula ϕ the
set V (ϕ) is increasing.

Proof: By induction. We deal only with the modal connectives. Assume thatV(ϕ)

is increasing and thatx ∈ V (�ϕ) is such thatx ≤ y. In order to see thaty ∈ V(�ϕ)

assume thatyRz. Sincex ≤ y andyRz, 〈x, z〉 ∈ ≤ ◦ R. Therefore, by condition 1 of
4.1, 〈x, z〉 ∈ R ◦ ≤. Letw be such thatxRw andw ≤ z. Sincex ∈ V (�ϕ), w ∈ V (ϕ).
Therefore, sinceV (ϕ) is increasing,z ∈ V (ϕ). Analogously one proves thatV(�ϕ)

is increasing using condition 2 of4.1. �
Now we introduce a notation that will be useful in the paper. Given a frameF =
〈M,≤, R〉, avaluationV on it and a set of formulas�,

V (�) =
⋂

ψ∈�

V (ψ).

If � is empty,V (�) = M.
A model is a pairM = 〈F , V〉 whereF is a frame andV is a valuation on it. We

define the semantical notions of truth and validity in a model and validity in a frame
for formulas and extend them to sequents. Given a modelM = 〈F , V〉 and a point
x ∈ M we say that a formulaϕ is true at x in M , in symbolsM , x � ϕ, if x ∈ V (ϕ).
A formulaϕ is valid in a model M , in symbolsM |= ϕ, if i t is true at every point in
M. A formulaϕ is valid in a frame F , in symbolsF |= ϕ, if for any valuationV on
F , ϕ is valid in the model〈F , V〉.

The previous notions extend to sequents as follows. LetM = 〈F , V〉 be a model
andx ∈ M. A sequent� � ϕ is true atx in M , in symbolsM , x � � � ϕ, if x �∈ V(�)

or x ∈ V (ϕ), that is, whenV (�) ⊆ V (ϕ). A sequent� � ϕ is valid in a model M , in
symbolsM |= � � ϕ, if i t is true at every point inM, and it isvalid in a frame F , in
symbolsF |= � � ϕ, if it is valid in 〈F , V〉 for any valuationV on F .
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It is standard to show that if a formula is valid in a frame so are all its substitution
instances. In the same way as one shows this, one shows that if a sequent is valid in
a frame so are all its substitution instances.

With these notions we can define the notion of a Gentzen rule being sound for
model validity and for frame validity. Let{�i � ϕi : i ∈ I} ∪ {� � ϕ} be a set of
sequents. We say that the Gentzen rule

{�i � ϕi : i ∈ I}
� � ϕ

is sound for model validity if for any modelM = 〈F , V〉 such that for alli ∈ I, M |=
�i � ϕi, it holds also thatM |= � � ϕ, that is, whenV (�) ⊆ V (ϕ) wheneverV (�i) ⊆
V (ϕi), for all i ∈ I. And we say that the Gentzen rule issound for frame validity when
for any frameF , if F |= �i � ϕi for all i ∈ I thenF |= � � ϕ.

Clearly, if the rules of a Gentzen calculus are sound for model validity then all the
derived rules and the derived sequents are valid in any model. Moreover, soundness
for model validity implies soundness for frame validity.

Theorem 4.3 All the rules of the Gentzen calculus Gm are sound for model validity
and for frame validity. Therefore any derivable sequent is valid in any model and any
derived rule is also sound for model validity and frame validity.

Proof: It is straightforward to check that all the rules are sound. �
Let S be any deductive system that is an extension of the deductive systemSm. We
will denote by Fr(S) the class of all frames where every sequent ofS is valid. Now
let F be a class of frames.Sq(F) denotes the class of all sequents that are valid in
every frame inF: that is,

� � ϕ ∈ Sq(F) iff for all F ∈ F, F |= � � ϕ.

Sq(F) is a deductive system that extendsSm because it is closed under the Gentzen
rules of our Gentzen calculus and under substitution instances. It is called thededuc-
tive system of F.

If M is a class of models,Thsq(M) is the class of all sequents that are valid in
every model in the classM and is called thesequential theory of M. There are classes
of models whose sequential theory is not a deductive system. The sequential theory
of a class of models is closed under the rules of our Gentzen calculus but it is not
necessarily closed under substitution instances.

A deductive systemS is characterized by a classF of frames or iscomplete rel-
ative to a classF of frames,F-complete for short, if it is the deductive system of the
class of framesF. Moreover, it isframe complete if the set ofS-sequents isSq(Fr(S)).
The next lemma has an obvious proof.

Lemma 4.4 A deductive system S is frame complete if and only if it is characterized
by some class of frames.

Given a frameF = 〈M,≤, R〉 we can define the relations

R� = R ◦ ≤ and R� = R ◦ ≤−1 .

Then we have the following lemma.
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Lemma 4.5 Let F = 〈M ,≤, R〉 be a frame and V a valuation on it. Then for any
formula ϕ,

1. x ∈ V (�ϕ) if and only if ∀y ∈ M(xR�y =⇒ y ∈ V (ϕ)),

2. x ∈ V (�ϕ) if and only if ∃y ∈ M(xR�y and y ∈ V (ϕ)).

Proof: We prove (1). Assume thatx ∈ V(�ϕ) and thatxR�y. Let z ∈ M be such
that xRz andz ≤ y. Thenz ∈ V (ϕ) and, sinceV (ϕ) is increasing,y ∈ V (ϕ). Now,
assume that for ally ∈ M such thatxR�y, y ∈ V (ϕ), and assume thatxRz. Since≤
is reflexive, it holds thatxR�z. Therefore, we conclude thatz ∈ V(ϕ). Hence, we
obtain thatx ∈ V(�ϕ). The proof of (2) is analogous. �

If we use a semantics with Kripke frames with two relations, one to deal with� and
the other one to deal with� but no quasi ordering, and we admit any valuation, then
in the frames where the rules of our Gentzen calculus are sound the two relations are
equal. In our situation we cannot conclude that in an arbitrary frame the relationsR�

andR� are equal because we only consider increasing valuations. It is precisely this
that allows us to distinguish semantically between a sequent and its dual.

Wewill now prove a lemma that will be useful in the next section.

Lemma 4.6 Given a frame F = 〈M,≤, R〉 and a point x ∈ M the functions V x
�

and V x
� defined by

1. V x
�(p) = {y ∈ M : xR�y} and

2. V x
�(p) = {y ∈ M : not xR�y}

for every propositional variable p, are valuations (i.e., are increasing).

Proof: We prove (2). Assume thaty ≤ z, y ∈ V x
�(p), andz �∈ V x

�(p). So, xR�z.
Therefore, letw ∈ M be such thatxRw andz ≤ w. Hence,y ≤ w. Therefore,xR�y
which is absurd becausey ∈ V x

�(p). The proof for (1) is even easier. �

5 Correspondence results In this section we introduce several sequents that will
be used to define sequential extensions of the deductive systemSm and we prove cor-
respondence results for them.

T� �ϕ � ϕ

T� ϕ � �ϕ

4� �ϕ � ��ϕ

4� ��ϕ � �ϕ

B1 ϕ � ��ϕ

B2 ��ϕ � ϕ

S �ϕ � �ϕ

E1 �ϕ � ��ϕ

E2 ��ϕ � �ϕ

D ��ϕ � ��ϕ

These sequents correspond to usual axioms considered in modal logic. T� corre-
sponds to axiom T and T� to its dual, and so forth. Since in our language there is
no negation we need to consider a sequent and its dual independently. (Note that S
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and D are their own duals.) When they are different, each one is independent of the
other.

The previous sequents correspond to properties of frames. We will state these
properties in terms of the relationsR� andR�.

Theorem 5.1 Let F = 〈M,≤, R〉 be a frame. Then

1. �p � p is valid in F if and only if R� is reflexive;
2. p � �p is valid in F if and only if R� is reflexive;
3. �p � ��p is valid in F if and only if R� is transitive;
4. ��p � �p is valid in F if and only if R� is transitive;
5. p � ��p is valid in F if and only if R� ⊆ R−1

� ;
6. ��p � p is valid in F if and only if R−1

� ⊆ R�;
7. �p � �p is valid in F if and only if R� ∩ R� is serial.

Proof: The proofs of the implications from right to left are straightforward. The
proofs of the other implications are similar to the ones for the parallel classical cases.
For (1), (3), (6), and (7) one uses the valuations of the formV x

�; for (2), (4), and (5)
the valuations of the formV x

�. �

Theorem 5.2 Let F = 〈M,≤, R〉 be a frame. Then

1. �p � ��p is valid in F if and only if the following condition holds:

if xR�y and xR�z then yR�z;

2. ��p � �p is valid in F if and only if the following condition holds:

if xR�y and xR�z then yR�z;
3. ��p � ��p is valid in F if and only if the following condition holds:

if xR�y and xR�z then there is u ∈ M such that yR�u and zR�u.

Proof: As in the previous theorem the proofs of the implications from right to left
are straightforward, and in order to prove only the implications from left to right one
needs to consider for (1) a valuation of the formV x

�, for (2) and (3) valuations of the
form V x

�. �

6 Canonical frames and models In this section we introduce the canonical mod-
els and canonical frames for extensions of the deductive systemSm and prove com-
pleteness theorems forSm. Let us fix a deductive systemS that is an extension of the
deductive systemSm. A set of formulas is atheory of S, or anS-theory, if it is closed
under the consequence relation�S . A theory isconsistent if it is not the set of all for-
mulas, equivalently, if the formula⊥ does not belong to it. Aprime theory of S, or a
primeS-theory, is a consistentS-theory� with the following property:

if (ϕ ∨ ψ) ∈ � then ϕ ∈ � or ψ ∈ �.

We will use the lettersP, Q, D, and K with possible subscripts and superscripts to
refer to prime theories andTh(S) to denote the set of allS-theories.
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Let us denote byMS the set of all primeS-theories. We define in this set the
following relationRS by

〈P, Q〉 ∈ RS iff �−1(P) ⊆ Q ⊆ �−1(P),

where�−1(P) = {ϕ : �ϕ ∈ P} and�−1(P) = {ϕ : �ϕ ∈ P}. We will see that the
structure

FS = 〈MS ,⊆, RS〉
is indeed a frame. It will be called thecanonical frame for the deductive systemS.
Weneed to establish some facts on prime theories. First of all we need the following
observation.

Observation 6.1 For any prime theoryP,

1. �−1(P) is anS-theory and therefore is closed under conjunctions;

2. the complement of�−1(P) is closed under disjunctions.

Proof: (1) follows from the fact that if� �S ϕ then�� �S �ϕ. To prove (2) let
ϕ,ψ �∈ �−1(P) and assume that(ϕ ∨ ψ) ∈ �−1(P). Then�(ϕ ∨ ψ) ∈ P and since
�(ϕ ∨ ψ) �S (�ϕ ∨ �ψ), we have(�ϕ ∨ �ψ) ∈ P. SinceP is prime,�ϕ ∈ P or
�ψ ∈ P. Hence,ϕ ∈ �−1(P) or ψ ∈ �−1(P), which is absurd. �

The following proposition is the logical analogy of the prime filter theorem for
bounded distributive lattices.

Proposition 6.2 Let � be a consistent S-theory and let � be a set of formulas closed
under disjunctions (i.e., if ϕ,ψ ∈ � then ϕ ∨ ψ ∈ �) and such that � ∩ � = ∅. Then
there is a prime theory P such that � ⊆ P and P ∩ � = ∅.

Proof: Let us consider the set

W = {T ∈ Th(S) : T is consistent,� ⊆ T andT ∩ � = ∅}.

W is nonempty because� ∈ T . It is easy to see thatW, ordered by inclusion, is closed
under unions of nonempty chains. Therefore by Zorn’s lemma there is a maximal ele-
ment. LetP be such a maximal element. We prove thatP is a prime theory. Assume
thatϕ ∨ ψ ∈ P andϕ �∈ P andψ �∈ P. Let us consider theS-theoriesT andT ′ gener-
ated, respectively, byP ∪ {ϕ} andP ∪ {ψ}. These theories are consistent. We prove
only thatT is consistent since the proof thatT ′ is consistent is analogous. IfT is not
consistentP, ϕ �S ψ. ThereforeP, ϕ ∨ ψ �S ψ. Hence,P �S ψ becauseϕ ∨ ψ ∈ P.
Thereforeψ ∈ P, which is absurd. NowT andT ′ being consistent, sinceP is a max-
imal element inW we must haveT ∩ � �= ∅ andT ′ ∩ � �= ∅. Let α, β ∈ � be such
that P, ϕ �S α and P, ψ �S β. Then P, ϕ ∨ ψ �S α ∨ β. Hence,P �S α ∨ β, which
is absurd becauseα ∨ β ∈ � and� ∩ P = ∅. �

Lemma 6.3 If P and Q are prime theories such that �−1(P) ⊆ Q, then there is a
prime theory D such that 〈P, D〉 ∈ RS and D ⊆ Q.
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Proof: Assume that�−1(P) ⊆ Q. It is not difficult to see that the set of formulas
�−1(P) is anS-theory. Let� be the closure under disjunctions of the set

{ϕ : ϕ �∈ Q or ϕ �∈ �−1(P)}.

SinceQ is consistent,� is nonempty. We will prove that

�−1(P) ∩ � = ∅. (1)

From this follows that�−1(P) is consistent. Thus we can apply Proposition6.2 to
obtain a prime theoryD such that

�−1(P) ⊆ D andD ∩ � = ∅.

Therefore for this prime theory it holds that

�−1(P) ⊆ D ⊆ �−1(P) and D ⊆ Q,

and thus〈P, D〉 ∈ RS andD ⊆ Q.
In order to prove (1) we assume the opposite. So letϕ ∈ �−1(P) ∩ �. Since

⊥ �∈ Q, ⊥ �∈ �−1(P) and the complements ofQ and of�−1(P) are closed under
disjunctions we can assume without loss of generality that there areα �∈ Q andβ �∈
�−1(P) such thatϕ is (equivalent to)α ∨ β. Then, since�(α ∨ β) �S �α ∨ �β

and�(α ∨ β) ∈ P,

�α ∨ �β ∈ P.

If �α ∈ P, α ∈ Q, which is absurd. So�β ∈ P becauseP is prime. But this is absurd
too becauseβ �∈ �−1(P). This concludes the proof. �

Lemma 6.4 If P and Q are prime theories such that Q ⊆ �−1(P), then there is a
prime theory D such that 〈P, D〉 ∈ RS and Q ⊆ D.

Proof: Assume thatQ ⊆ �−1(P). Let us consider the theoryT generated by the
set

{ϕ : ϕ ∈ �−1(P) ∩ Q}.
Weprove that

T ⊆ �−1(P). (2)

Assume thatα ∈ T . Since�−1(P) and Q are closed under conjunctions, there are
ϕ ∈ �−1(P), ψ ∈ Q such that

ϕ ∧ ψ �S α.

By the rule [��] weobtain,

�ϕ ∧ �ψ �S �α.

Sinceψ ∈ Q, �ψ ∈ P, and since�ϕ ∈ P we obtain that�ϕ ∧ �ψ ∈ P. Thus it
follows that�α ∈ P andα ∈ �−1(P). Now from (2) it follows thatT is consistent,
because otherwise⊥ ∈ �−1(P) and this implies that⊥ ∈ P which is not the case. To
conclude the proof, since the complement of�−1(P) is closed under disjunctions, we
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can use Proposition6.2to obtain a prime theoryD such thatT ⊆ D andD ⊆ �−1(P).
Then

�−1(P) ⊆ D ⊆ �−1(P) and Q ⊆ D.

Therefore〈P, D〉 ∈ RS andQ ⊆ D. �

Proposition 6.5 The relation RS has the following two properties,

1. (⊆ ◦ RS ) ⊆ (RS ◦ ⊆−1), and
2. (⊆−1 ◦ RS ) ⊆ (RS ◦ ⊆−1).

Therefore the structure FS = 〈MS ,⊆, RS〉 is a frame.

Proof: (6.5.1): Assume that〈P, Q〉 ∈ ⊆ ◦ RS . Then letD be a prime theory such
that P ⊆ D and〈D, Q〉 ∈ RS . That is,

P ⊆ D and �−1(D) ⊆ Q ⊆ �−1(D). (3)

Therefore�−1(P) ⊆ Q. Hence by Lemma6.3 there is a prime theoryD′ such that
〈P, D′〉 ∈ RS and D′ ⊆ Q. Thus,〈P, Q〉 ∈ RS ◦ ⊆. (6.5.2) is proved analogously
using Lemma6.4. �
We now prove two propositions that will give us the proof of the canonical model
lemma.

Proposition 6.6 Let P be a prime theory. Then �ϕ ∈ P if and only if there is a
prime theory Q such that 〈P, Q〉 ∈ RS and ϕ ∈ Q.

Proof: The implication from right to left is immediate. To prove the other implica-
tion suppose that�ϕ ∈ P. Consider the theoryT generated by the set�−1(P) ∪ {ϕ}.
By a similar argument to the one used to prove (2) in the proof of Lemma6.4 we
obtain that

T ⊆ �−1(P). (4)

And from this follows thatT is consistent because� �∈ �−1(P). Applying Proposi-
tion 6.2to obtain a prime theoryQ such that

T ⊆ Q and Q ⊆ �−1(P)

we obtain a prime theoryQ such that〈P, Q〉 ∈ RS andϕ ∈ Q. �

Proposition 6.7 Let P be a prime theory. Then �ϕ ∈ P if and only if ϕ ∈ Q for
every prime theory Q such that 〈P, Q〉 ∈ RS .

Proof: The implication from left to right is immediate. To prove the other implica-
tion suppose�ϕ �∈ P. Consider the set

� = {ϕ ∨ α : α �∈ �−1(P)}
and the closure�′ of � under disjunctions. Since the complement of�−1(P) is
closed under disjunctions, any formula in�′ is equivalent to formula in�. Let us
show that

�−1(P) ∩ �′ = ∅ (5)
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If ψ ∈ �−1(P) ∩ �′ then there isα �∈ �−1(P) such that

ψ �S ϕ ∨ α.

By the rule [��] weobtain,

�ψ �S �ϕ ∨ �α,

and since�ψ ∈ P and�ϕ �∈ P we have�α ∈ P which is absurd. Therefore we obtain
(5). Now we can apply Proposition6.2in order to obtain a prime theoryQ such that

�−1(P) ⊆ Q and Q ∩ �′ = ∅.

Thus
�−1(P) ⊆ Q ⊆ �−1(P) and ϕ �∈ Q.

Therefore〈P, Q〉 ∈ RS andϕ �∈ Q. �
Wecan define thecanonical model for S as the model〈FS , VS〉 on the canonical frame
whereVS is the valuation defined by

VS (p) = {P ∈ MS : p ∈ P},

for any variablep. It is clear thatVS is a valuation since the sets{P ∈ MS : p ∈ P}
are clearly increasing.

Lemma 6.8 (Canonical Model Lemma) In the canonical model it holds that for
any prime theory P, any formula ϕ, and any sequent � � ϕ,

1. 〈FS , VS〉, P � ϕ if and only if ϕ ∈ P;
2. 〈FS , VS〉, P � � � ϕ if and only if � �⊆ P or ϕ ∈ P;
3. 〈FS , VS〉 |= � � ϕ if and only if � �S ϕ.

Proof: (2) follows from (1). (1) is proved by induction using Proposition6.6 and
Proposition6.7. (3) is proved as follows. If� �S ϕ, because of soundness it is clear
that VS (�) ⊆ VS (ϕ), and therefore〈FS , VS〉 |= � � ϕ. Now, if � ��S ϕ, by Propo-
sition 6.2 there is a prime theoryP such that� ⊆ P andϕ �∈ P. Hence, by (2),
〈FS , VS〉 �|= � � ϕ. �

Theorem 6.9 Any deductive system S that is an extension of Sm is complete relative
to its models: that is, any sequent valid in all of its models is a sequent of S.

Proof: Assume that a sequent� � ϕ is valid in every model ofS. So since by the
canonical model lemma, the canonical model is a model ofS, � � ϕ is valid in the
canonical model ofS. Therefore by (3) of the canonical model lemma,� �S ϕ. �
A deductive systemS that extendsSm is canonical if its canonical frame is a frame
of S: that is, if everyS-sequent is valid on it.

Observation 6.10 A deductive systemS that extendsSm is canonical if and only
if the deductive system of its canonical frame isS. Therefore, any canonical system
is frame complete.
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Proof: If S is canonical anyS-sequent is valid in the canonical frame. Moreover, if a
sequent is valid in the canonical frame it is valid in the canonical model and then using
(3) of the canonical model lemma it must be anS-sequent. The other implication is
clear. Now, ifS is canonical it is characterized by the class of frames{FS}. Therefore,
it is frame complete. �

Theorem 6.11 The deductive system Sm is canonical and hence frame complete.

Proof: TheSm-sequents are valid in any frame and if a sequent is valid in the canon-
ical frame it is valid in the canonical model. Therefore by (3) of the canonical model
lemma we obtain that it is anSm-sequent. �
To conclude this section we will prove thatSm is indeed the∨,∧,�,⊥,�,�-
fragment of the modal deductive system KMP: that is, the deductive system obtained
from the minimum classical normal modal logic K by considering the local conse-
quence relation that can be defined as in the introduction.

Theorem 6.12 The deductive system Sm is the ∨,∧,�,⊥,�,�-fragment of the
modal deductive system KMP.

Proof: On the one hand, it is easy to see that if� �Sm ϕ, for a set of formulas�∪ {ϕ}
of the language{∨,∧,�,⊥,�,�}, then� �KMP ϕ because any rule and axiom of the
Gentzen calculus is a sound axiom or rule ofK. On the other hand, if� �KMP ϕ, as-
sume without loss of generality that� is finite. Then if� ��Sm ϕ, in the canonical
model〈MSm ,⊆, RSm , VSm〉 there is a prime theoryP such that every formula in� is
true atP butϕ is false atP. Clearly〈MSm , RSm , VSm〉 is a model forK on which every
formula in� is true atP butϕ is false atP. Therefore� ��KMP ϕ, against the assump-
tion. �

7 Some canonical deductive systems In this section we will prove that any exten-
sion ofSm by some subset of the the set of sequents

{T�,T�,4�,4�,B1,B2,S,E1,E2,D}
is canonical and therefore frame complete. This solves a problem which arises in
Dunn’s paper, as we said in the introduction. With his semantics the deductive sys-
temSm + 4� is not frame complete because 4� is valid in all frames of the system
but is not a sequent of it. With our semantics we obtain frame completeness for both
deductive systemsSm + 4� andSm + 4�. This is a desirable situation because in the
absence of negation the sequents 4� and 4� are no longer dependent and this fact
must be reflected in the semantics.

To prove that the mentioned deductive systems are canonical we will use the
correspondence results by seeing that for each one of these sequents the relationsR�

andR� of the canonical frame have the properties that characterize the frames where
they are valid.

Theorem 7.1 Let S be a deductive system that extends Sm and let R� and R� be
the corresponding relations of its canonical frame. Then

1. if T� is an S-sequent then R� is reflexive;
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2. if T� is an S-sequent then R� is reflexive;
3. if 4� is an S-sequent then R� is transitive;
4. if 4� is an S-sequent then R� is transitive;
5. if B1 is an S-sequent then R� ⊆ R−1

� ;
6. if B2 is an S-sequent then R−1

� ⊆ R�;
7. if S is an S-sequent then RS is serial and so R� ∩ R� is also serial.

Proof: (1) Suppose that T� is anS-sequent. LetP be a primeS-theory. It happens
that�−1(P) ⊆ P because if�ϕ ∈ P, since�ϕ �S ϕ, ϕ ∈ P. Therefore by Lemma6.3
there is a prime theoryD such that〈P, D〉 ∈ RS andD ⊆ P. Therefore〈P, P〉 ∈ R�.
The proof of (2) is similar by using Lemma6.4 instead of Lemma6.3.

(3) Assume that 4� is anS-sequent and thatP, Q, D are prime theories such that
〈P, Q〉 ∈ R� and〈Q, D〉 ∈ R�. So there are prime theoriesP′ andQ′ such that

〈P, P′〉 ∈ RS , P′ ⊆ Q, 〈Q, Q′〉 ∈ RS , andQ′ ⊆ D.

Let us see that�−1(P) ⊆ D. If �ϕ ∈ P then��ϕ ∈ P because 4� is anS-sequent.
So, �ϕ ∈ �−1(P) and therefore�ϕ ∈ P′ ⊆ Q. Thus,ϕ ∈ �−1(Q) ⊆ Q′ ⊆ D,
as desired. Now we can apply Lemma6.3 to obtain a prime theoryD′ such that
〈P, D′〉 ∈ RS and D′ ⊆ D. Therefore〈P, D〉 ∈ R�, and this concludes the proof.
The proof of (4) can be dealt with similarly using Lemma6.4.

(5) Suppose that B1 is anS-sequent and that〈P, Q〉 ∈ R�. Then letK be a prime
theory such that〈P, K〉 ∈ RS andK ⊆ Q. We prove thatP ⊆ �−1(Q). If ϕ ∈ P then
��ϕ ∈ P because B1 is anS-sequent. Therefore,�ϕ ∈ K ⊆ Q. Henceϕ ∈ �−1(Q).
Now we use Lemma6.4to obtain a prime theoryD such that〈Q, D〉 ∈ RS andP ⊆ D.
Thus〈Q, P〉 ∈ R�. (6) can be proved analogously using Lemma6.4.

(7) Suppose that S is anS-sequent. Let us see thatRS is serial. LetP be a prime
theory. Then�−1(P) ⊆ �−1(P) because if�ϕ ∈ P then, since�ϕ �S ϕ, �ϕ ∈ P.
Moreover�−1(P) is a theory and it is consistent because otherwise�⊥ ∈ P, which
is impossible. In addition, the complement of�−1(P) is closed under disjunctions.
Therefore we can apply Proposition6.2to obtain a prime theoryD such that

�−1(P) ⊆ D and D ⊆ �−1(P),

which implies that〈P, D〉 ∈ RS . �

Theorem 7.2 Let S be a deductive system that extends Sm and let R� and R� be
the corresponding relations of its canonical frame. Then

1. if E1 is an S-sequent and 〈P, Q〉 ∈ R� and 〈P, D〉 ∈ R�, then 〈Q, D〉 ∈ R�.
2. if E2 is an S-sequent and 〈P, Q〉 ∈ R� and 〈P, D〉 ∈ R�, then 〈Q, D〉 ∈ R�.
3. if D is an S-sequent and 〈P, Q〉 ∈ R� and 〈P, D〉 ∈ R�, then there is a prime

theory K such that 〈Q, K〉 ∈ R� and 〈D, K〉 ∈ R�.

Proof: (1) Suppose that E1 is anS-sequent and that〈P, Q〉 ∈ R� and〈P, D〉 ∈ R�.
Then letP′ andP′′ be two prime theories such that

〈P, P′〉 ∈ RS , P′ ⊆ Q, 〈P, P′′〉 ∈ RS , andD ⊆ P′′.
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We prove thatD ⊆ �−1(Q). Assume thatϕ ∈ D. Thenϕ ∈ P′′ and sinceP′′ ⊆
�−1(P), �ϕ ∈ P. Therefore, using E1, ��ϕ ∈ P and hence, since�−1(P) ⊆ P′ ⊆
Q, �ϕ ∈ Q andϕ ∈ �−1(Q). Now by Lemma6.4 there is a prime theoryD′ such
that 〈Q, D′〉 ∈ RS and D ⊆ D′. Therefore,〈Q, D〉 ∈ R�. Similarly one can prove
(2) using Lemma6.3.

(3) Suppose that D is anS-sequent,〈P, Q〉 ∈ R� and〈P, D〉 ∈ R�. Then let P′

andP′′ be two prime theories such that

〈P, P′〉 ∈ RS , P′ ⊆ Q, 〈P, P′′〉 ∈ RS andD ⊆ P′′.

We prove that�−1(D) ⊆ �−1(Q). Assume that�ϕ ∈ D. Then�ϕ ∈ P′′ and
since P′′ ⊆ �−1(P), ��ϕ ∈ P. Therefore, using D,��ϕ ∈ P and hence, since
�−1(P) ⊆ P′ ⊆ Q, �ϕ ∈ Q andϕ ∈ �−1(Q). Now, �−1(D) is a consistent theory
since otherwise�⊥ ∈ P, which is impossible. Moreover, the complement of�−1(Q)

is closed under disjunctions. Thus, by Proposition6.2, there is a prime theoryK such
that

�−1(D) ⊆ K and K ⊆ �−1(Q).

Then by Lemma6.3there is a prime theoryD′ such that

〈D, D′〉 ∈ RS and D′ ⊆ K,

and by Lemma6.4there is a prime theoryD′′ such that

〈Q, D′′〉 ∈ RS and K ⊆ D′′.

Therefore, we have a prime theory, that is,K, such that〈Q, K〉 ∈ R� and〈D, K〉 ∈
R�. �
The last two theorems allow us to prove the following frame completeness theorem.

Theorem 7.3 Any extension of Sm obtained by adding to the deductive system any
subset of the following set of sequents

{T�,T�,4�,4�,B1,B2,S,E1,E2,D}
is canonical and therefore frame complete.

Proof: Let X be one of these subsets. Consider the properties that characterize its
frames stated in Theorems5.1and5.2. Then Theorems7.1and7.2establish that the
canonical frame has these properties. Therefore it is a frame of the deductive system,
that is, the deductive system is canonical. �
To conclude this section we will see that several deductive systems obtained by ex-
tendingSm by pairs of dual sequents in the set{T�, T�,4�,4�, B1, B2, S, E1, E2, D}
are characterized by a class of frames that can be described by a property of the acces-
sibility relation. First of all we will state an interesting fact concerning the canonical
frames.

Lemma 7.4 Let S be an extension of Sm. Then in the canonical frame FS it holds
that

RS = R� ∩ R�.
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Proof: The inclusionRS ⊆ R� ∩ R� holds because in any frame the correspond-
ing inclusion holds due to the fact that the relation≤ is reflexive. To prove the other
inclusion suppose thatP and Q are prime theories such that〈P, Q〉 ∈ R� ∩ R�.
Then there are prime theoriesD andD′ such that�−1(P) ⊆ D ⊆ �−1(P), D ⊆ Q,
�−1(P) ⊆ D′ ⊆ �−1(P), andQ ⊆ D′. Hence�−1(P) ⊆ Q ⊆ �−1(P). Therefore
〈P, Q〉 ∈ RS . �
In general the following proposition holds.

Proposition 7.5 Let 〈M,≤, R〉 be a frame. Then

1. if R is reflexive then R� and R� are reflexive;
2. if R is transitive then R� and R� are transitive;
3. if R is symmetric then R� = R−1

� ;
4. if R is euclidean then the following conditions hold:

(a) if 〈x, y〉 ∈ R� and 〈x, z〉 ∈ R� then 〈y, z〉 ∈ R�,

(b) if 〈x, y〉 ∈ R� and 〈x, z〉 ∈ R� then 〈y, z〉 ∈ R�.

Proof: (1) is immediate because≤ is reflexive. (2) Assume thatR is transitive and
thatxR�y andyR�z. Then there areu,w ∈ M such thatxRu, u ≤ y, yRw, andw ≤ z.
Therefore, sinceu ≤ y andyRw, 〈u,w〉 ∈ (≤ ◦ R) ⊆ (R ◦ ≤). So there isv ∈ M
such thatuRv andv ≤ w. SinceR is transitive,xRv, and since≤ is transitive too,
v ≤ z. Therefore,xR�z. Thus we conclude thatR� is transitive. In an analogous
way it can be proved thatR� is transitive.

(3) Assume thatR is symmetric and thatxR�y. Then letz ∈ M such thatxRz
andz ≤ y. Therefore〈y, x〉 ∈ ( ≤−1 ◦ R) ⊆ (R ◦ ≤−1). But R ◦ ≤−1 is R�. Thus
R� ⊆ R−1

� . The other inclusion is proved in a similar way.
(4) Assume thatR is euclidean. We prove the first condition, the other one is

proved analogously. Suppose thatxR�y andxR�z. Then there areu, v ∈ M such
thatxRu, u ≤ y, xRv, andz ≤ v. SinceR is euclidean,uRv. Therefore, sinceu ≤ y
anduRv, 〈y, v〉 ∈ (≤−1 ◦ R) ⊆ (R ◦ ≤−1). Letw ∈ M be such thatyRw andv ≤ w.
Then, sincez ≤ v, yRw, andz ≤ w, and thereforeyR�z. �

Proposition 7.6 Let S be an extension of Sm and consider the canonical frame
FS = 〈MS ,⊆, RS〉. Then

1. RS is reflexive if and only if R� and R� are reflexive;
2. RS is transitive if and only if R� and R� are transitive;
3. RS is symmetric if and only if R� = R−1

� ;
4. RS is euclidean if and only if the following conditions hold:

(a) if 〈P, Q〉 ∈ R� and 〈P, D〉 ∈ R� then 〈Q, D〉 ∈ R�,

(b) if 〈P, Q〉 ∈ R� and 〈P, D〉 ∈ R� then 〈Q, D〉 ∈ R�.

Proof: The implications from right to left follow easily from Lemma7.4 and the
implications from left to right from the previous proposition. �
From the previous propositions follows the next theorem.

Theorem 7.7



18 S. CELANI and R. JANSANA

1. Sm + {T�,T�} is characterized by the class of frames with a reflexive accessi-
bility relation.

2. Sm + {4�,4�} is characterized by the class of frames with a transitive acces-
sibility relation.

3. Sm + {B1,B2} is characterized by the class of frames with a symmetric acces-
sibility relation.

4. Sm + {E1,E2} is characterized by the class of frames with a euclidean acces-
sibility relation.

5. Sm + {S} is characterized by the class of frames with a serial accessibility re-
lation.

By using this theorem the reader can obtain similar characterization theorems by ex-
tendingSm with pairs of dual sequents among the ones just considered.1
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NOTE

1. After the paper was accepted we were informed by J. Jaspars of the close connections
between postive modal logic andpartial modal logic as presented in [6] and [5]. The
reader can compare the systemsM of Partial Modal Logic in [6] with the systemSm of
the present paper as well as the respective completeness proofs. Moreover, as pointed
out to us by J. Jaspars, the proof of Theorem 5.5 in [6] given in [5] can be easily adapted
to obtain the analogous result for Positive Modal Logic.
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Universitat de Barcelona
08028 Barcelona
SPAIN
email: jansana@cerber.mat.ub.es

mailto: scelani@tandil.edu.ar
mailto: jansana@cerber.mat.ub.es

