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Interpolation and Preservation in ML,

HOLGER STURM

Abstract  In this paper we deal with the logic M L,,, which is the infinitary
extension of propositional modal logic that has conjunctions and disjunctions
only for countable sets of formulas. After introducing some basic concepts and
toolsfrom modal logic, wemodify Makkai’ sgeneralization of the notion of con-
sistency property to make it fit for modal purposes. Using this construction as
auniversal instrument, we prove, among other things, interpolation for ML,
as well as preservation results for universal, existential, and positive ML, -
formulas.

1 Introduction  For along time infinitary logics were widely ignored in the area
of modality. This situation changed only quite recently. About five years ago lo-
gicians, computer scientists, and philosophers began to investigate infinitary modal
logics more deeply, thereby concentrating on extensions of M L, such as M L, and
ML,,.

By M L we mean the polymodal version of standard propositional modal logic,
that is, the logic one gets by adding several boxes and diamonds to the logical part
of the language of propositional logic, and by using a Kripke-style semantics for in-
terpreting its formulas. The infinitary modal logic M L., is obtained from ML by
adjoining conjunctions and disjunctions for arbitrary sets of formulas and by adapt-
ing the semantics correspondingly. If conjunctions and disjunctions are only defined
for sets of cardinality smaller than «, for afixed regular cardinal «, we have thelogic
ML,.

One can make out several good reasons why infinitary modal logics should de-
serve our attention. In thefirst place, and this does not only apply to the modal case,
infinitary logics provide a natural means for overcoming the expressive weakness of
the corresponding finite systems; this concerns both aspects of expressiveness, the
ability to express certain properties of structures, as well as the ability to charac-
terize certain relations between structures and to distinguish pairs of structures be-
tween which these relations hold. Second, severa interesting modal logics may be
regarded—via suitable translations—as fragments of infinitary extensions of M L;
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the most popular ones are certainly propositional dynamic logic and thelogic of com-
mon knowledge. There is legitimate hope that a deeper understanding of infinitary
logicswill lead to important insightsinto their respective fragments. Third, infinitary
modal |ogics themselves might be analyzed as fragments of other logics, namely, as
fragments of infinitary versions of first-order logic. Thiscan bedonewiththeaid of a
straightforward adaptation of van Benthem's standard trandlation to the infinite; ob-
vioudly, in the case of ML, we get L., asthetarget logic, and L, in the case of
ML,. Fromalogical point of view these fragments show well-behavior: quite afew
metalogical properties are hereditary from logics to their modal fragments. Last but
not least, in arecent book Barwise and Moss[[2] have pointed out interesting connec-
tions between infinitary modal logics and the theory of non-wellfounded sets.

Thefirst resultsthat were proved with regard to infinitary modal |ogicswere cen-
tered around the notion of bisimulation and its linguistic characterizability. Bisimu-
lations are a special kind of equivalence relation between models that has turned out
to play an important role in the model theory of modal logic. What makes them suit-
able for modal purposesisthis: modal formulas cannot distinguish between bisimi-
lar models, that is, if two models are bisimilar, then the same M L-formulas hold in
them. On the other hand, there are modally equivalent models that are not bisimilar.
To bridge the gap, one needs infinitary tools. Around 1990, several authors made the
observation that bisimilarity and elementary equivalence with respect to ML, coin-
cide. Thisresult hassincebeenimproved upon and devel oped in anumber of different
directions. In [Iﬁ, for instance, van Benthem and Bergstra obtained a modal vari-
ant of Scott’s isomorphism theorem; they proved that every countable model (over
a countable vocabulary) can be characterized up to bisimilarity by asingle ML, -
formula. In the same paper the authors extended van Benthem's bisimulation theo-
remto £,,.; they showed that a £, ,,-formulais equivalent to (the trandation of) a
ML,,-formulaif and only if it isinvariant for bisimulations. For L., such achar-
acterization was given in van Benthem [[9]. Further results on infinitary modal logics
are contained in Barwise and van Benthem [[1], Barwise and Moss [2], van Benthem
[10], van Benthem [[11], de Rijke 3], Sturm [[6], and Sturm [[7].

In [[l, Barwise and van Benthem obtained a number of interpolation and preser-
vation results for M L. as corollaries to an abstract interpolation theorem. A more
down-to-earth presentation of these results may befoundin [IE] In spite of thewide
applicability of their techniques, it is far from obvious how to apply them to ML,,,.
Thismight givethe reader some further motivation for paying attention to the method
developed in the present paper.

Our paper exclusively dealswith thelogic M L,,,. Together with its companion
piece [, it provides an analysis of ML, with respect to its most basic metalogi-
cal properties. The paper has the following structure: in the next section, we intro-
duce basic concepts of the syntax and semantics of modal logic. Section 3isdevoted
to two maodel constructions, a polymodal version of unraveling and a kind of modal
amalgamation. The paper’s main results are all obtained by a single method. This
method may be described asamodal variant of aproof construction asintroduced by
Makkai [£] in the context of Lo, Thekey to this construction is what we will call
the notion of an interpolation property, a concept that generalizes the notion of acon-
sistency property, one of the main tools in the model theory of infinitary logics. The
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purpose of Section 4 is to give an informal description of how the whole construc-
tion works. It should help the reader to understand the things to come, and moreover,
should give him some motivation for working through theformal details. Aninterpo-
lation property isamore concrete version of an inductive property, anotion that forms
thetopic of Section 5. In Section 6 we introduce pseudo-compl ete theories and recall
some basic facts on them. Roughly speaking, pseudo-complete theories are to £,
what maximal consistent theories are to first-order logic. To complete our prelimi-
nary work, we have to introduce awider class of modal formulas, so-called general-
ized modal formulas; thisisdonein Section 7. Section 8 finally definesinterpolation
properties and develops their main features; from the methodological point of view,
this section forms the center of the article. By an application of the results from Sec-
tions 8 and 3, we obtain aproof of Craig'sinterpolation theorem for M L,,, in Section
9. Slight variations of this proof yield preservation results for universal, existential,
and positive formulasin the final section, 10. In addition, Section 10 contains an al-
ternative proof of van Benthem and Bergstra's bisimulation theorem.

2 Syntax and semantics A vocabulary T isaset of relation symbolsand individual
constants. Every relation symbol isequipped with a positive natural number, itsarity.
We use P, for the set of unary relation symbols, and R ; for the set of relation sym-
bols of greater arity. Throughout this paper we assume that & , only contains binary
relation symbols. A vocabulary with no individual constants is called a relational
vocabulary. If avocabulary contains exactly one individual constant itissaidto bea
modal vocabulary.

In this paper we will heavily exploit the fact that via standard translation, M L,
may be considered asafragment of £, .,. Inorder to emphasizethisrelationship even
on the syntactical level, we describe modal languages as based on (certain) first-order
vocabularies. We choose vocabularies with a unique constant for two reasons. First,
first-order languages over such avocabulary and modal languages are interpreted on
models of the same signature. Second, we prefer to correlate modal formulas with
first-order sentences rather than with first-order formulas (with one free variable).

Definition 2.1  Let T be amodal vocabulary. Theset ML, (t) of ML, -formulas
is defined as the smallest set X such that

1. for every P € P, the propositional letter pP isin X,
2. if pisin X, then =g isin X,

3. if ® € Xiscountable, then A\ ® and \/ ® arein X,
4. if Re R.andgisin X, then Orp and Orgp arein X.

By “countable,” we mean finite or of cardinality . We also alow & to be the empty
set. Inthiscase /\ @ isthe verum and \/ ® thefalsum. Accordingly, weuse T asan
abbreviation for the empty conjunction and _L for the empty disunction.

An ML, -formula (over 7) iscalled auniversal formulaif and only if it is built
up from propositional letters and negated propositional lettersusing \/, /\ and OR,
with Re R ;. By I1(7) wedenotethe set of universal formulas (over 7). Anaogously,
the set = (1) of existential formulas is defined as the smallest subset of ML, (1)
which contains al propositional letters aswell astheir negations and is closed under
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A, V,and Or. A formulathat isbuilt up without using the negation symbol iscalled
apositive formula. Y () denotes the set of positive formulas over the vocabulary .

The reader might have noticed that the above definitions only take modal for-
mulas into account that are negation normal, that is, formulas in which the negation
symbol only occursin front of propositional |etters. However, thisrestriction is not a
serious one: it can easily be proved that for every modal formula, thereis an equiva
lent formulawhich is negation normal. Through the following, we make the assump-
tion that we have fixed amapping which correl ates each formula ¢ with an equivalent
negation normal formula ¢"'.

The semantics of modal logic isbased on the same type of model s as the seman-
ticsof first-order logic (and itsinfinitary extensions), restricted to modal vocabularies.
Given amodal vocabulary t, a r-model consists of the following ingredients. a non-
empty set A, abinary relation R* on Afor each R e R ., asubset P* of Afor each
P e P, and an element a € A which interprets the unique constant of z. To adjust
the notation to the modal setting, we use (2, a), (98, b), ... to designate tT-models.

Definition 2.2  Let r be amodal vocabulary. The truth of an M L, -formulawith
respect to a t-model is defined inductively:

(A, a) = p° < P¥aforPe?,

@a)E—p = @ a oy,

RA,a) EV P i« thereisap e ®: (A, a) E ¢,
A,aEANP —fordlped: (A a) Eop,

A, a) = Orp < 3a € A(R%aa' & (U, a) = ¢),
(A, a) = Orp <= Va € A(R*aa = (A, a) = o).

In the last two clauses of the next definition, the variable x is assumed to be the first
variable from alist of variables that do not occur in St(g).

Definition 2.3  Let T beamodal vocabulary and ¢ be the uniqueindividual constant
in . The following clauses define amapping St from M L,,, () into the set of £,,,,,-
sentences over t:

St(pP) = Pc, for P e 2,

S(—¢) = =3y,

S(Ve) =V {S(plged},

SAP)  =A{Sp) |pe ),

S(Crp) = IAX(Rex A S(p)[x/c]), for Re R .,
S(Orp) =VYX(Rex — St(e)[x/c]), for Re R ..

Notation 2.4  For aformula v and individual termst, and ty, y[t;/t,] denotesthe
formulawe obtain by replacing every occurrence of t, in i by t;.

The following lemmatells us that a modal formula and its translation are true in the
same models. For thisreason it islegitimate to regard M L,,, asafragment of L.

Lemma?25 Let t be a modal vocabulary and (2, a) a t-model. Then for every
o€ ML, (1), (A, a) = gifandonly if (A, a) &= S(e).

Proof: By induction on the complexity of ¢. O
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Definition 26 Let r and " be modal vocabularies such that © C ¢/, and let (2, a)
and (B, b) be 7’-models. A relation Z € A x B isa r-bisimulation between (2, a)
and (°B, b), abbreviated by Z : (A, a) ~[, (B, b), if and only if it satisfies the fol-
lowing conditions:

BO Zab,

B1 va,b'(Za'b = VP e P,(P%a < P%D)),

B2a va, b/<Za/b’ — VRe R, va'(R¥a'a’ —> 3b" (R¥b'b’ & Za”b”))),
B2b  va, b/(Za/b’ — VRe R Vb'(RBb'b —> Ja’ (R¥aa’ & Za”b”))).

(2, a) and (°B, b) aresaidto be z-bisimilar, denoted by (4, a) ~{ (B, b), if and only
if there exists a t-bisimulation between (2(, a) and (B, b).

Lemma2.7 Lettbeamodal vocabulary and suppose (2, a) ~f (%5, b). Thenfor
every o € ML, (1), (2, a) = ¢ifandonlyif (B, b) = ¢.

Proof: By induction on the complexity of ¢. O

Whenwedrop clause B2b in Defi nition[2.6] we obtain the definition of az-simulation.
r-simulations are to existential formulas what z-bisimulations are to modal formulas
in general. By induction it can be shown that existential formulas are preserved un-
der T-simulations, that is, if thereisat-simulation from (2, a) to (B, b)—(%, a) ~*
(B, b) for short—then every existential formulawhich istruein (2, a) is aso true
in (2B, b). This raisesthe following question: isit possible to convert the above ob-
servation into a full preservation result, that is, can we characterize X (t) as the set
of exactly those modal formulas that are preserved under t-simulations? In Section
10 we will give a a positive answer to this question. In fact, we will do a dightly
better job. Thefirst part of Theorem[10.2kells us that a modal formulais equivalent
to an existential formula if and only if it is preserved under extensions, where “ex-
tension” is understood in the sense of classical model theory. From this we also will
obtain apreservation result for universal formulas: amodal formulawill be shownto
be equivalent to a universal formulaif and only if it is preserved under submodels.
Looking for relations suitable for positive formulas, we come across posi-
tive t-bisimulations. A positive t-bissmulation is a relation Z which satisfies BO,
B2a, B2b from Definition 2.6las well as the following weakening of clause B1:
va,b'(Zzab' = VP € 7 (P*a = P?D)). By (2, a) <% (B, b) we mean that
there exists a positive T-bisimulation from (21, a) to (B, b). It is easy to verify that
positive formulas are preserved under these relations. However, as in the preceding
case, the corresponding preservation result in Section 10 is stated and proved with
respect to a different notion, which is again taken from classical model theory. This
timewe make use of the notion of aweak extension, where (8, b) issaid to be aweak
extension of (A, a)—(, a) <, (B, b) for short—if and only if A= B, a= b, the
two models agree with respect to each R € & ., and for every P € P, P% c P%,

3 Unraveling and amalgamation  In[[5], Sahlquist introduced a universal method
of transforming a Kripke model into atreelike Kripke model which is bisimilar and
hence modally equivalent to the original model. In this section we first generalize
the construction of unraveling to the polymodal case. Then we prove two lemmas
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in which unraveled models are essentially involved and which will be needed in the
proofs of our main results. Lemmal[3Z]will play an important role in the proof of
Craig'sinterpolation theorem in Section 9, whereas L emmal3.5lenabl es us to sharpen
our preservation results in Section 10 in the way it was described in the foregoing
section.

Definition 3.1 Let r be amodal vocabulary and (21, a) be a t-model. We define
the sets of paths through (21, a) of length n, Pathf, (2, a) for short, by induction.

1. Path?(2l, a) := {(a)},
2. Path™1(2(, a) '= {0 o (R, &) |0 € Path?(2,a) & Re R, & R¥*[0] '}

Notation 3.2 ‘o’ denotes the concatenation operation on sequences. If o isafinite
sequence, £(o) designates the length of o, and if 0 < i < £(o), then [o]; designates
thei-th item of o.

We use Path, (2, a) to designate the set of paths through (2(, a), that is the union of
the sets Path? (2, a).

Definition 3.3 Let T be amodal vocabulary and (21, a) be a T-model. The unrav-
eling of (2, a), denoted by (Y, a4), is defined as follows.

1. A':={o|o € Path, (2, a)},

2. a¥:= (a),

3. for Pe B ando e A, set P¥0 1= P¥[0]4(0),

4. for Re R, and o, 0’ € AY, set R 00" := o’ =00 (R, [0']4(01))-

A model (2, a) issaid to be unraveled if it isisomorphic to its unraveling, that is, if
(A, a) = (AY, a%). For each element &' of an unraveled model, there is exactly one
o € Path, (2, a) that endsin a’. We use oy to designate this unique path. It is easy
to verify that the following clause defines a bisimulation between a t-model (2, a)
and itsunraveling: forevery @ € Aando € A", Za'o (<= [0]yr) = 4.

Lemma 3.4 (Amalgamation) Let t, 71, 7o be modal vocabularies such that =
71 N 2. SUppose (2, a) is an unraveled 7,-model and (B, b) an unraveled ,-
model such that (A, a) ~f. (%8, b). Then there exists a (1 U 12)-model (€&, e) with
(A, @)~ (€, e) and (B, b) ~2 (€, e).

Proof:  Without loss of generality we may assumethat A and B aredigoint sets. By
assumption there is a T-bisimulation Z between (21, a) and (B, b). Utilizing Z we
definethe model (&, e) asfollows: for E we choose the union of the following three
sets.

1. {(@,b')|Zza' b/ & oy € Path, (2, a) & o € Path, (B, b)}

2. {@ € Aloy ¢ Path, (2, a)}

3. {b € B|oy ¢ Path.(B, b)}.
Letebe(a, b). For P € P, ., and € € Eweput P%¢,if € € Aand P?¢,or€ € B
and P2¢, or therearea € Aand b’ € B such that & = (&, b') and P%a’ or PP,
Finally, for Re R ,u., and €, €’ € E we put REe'e’, if one of the following holds:

1. Jaav (e = (@, b)&Fa", b’ (R¥aa’ & RBb'b’ & ¢’ = (a’, b)),

2. Ja3p'(e¢ = (a,b)& e’ e A& R¥a'¢"),
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3. A (¢ = (a,b)& e € B& R®b'e’),
4. € € A& € ¢ A& R%e¢/,
5 € € B& ¢ € B& R®e¢.

To provethat (2, a) Ngls (€, e) we define arelation Z; by
vave (Z;ade =€ =a vIa'I’(¢ =@, b &a =a")),

and verify that Z; formsa t;-bisimulation between (2, a) and (€, ). The conditions
BO and B1 are obvious. For B2a suppose Z;a'¢’ and R*a’a”. Two cases need to be
distinguished.

Casel: € = a'. By the definition of E it follows that oy ¢ Path, (2, a), hence
oy & Path. (2, a), hence @’ € E. Together with the definitions of Z; and &, this
yields R®e¢'a” and Z,a"a’, closing the first case.

Case2: € =(a,b). If Rg R, thena’ € E, and the desired result follows eas-
ily. If Risin ., we reason as follows. By the definition of E we obtain Za'ty/,
thus there is a b” € B such that R®b’'b” and Za”’b’. From the latter we obtain
(@', b’y e E. This, together with R*a’a” and RZb’b”, implies Z,a” (a”’b") as well
as R%(a/, b')(a”, b"). This concludes the proof for B2a. B2b is proved in a similar
way.

For (B, b) ~f)25 (€, e) we use exactly the same argument. O

Lemma3.5 Let r bea modal vocabulary and let (2, a), (B, b) be unraveled -
models.

1. If (A, a) ~7 (B, b), then there exists an unraveled z-model (B’, b’) such that
(B, b') ~I, (B, b) and (A, &) C (B, ).

2. 1f (A, a) <7 (B, b), then there exist unraveled r-models (A, &) and (B, b’)
suchthat (', a') ~{ (A, @), (B, b)) ~[, (B, b) and (A', &) <, (B, b).

Proof: The proofs of the two claims are based on a tedious though straightforward
copying procedure which goes back to van Benthem [[9]. For lack of space we dis-
pense with their presentation. The reader interested in (detailed) proofs should con-
sult [[6]. O

4 |nterpolation properties. the informal account The purpose of this section is
to give an informal presentation of the method of interpolation properties as it will
be carried out in the following sections. Our approach adapts a method as introduced
by Makkai (see [4]) in the context of £,,, to the modal setting. Moreover, it gen-
eralizes the method of consistency properties. For that reason we start our informal
account by recalling the basic structure of the latter. Roughly, aconsistency property
S(for £,,») isaset of finite consistent sets s of £, ,,-formulas which satisfies certain
closure conditions. With afew exceptions, these closure conditions show the foll ow-
ing pattern: if s € Scontains aformula of the shape ..., thenthereisasets € S
which extends s and contains aformula of the shape . In the next section we define
such closure conditionsas pairs (11, 1) of subsetsof S. To say that Sisclosed under
(I1, I2) meansthat for every se Sn |1, Scontainsaset s' € |, which extends s.
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Example4.1 For aconcrete example, consider the condition regarding existential
formulas. It requiresthat for every set s € Scontaining aformula of the shape Ixe,
thereisaset ' € Swith s C s and a constant ¢ such that ¢[c/X] € S..

The closure conditions are chosen so that thefollowing claim becomesprovable: let S
be aconsistency property and suppose s € S, then there exists an w-sequence (s, | h e
) such that

1. Vnew:s, €S
2. =S5,

3. Vnew: S C Sy,
4

. thelimit I' := | ,,c,, Sn Of this sequence is a pseudo-complete theory, that is, a
set of sentences that uniquely determines amodel 2Ar-,

5. A =T.

For an application, consider completeness. Suppose we have acalculusthat is sound
with respect to the sesmantics of £, ,,. To prove completeness, it sufficesto show that
the set U of all finite consistent subsets of £, ., isaconsistency property. For if this
has been shown we can reason as follows: |et ¢ be consistent, then the set {¢} isan
element of U, hence there is a sequence as described above. Since - isamode of
[ itisamodd of ¢ aswell; therefore ¢ has a model, which concludes the proof.

The role that is played by (finite) sets of sentences in the context of consis-
tency properties will in our construction be overtaken by triples of the form s =
(®4, ©®,, 22—thisis not quite correct: for technical reasons we will use objects of a
dightly different sort; the triples were only chosen to make our informal presentation
more suggestive—where ®; and ©, are finite consistent sets of sentences over two
(possibly distinct) vocabularies t; and 1, and where z is the finite approximation of
asuitable relation between t1- and to-models. To be more precise, such an interpo-
lation property Sis aset of triples (04, ®,, z) which again satisfies certain closure
conditions, thistime ensuring that for every triples = (®1, ®5, z) in Sthereexistsan
w-sequence (07, ©3, z,) | n € w) such that

1 Vnew:(0],05,7) €S

(09,03, 20) =5,

Vnew: O] € 0 05 c 05, 7, C 7,4,

I'1 1= Upne, ©7 uniquely determines a r1-model r, such that Ar, =Ty,
I'2 = Upe, ©5 uniquely determines a ro-model r, such that Ar., =Ty,
Z := e, Zn defines asuitable structural relation between A, and r., .

o a0~ WD

For an illustration of how this construction works, we give a quite simplified sketch
of the proof of Craig's interpolation theorem (for a detailed proof see Section 9).
The theorem is proved by contraposition. Suppose ¢ and x are two M L, -formulas
which have no interpolant, meaning that there is no modal formula ¢ over their com-
mon vocabulary such that ¢ = ¢ and ¥ = x. In other words, the sets {¢} and {—x}
are modally nonseparable. Let t; be the vocabulary of ¢, 1, of x and T = 1 N 15.
Let @1 := {S(p)}, Op := {S(—x)[d/c]} for afresh constant d, and z := (c, d). It
can be shown that the triple (®1, ©,, 2) is an element of an interpolation property.
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Hence there is a sequence ((®f, ©3, z,) | n € w), satisfying the above conditions 1—-
6; in this specia situation the relation Z will turn out to be a t-bisimulation between
(Ar,, c*r1) and (Ar,, d*r2). From thisweinfer (Ar,, ¢*1) =g and (Ar,, d*12) =
—x. By an application of Lemmal[3.4lwe obtain amodel (¢, e) such that (&, e) ~gls
(Ar,, c™r1) and (€, €) ~2 (Ar,, d*12). Finaly, an application of Lemmal2.7lyields
(€, e) Egpand (¢, e) = —yx, whichmeansthat x does not follow from ¢. Thiscom-
pletes the proof.

5 Inductive properties  The fact that each element of an interpolation property S
may serve as the first item of a suitable w-sequence, relies on features of Sthat can
be described in a much more abstract setting. By utilizing the notion of an inductive
property this will be done in the present section. Apart from notation, the following
is strongly inspired by [4].

Let (S, <) beapartia order. A pair | = (l4, I5) of subsets of Sis called acon-
dition on (S, <) if and only if for every se |, and for every s € S, if s < § then
S € ;. A partial order (S, <) isclosed under the condition | = (I, I,) if and only
if for every s; € I, thereisan element s, of Ssuchthat s, < s and s € Io.

Definition 5.1 A triple (S, <, I) isaninductive property if and only if (S, <) isa
partial order, I a set of conditions on (S, <) under which (S, <) is closed, and for

eachse Stheset {| € I|se |;} iscountable.

Definition 5.2  Let (S, <, I) bean inductive property. We call asequence (sp|n €
w) closed with respect to (S, <, I) if and only if

—

1 foreveryne w: s, € S
2. forevery n € w: Sy < Shy1,
3. foreveeynewand | € I: if s, € 11, thenthereism > nwith sy, € Io.

Lemmab.3 Let (S <, ) beaninductive property and s € S. Then thereisa se-
guence (s, | n € w) which is closed with respect to (S, <, I) suchthat s = s.

Proof: Foreachse Slet Lsbeanenumeration of theset {I € I'|se I,}. By Defini-
tion[EL]we can assume that the length of Ls does not exceed w. Let g be abijection
between w x w and w \ {0} such that for every j,n € w: n < g(j, n).

The sequence is defined by induction: for the start put 55 ;= s. Suppose
(S0, . .., Sn) hasaready been defined. By assumption thereexist uniqguem, j € w with
g(j, m) = n+ 1. By thechoice of g it holdsthat m < n+ 1. Consider sy,; we need
to distinguish two cases.

Casel: |If jisnot smaler than the cardinality of {I € I|sy € l1}, we just put
Sn+1 = Sn.
Case2: Fortheother case, let | bethe jthitem of Ls,. From sy € 11, Sm < sy and

Definition[5.1] it followsthat s, € 11, hencethereisaset s € Ssuchthat s, < s and
S € l,. Defines, 1 :=¢.

It remains to check that the defined sequence (s, |n € w) is closed with respect to
(S, <,1). Supposesy € I, for | € I. Thenthereisa j smaller than the cardinality of
{l € I'|sme I1} suchthat | isthe jthitemof Ls,. Again, by the definition of g there
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isaunique n € w with m < g(j, m) = n+ 1. By construction we obtain s,,1 € I2;
this compl etes the proof. O

6 Pseudo-complete theories The present section is devoted to pseudo-complete
theories. Pseudo-complete theories occupy a central position in the model theory of
Lo,0- Thisis due to the fact that the internal structure of such a theory enables us
to create a Henkin-style model out of it. So we may regard them as the legitimate
infinitary counterparts of maximal consistent theories. Though the notion seems to
be older, the wording of the definition as well as the name trace back to [4].

Definition 6.1 Let = be acountablerelational vocabulary and C aset of individual
constants of cardinality w. A set T" of £, .,-sentences over t U C iscalled a pseudo-
complete (t, C)-theory if and only if

TO each ¢ € T" isnegation normal,

Tl ifgpel,then (—p)"f ¢T,

T2  for every valid first-order sentence ¢ over (U C), ¢" isinT,
T3 if A®isinT,thenevery g € ®isinT,

T4 if VxgisinT,thenfor every c € C the sentence ¢[c/X] isin T,
T5 forevery\/ @ inT,thereisay € ® suchthat ¢ isinT,

T6 forevery IxeinT, thereisac € C suchthat ¢[c/x] isinT.

Suppose I is a pseudo-complete (t, C)-theory. The model 21 isthen defined asfol-
lows. Asthe carrier of 2l we choose the set of constants C. The elements of C are
interpreted by themselves. For R € R, and cg, ¢; € C we put R*rcqc; if and only
if Rcocy € I'. The interpretation of P e P, is defined analogously by P%r := {c €
C|PceTll}.

Lemma6.2 LetT bea pseudo-complete (t, C)-theory.

1A =T
2. For every first-order sentence ¢ over (tUC): Ur = ¢ < ¢" €T

Proof: The first claim is proved by induction. The atomic case is an immediate
consequence of the construction of 2. Together with T1 this implies the claim for
negated atomic formulas. As the elements of I" are negation normal, negations of
more complex formulas need not be considered. For the remaining cases we make
use of T3to T6. For the second claim we reason as follows: by T2, T5, and T1 we
either have ¢"f e I" or (—¢)" e T" for each first-order sentence ¢. An application of
thefirst claim leads to the desired resuilt. O

7 Generalized modal formulas  In defining the notion of an interpolation property
in Section 8 we will make use of a special class of £,,,-formulas. For reasons that
will appear in LemmalZ4]we call them generalized modal formulas. In the context
of M L they trace back to van Benthem’s [[g].

From now on we are operating with two countable digoint sets of individual
variables, Var and V; the elements of V are exclusively used as the free variablesin
the generalized modal formulas.
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Definition 7.1  Let T be arelationa vocabulary. The set of generalized modal for-
mulas over (t, V), designated by MLSl(r, V), is defined as the smallest set X such
that

forevery Pe P, andevery v € V, Pv € X,
if pisin X, then —gisin X,
if ® € Xiscountable, then /\ ® and\/ ® arein X,

ifpe X, Re R.,v, v €V, Xxe Var and x doesnot occur in ¢, thentheformulas
AX(Rux A ¢[x/v']) and VX(Rvx — ¢[x/v']) arein X.

A wDd PR

I n the next definition we assemble anumber of closure conditions, which will beused
to fix special subclasses of MLSl (t, V).

Definition 7.2  Let r bearelational vocabulary and Re X ;. A set A of generalized
modal formulas over (z, V) issaid to be closed under

AT ifandonly if forevery P € P, andevery v € V, Pvisin A.
—ar ifandonlyif forevery P e P, andevery v € V,—Puvisin A.
/\ ifandonly if for every countable ® € A, A\ @ isin A.
\/ if andonly if for every countable ® C A, \/ @ isin A.

Jr ifandonly if for every ¢ € A, v, v’ € V, and every x € Var which does not
occur in ¢, the formula Ix(Rux A ¢[x/v']) isin A.

Vg ifandonly if for every ¢ € A, v,v' € V, and every x € Var which does not
occur in ¢, theformulavVx(Rux — ¢[x/v']) isin A.

In thefollowing definition weintroduce generalized versions of existential, universal,
and positive M L,,,-formulas.

Definition 7.3  Let t bearelational vocabulary.

1. £6(z, V) isdefined as the smallest subset of MLgl(r, V) that is closed under
AT, —ar, A, V and 3R, foreach Re R ;.

2. T1C(z, V) isdefined as the smallest subset of MLSl(r, V) that is closed under
AT, —ar, A,V and Vg, foreach Re R ;.

3. TC(z, V) isdefined as the smallest subset of MLSl(r, V) that is closed under
AT, A\, V,Vranddg, foreach Re X ;.

Lemma7.4 LettU{c} beamodal vocabulary. Suppose ¢ is a generalized modal
formula over (t, V) and the free variables of ¢ are contained in {vg}. Then

1. thereisa ¢* € ML, (r U {c}) such that g[c/vo] and St(¢*) are equivalent;
moreover,

2. ifg e 8(1, V), then ¢* € =(z U {c});

3. if @ € T®(1, V), then ¢* € TT(z U {c});

4. if o € YC(z, V), then ¢* € Y(z U {c}).

Proof: Thefirst claimis proved by induction on the complexity of ¢. A careful ex-
amination of this proof verifies the remaining claims as well. O
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8 Interpolation properties: theformal account Let , 1, and 7, be countable re-
lational vocabularieswith T = 7, N 15, let C, and C, betwo digoint sets of individual
constants of cardinality w, and let A be a subset of MLSl(r, V). A, 11, 12] isthen
defined as the set of all quadruples (®1, ©», g1, g2) such that

P1  ®;isafinitesubset of £, . (ti UC;i) which contains only finitely many con-
stantsfrom G;, fori € {1, 2},

P2 thesentencesin ®; and ®, are negation normal,

P3 g7 and g arefinitefunctionswith dom(g;) = dom(gy) € V,rng(g;) € Cy,
andrng(gz) < Cy,

P4 thereisno i € A such that
the free variables of  are contained in dom(g,),
®1 = ¥(091), and
O2 E =¥ (92).

Notation 8.1 For aformular and afunction g from a set of variablesinto a set of
constants, ¥ (g) denotes the sentence we obtain by replacing every v freein y by the
constant g(v). Whenever we use this notation it is presupposed that the domain of g
contains al free variables of .

Definition 8.2 If s= (04, O, di,Q2) € S:A, 71, ‘L’2] and (VXS] Lwlw(fl U Cy), then
we use s+1 ¢ as an abbreviation for (®1 U {¢}, ©2, 01, 92). For ¢ € L, (12U Cyp)
S+» ¢ isdefined in asimilar way.

Lemma8.3 Let A beclosed under /\,\/. Then for every s = (®1, ©2, g1, g2) in
A, 11, 2] and every i € {1, 2} the following hold:
1. ®;isconsistent,
if ¢ isa valid first-order sentence over 7 U G;, then s+ o™ isin JA, 71, 7],
if A\ ®isin®;,thenfor every ¢ € &, s+ ¢pisin JA, 11, 12],
if Yxp isin ©;, then for every c € Cj, s+ ¢[c/X] isin A, 11, 2],
if \/ @ isin ©j, thenthereisa g € ® suchthat s+ g isin JA, 131, t2],
6. if Ixp isin ®;, thenthereisa c € Cj such that s+ ¢[c/X] isin JA, 71, 2].

arwbd

Proof:

Case 1: Suppose ©1 isinconsistent, hence ®1 = L. Since A is closed under \/, it
holdsthat L :=\/ @ € A. Taken together this contradicts s € JA, 71, 72]. For ©;
we argue in asimilar way, thistimeusing T := /\ @ € A.

To prove the remaining statements of the lemma it suffices to concentrate on
condition P4; P1 to P3 are satisfied by definition. By using the assumption s €
A, 11, 12] the statements 24 are easily shown; the proofs are left to the reader.

Caseb5: Let\/ @ € ©1. Supposethereisno ¢ € ® suchthat s+; ¢ satisfiesP4. Then
for every ¢ € ® thereisay, € A suchthat ®1 U {¢} = ¥, (91) and Oz = =, (02).
Thisimplies()) ©1U{\/ ®} = \/{¥, | ¢ € ®}(g1) aswell as(ii) Oz = = \/ (¥, ¢ €
®}(g2). Moreover, \/ ® € ®1 and (i) imply (iii) ®1 = \/{¥, | ¢ € ®}(g1). By the
closure properties of A it holds that \/{y, | ¢ € ®} isin A. But this, together with
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(iii) and (ii), contradictsthe assumption s € JA, 11, 72]. Inthecaseof \/ ® € ©, we
make use of the fact that A is closed under /\; therest is analogous.

Case 6: Let Ixp € ©1. By definition, ®, only contains finitely many constants from
C,, hencethereisac e C; that does not occur in ®,. For such acit is easy to verify
that s+1 ¢[c/X] isin A, t1, 72]. Assume to the contrary. Then thereisay € A
such that (i) ®1 U {¢[c/X]} = ¥(d1), and (ii) ®, &= —v(g2). Asc does hot occur in
®1, (i) implies ®;, U {Ixe} = ¥(g1). To complete the proof we argue asin case 5.
The case Ixp € O, isproved in asimilar way. O

We are now ready to introduce the main notion of this paper.

Definition 8.4 (Interpolation property)  An inductive property (S, <, I) is called
an interpolation property if and only if there are t, t1, 0, C1, Cy, and A such that
SA, 11, o] = S and < isdefined asfollows: (01, ®2, 01, 92) < (07, ©5, 97, 05) if
andonly if ® € ©f and gi = g | dom(g;) fori e {1, 2}.

Thereareonly three concrete A’sinthispaper: the collection of all generalized modal
formulas (in Theorems[@.1]and [10.1) and its two subcollections € and Y€ (in the
first respectively third part of Theorem[10.2].

In the following list we assemble a number of sets of conditions. In the second
part of this section we use these setsin order to define certain interpol ation properties.
Let A, 11, o] andi € {1, 2} be fixed.

I Theset of al pairs | = (l4, 1) such that thereis avalid first-order sentence ¢
over t; U G in negation normal form with:
|1 = S:A, 71, ‘[2],
l2:={(O1,02,01,0) ¢ € O}.

I™ The set of all pairs | = (ly, I,) such that there is a £,,,,-sentence /\ ® over
7 UG and ¢ € ® with:
l1:={(01,02,01,%) | \® € 6},
I2:={(01,02,01,92) | ¢ € Oj}.

I" Thesetof all pairs| = (14, I) suchthat thereisa L, ,,-sentence Vxg and ¢ € C;
with:
l1:={(O1, O2, 01, 92) | VXp € Bj},
I2:={(®1, ©2, 01, 82) | ¢[Cc/X] € Bj}.

IV'" Theset of dl pairs | = (I, I) such that there is a £, ,,-sentence \/ @ with:
l1:={(01,02,01,0) | V ® € 6},
l2:={(01,02,01,92) [Fp € O : ¢ € Oj}.

I?' Thesetof al pairs | = (ly, 1) such that thereis a £, ,-sentence Ixp with:
l1:={(O1, 02,091, 92) | Ixp € Oj},
I2:={(©1, 02,01, 92) |3c € G : ¢[c/X] € BOi}.
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IR1 Thesetof al pairs| = (4, I») suchthatthereare Re R ;, ¢, ¢ € Ciandd € C,
with:
l1:={(©1, 02,01, g2) | Rec’ € ©1 & Fv € dom(g1) (91 (v) = C& G2(v) = d)},
I2:={(©1, 02, 01,92) |3d" € C(Rdd’ € ©,&
Jv e dom(gy) : 91(v) = C'& g2 (v) = d)}.
IR2 Thesetof dl pairs| = (I, |») suchthatthereareRe R ;,d, d’ € C;andce C;
with:
l1:={(®1, ©2, 91, §2)|Rdd’ € ®2& Fv € dom(gy) (91 (v) = C& G2(v) = d)},
l2:={(®1, 02,01, 92) | 3¢’ € Ci(Rec’ € ©1&
Jv e dom(gy) : 91(v) = C' & g2 (v) = d')}.

Definition 85 Let (A, 11, 12], <, I) be an interpolation property, and suppose
((©],05,97],99)In € w) is closed with respect to (J A, 11, 2], <, I). Thelimit |
of this sequence is the quadruple (I'y, I's, hy, hy) defined by

I'1:= Unew 62 and Iy:= Unew G)g’
hl = Unew g? and h2 = Unew gg

Theorem 8.6

1 Let I:=J{I*' |* € {T,A,V,Vv,3)&i € {1,2}}, and let A be closed under
A\ and\/, then (§ A, 11, 2], <, I) isan interpolation property.

2. Let [:=IRTUU{I* |%x e {T,A,V,Vv,3}&i € {1,2}}, and let A be closed
under A\, \/ and 3g (for every Re R ;), then (§ A, 11, 72], <, I) isan inter-
polation property.

3. Let [:=IR2UJ{I* | e {T,A,V,Vv,3}&i € {1,2}}, and let A be closed
under /\, \/ and Vg (for every R € &;), then (§ A, 11, 1], <, I) isan inter-
polation property.

4 Let I:=J{I*' |*e{R T,A,V,Vv,3}&i € {1, 2}},andlet A beclosed under
A, V,Irand Vg (for every Re R ;), then (A, 71, 12], <, I) isaninterpo-
lation property.

Proof: We only prove the fourth claim; it should then be clear how the remaining
cases go. Solet A and I beasin 4. Obvioudly, (A, 11, 12], <) isapartial order
and I formsaset of conditions on thispartial order. Supposes= (®4, ®, 01, g2) IS
an element of JA, 13, 72]. Asthe vocabularies are countable and the ®;’s are finite,
there are at most countably many | € I suchthat s € 11. What remains to be shown
isthat JA, 71, t2] isclosed under every | € I. Suppose | € I. We must distinguish
several cases.

Casel: Incase |l istaken from one of the sets I*!, with * ¢ {T,A,V, Vv, 3} and
i € {1, 2}, weapply therelevant part of Lemmal8.3] For an exampleconsider | € V1.
By definition there is an £,,,,,-sentence \/ ® over the vocabulary 7; U C; such that
l1 ={(01,02,01,02) | VP ecO}and I = {(01,02,01,92) [Tp € D : ¢ € Oy}.
Now, assume s = (01, @2, g1, 92) isin |1, hence \/ ® € ®,. By an application of 5
in LemmaB.3lthereisay € @ suchthat s+1 ¢ isin A, 71, 7]; by the definition of
S+1 ¢ weobtains < s+, ¢ aswell ass+; ¢ € |y, which completes the proof.

The most interesting casesare | € IRYand | € 1?2,
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Case2: Atfirstassume | € IR1, By definition thereare Re % -, ¢, ¢’ € C; and
d € C, such that

l1={(®1,02,01,02) | Rec’ € ©®1& Jv € dom(g1)(91(v) = c& g2(v) = d)},

and
I, ={(®1,02,01,02)|3d € C;(Rdd’ € ©,&

Jv € dom(gy)(91(v) = €' & ga(v) =d"))}.

Supposes= (®1, ©, g1, g>) € |;. Choose d’ to be aconstant from C, that does not
occur in ®,, and choose v’ to beavariablefrom V such that v ¢ dom(g,). It suffices
to show that

S 1= (01,02 U{Rdd'}, g1 U {(v, )}, g2 U {(v', d)})

isan element of A, 11, t2]: sinces< s and s’ € |, thiswould complete the proof.
Assume to the contrary that s isnot in JA, 1, t2]. By definition— P1 to P3 are
satisfied by s—thereisay € A such that

(i) thefreevariablesof v are contained in dom(g;) U {v'},

(i) ©1 = ¥ (91U {{v',c)}), and

(iii) ®2U{Rdd’} = =y (g2 U {(v', d)}).
Let x € Var be new, and v be that variable from V which satisfies g, (v) = ¢ and
02(v) = d. Then (i), (ii) and “ Rec’ € ®1” imply

(iv) thefreevariables of Ix(Rvx A ¥[x/v']) are contained in dom(g; ), and

(V) 1 F IX(Rox A Y[x/v'])(9).
Furthermore, as d’ does not occur in ©o, (iii) yields

(Vi) ©2 = —3Ix(Rvx A ¥[x/v'])(g2)
by easy logical reasoning. From the fact that A is closed under 3g we also get
IX(Rux A ¥[x/v]) € A. This, together with (vi) and (iv), leadsto s & JA, 1, 12],
in contradiction to our assumption. Thereforeitisshownthat s € JA, 14, t2]. This
completesthecase | € IR,

Case3: For | € IR? wereason in asimilar way, taking advantage of the fact that
A isclosed under Vg. O

Lemma8.7 Let (A, 11, 2], <, I) be one of the interpolation properties from
Theorem[8.6]and supposel = (I'y, 'z, hy, hy) isthelimit of a sequencethat is closed
with respectto (J A, 11, 2], <, I). Then the following statements hold:

1. T isa pseudo-complete (7; U C)-theory, for i € {1, 2}.
2. dom(h;) = dom(h,) C V.
3. hj[dom(h))] € G, fori € {1, 2}.
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Proof:  For thefirst claim we only make afew simple observations. First, I'j isthe
union of sets of sentences over the vocabulary t; U Cj; hence I'; belongs to the right
language. Second, all A’sunder consideration are closed under /\ and \/; hence the
prerequisites of Lemmal[8.3]are satisfied. Third, all the relevant I's are subsets of
U{[*’i |x e {T,A,V,Vv,3}&i € {1, 2}}. Exploiting the fact that | is the limit of a
sequence which is closed with respect to the corresponding (§J A, 11, 2], <, I), the
first claim follows by an application of Lemmal8.3] The details may easily be filled
in by the reader. The two remaining claims are obvious. O

Now, this seems to be a good place for a short break. Let's reconsider what we
have done so far in this section, and compare it with our informal sketch from sec-
tion 4. First, in Theorem [B.6lwe saw that al the objects (JA, 11, 15, <, I) un-
der consideration are interpolation properties. By Lemma[E.3]we obtain for each
s= (01, 02,01, 02) € JA, 11, T2] asequence that is closed with respect to the cor-
responding property, and with s asitsfirst item. Furthermore, Lemmal8.7ltells us that
thelimit of such asequence suppliestwo pseudo-completetheories, I'y and 'y, where
thefirst belongsto thelanguage 71 U C; and the second to thelanguage 7, U C,. More-
over, in section 6 it was shown that a pseudo-compl ete theory uniquely determines a
model which satisfies the theory; therefore | fixes—viaI'; and I'o—two models -,
and 2Ar,. Finaly, it is an immediate consequence of the definition of | that 2y, sat-
isfies ©1 and 2, satisfies ©,. What remains to be taken into account in order to
complete our formal development is the structural relation that should hold between
the two constructed models. Thiswill be done in the remainder of this section.

Definition 8.8 Let (A, 11, 12], <, I) be one of the interpolation properties from
Theorem[8.6] and let | = (T'1, ', hy, hy) be the limit of a sequence which is closed
with respect to that property. Therelation Z; between Ar, and Ar, isthen defined as
follows:

VYc € C1Vd € Co(Zicd ;<= Fv € dom(hy)(h1(v) = c& ha(v) = d)).

Lemma8.9 Let (JA, 11, 12], <, I) and | be asin the preceding definition.

1. Suppose A isclosed under AT. Then for everyc e Ar, andd € Ar,, if Zcd
then VP € P, (P¥1ic = P%r2d).

2. Suppose A isclosed under —a7. Then for every c € Ar, andd € Ar,, if Zcd
then VP € 2, (P¥*2d = P?ric).

Proof:  For the first claim assume that A contains all atomic formulas of the form
Pv,withPe Pandv e V. Let Pe P, c e Ar, and d € Ar, such that Z cd and
P¥ric. By an application of the second statement of Lemmal6.2] we obtain Pc € I';.
Therefore, thereisanatural number nwith Pc € ©F, wheres, = (0], ©3, g7, 9) is
the n-th item of the sequencethat has| asitslimit. Moreover, Z cd impliesthat there
are sy = (07, 07, g, 95" and v € dom(g}") with gi’(v) = cand g5'(v) = d. Let
k be the supremum of {m, n}. For s it holdsthat Pc € 8, v e dom(g¥), gk(v) = ¢
and g§(v) = d. From Pv € A weinfer —Pd ¢ ©Y, for eachn’ > k, hence —Pd ¢ I',.
On the other hand, by an application of the second claim in LemmalB3lwe obtain
(Pd v =Pd) e I'p. Taken together thisyields Pd € I',. Findly, by the first part of
LemmalE2lwe obtain P*2d, which completes the proof of the first claim.
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The second claim is proved in asimilar way. O

Lemma8.10 Let (A, 11,10, <,I)and| = (I'y, 'y, hy, hy) beasinthe preced-
ing lemma.

1. Suppose IR1 € T and A isclosed under A, \/ and 3R (for every Re R .),
then Z, satisfies the forth-condition (clause B2a) in Definition[2.6]

2. Suppose IR? C I and A isclosed under A, \/ and Vg (for every Re R.),
then Z; satisfies the back-condition (clause B2b) in Definition[2.6]

Proof:

Casel: Assume Zcd and R*1icc/, forc, ¢ € Ci,d e Coand Re R ;. By Lemma
[E2lwe obtain Rec’ e I'1. Hence, thereisan item s, = (O, ®3, 97, 9)) inthe se-
quence of which | is the limit such that Rcc’ € ®Y. Moreover, Z cd yields the ex-
istence of a sy = (OF, ©F, 97", ¢7") and a variable v € dom(g]") with g"(v) = ¢
and g3'(v) = d. Again, let k be the supremum of {m, n}. For s, we easily obtain
Rec’ € ©X, v e dom(g)), g% (v) = cand g§(v) = d. Now, let | betheelement of 7?1
suchthat I, = {(®1, ®2, 01, g2) | Rec’ € ®1 & Jv € dom(gy) : g1(v) = C& Qo (v) =
d}: Obvioudly, s¢ € 1;. Asl isthe limit of a sequence that is closed with respect
to (JA, 11, 12], <, I), and I contains | by assumption, thereisak’ > k such that
s¢ = (6K, e, gi’, 05) € I. Hence Rdd’ € © and thereisa v’ € dom(g¥) with
0¥ (v) = ¢ and g (v') = d’. From thiswe obtain Rdd’ € T, hy (v') = ¢’ aswell as
h,(v') = d’. To complete the proof we apply LemmaEZJnd make use of the defini-
tion of Z,. Thisleadsto R¥*2dd’ and Z,c'd’.

The second case is shown by asimilar argument. O

9 Interpolation  For amodal vocabulary 7’ U {c} and ¢ € ML, (' U{c}), Voc(p)
designates the smallest relational vocabulary © € «’ suchthat ¢ € ML, (t U {c}).

Theorem 9.1 (Craig Interpolation) Let 7’ U {c} be a modal vocabulary and let
@, x € ML,, (' U{c}) withg = x. Thenthereexistsaformula® € ML, (v' U{c})
such that

vEV,
¥ = x and
\Voc(1) =Voc(¢)NVoc(x).

Proof: The theorem is proved by contraposition. Assume ¢ and x are two ML, -
formulas which have no interpolant, that is, thereisno MLwl-formuIa ? which sat-
isfies the conditions stated in the theorem. Under this assumption we are able to find
amodd (€, e) inwhich g istrue, but x isfase. Therefore ¢ = x does not hold.

To begin with, choose two digjoint sets of constantsC; = {¢,|n € w} and C, =
{dh|n € w}, and aset V = {vn| N € w} of new variables. Furthermore, put 71 :=
Voc(g), 12 :=Voc(y), t:i=t1Ntpand A = MLSl(r, V), and define a quadruple
shy

s:= ({(St(@)[Co/cDH"}, {(St(=x)[do/CD"}, {(vo, Co)}, {{vo, do)}).
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It iseasy to seethat sisan element of (A, 11, 72], <). P1to P3 are obvious. For
P4 assume, aiming for a contradiction, that thereisa y € A such that

1. thefreevariables of v are contained in {vg},

2. (Stp)lco/eD™ = ¥ ((vo, Co)),

3. (St(=[do/e)™ = =¥ ((vo, do)).
By the first claim in LemmalZ4lthere is a ML, -formula ¢ such that ¥[c/vo] and
S () are equivalent. Together with 2 and 3, thisleadsto ¢ = ¢ and © = x, in con-
tradiction to the assumption that ¢ and x possesshointerpolant. Thusit isshown that
s€ (JA, 11, 2], 2).

For the next step define I asthe union of all sets I*', withx e {R, T,A,V, v, 3}
and i € {1,2}. According to Theorem B8] (JA, 11, 15], <, I) is an interpola-
tion property; note that by assumption A satisfies the required closure conditions.
Thus, by Lemmal5.3lthere is a sequence (s, |n € w) that is closed with respect to
(A, 11, 19], <, I) suchthat s = s. Let | = (I'y, I'p, hy, hy) be the limit of this se-
quence.

By Lemmal8.Z] I'; is a pseudo-complete (z; U C;)-theory, for i € {1,2}. Then
Lemmal6.2]supplies models 2, and 2y, such that

(i) &Ar, =T,

(ii) 2Ar, isa (71 U Cq)-model,
(iii) ™Ap, =T, and
(iv) r, isa(r2 U Cy)-model.

From (i), (iii) together with (St(¢)[co/c])™ e I'y and (St(—x)[do/c)™ € ', wein-
fer by an easy argument

(V) (Ar, [ 71,C0) Egand
(Vi) (Ar, [ 12,do) = —x.
Note that in Henkin-style models constants are interpreted by themselves.

Next, consider the relation Z, defined in Definition[8.8] Under the present
conditions we can show that Z; forms a t U {c}-bisimulation between the models
(RAr, [ 71,¢0) and Ar, | 72, do). As A= ML (z,V)) contains both the atomic
t-formulas and their negations, Lemmal8.9lensuresthat 7, satisfies clause B1 in Def-
inition[2.6] To verify B2anotethat IR C I and that A isclosed under 3y, for every
Re R .. Anapplication of thefirst statement in LemmalB_10lcompletesthe case. B2b
isproved by an analogous argument; thistimewe make use of thefact that A isclosed
under Vg, and apply the second claim of Lemmal810] Moreover, by vy € dom(g),
01(vg) = ¢o and g (vg) = dg we abtain Z;codg. Putting everything together we ob-
tain

(vii) Z : (™p, [ 71, Co) ~fs (Ar, [ 72, do).
Let (%B1, cp) betheunraveling of (Ar, | 71, Co) and (B2, do) theunraveling of (Ar, |
79, dg). Obviously
(viii) (™Ur, | 1, Co) ~pe (B1, Co),
(iX) (™A, [ 2, do) ~2 (B2, do),
and, by an application of (vii),
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(X) (3B1,Co) ~pg (B2, do).

So the prerequisites of the Amalgamation Lemmal3.4lare satisfied. An application of
thislemma provides a (1 U 7o U {c})-model (&, e) with the following features:

(XI) (67 e) Ng]é (%1’ CO)’
(xii) (€, e) ~2 (B3, do).

Asg e ML,, (11 U{c}), ¢ ispreserved under 7; U {c}-bisimulations. Therefore (v),
(viii) and (xi) imply (&, e) = ¢. Similarly, by (vi), (ix), (xii) and —x € ML, (t2 U
{c}) weobtain (&, e) = —x. Thusitisshownthat ¢ A —x hasamodel, hence ¢ = x
does not hold. This completes the proof of the interpolation theorem. O

Asan immediate consequence of theinterpolation theorem we obtain amodal version
of Beth’'sdefinability theorem. To statethisresult inapreciseway, wefirst haveto say
what we mean by “explicitly definable” and by “implicitly definable’ in the context
of (infinitary) modal logic. Thisis donein the next definition.

Definition 9.2  Let t be amodal vocabulary and let ¢ € ML, (7).

1. g implicitly definesapropositiona letter pif and only if thereisapropositional
letter g, different from p, which does not occur in ¢, such that ¢ A ¢[q/p] =
(p<— Q.

2. ¢ explicitly defines a propositional letter p if and only if thereis an ML, -
formula ¢ in which p does not occur, suchthat ¢ = (p «— ¥).

Theorem 9.3 (Beth) Let T beamodal vocabulary andlet ¢ € ML, (7). ¢ implic-
itly defines a propositional letter p if and only if ¢ defines p explicitly.

Proof: The proof is standard and can be skipped here. The direction from right to
left isfairly obvious. For the other direction consider the interpolant of the formulas
o A pand g[q/p] — q; theresult follows by some easy logical manipulations. [

10 Preservation  Insection 2wesaw (Lemmal2.7) that M L,,,-formulasareinvari-
ant for bisimulations. This observation suggests the following natural question: does
van Benthem's bisimul ation theorem also apply to M L,,,, that is, can we prove that
an L, ,,-sentenceis equivalent to the standard translation of an M L, -formulaif and
only if itisinvariant for bisimulations? In [@ van Benthem and Bergstragave apos-
itive answer to this question. At the beginning of thislast section we prove thisresult
by an application of our own method.

By acareful examination of the two proofs the reader will probably cometo the
conclusion that the proof in [[12] and our proof do not differ too much from each other.
Thisisno surprise. For the construction van Benthem and Bergstrause in their proof
may be described as a specia case of our construction.

Theorem 10.1  Let t U {c} be a modal vocabulary. For ¢ € £, (7 U {c}) thefol-
lowing are equivalent;

1. Thereisa ¥ € ML,, (U {c}) such that ¢ and St() are equivalent.
2. gisinvariant for t U {c}-bisimulations.
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Proof: The direction from 1 to 2 is an immediate consequence of Lemmal2.7]and
LemmalZ5] The other direction is proved by contraposition. Let ¢ € £, (7 U {c})
and suppose there is no modal formula ¢ such that ¢ and St(1#) are equivalent. We
will construct two bisimilar models (84, b1) and (25, by) for which (B4, b1) = ¢
and (%81, by) &= —¢ hold; from this we can infer that ¢ is not invariant under bisim-
ulations, which concludes the proof.

Becausealarge part of the proof strongly resemblesthe proof of theinterpolation
theorem, we will be content here with a sketch. Choose C,, C,, V, A and I asinthe
proof of Theorem[0.1] and let 71 := 7 and 1, := 7. Under the assumption that ¢ has
no modal equivalent it is easy to verify that

s:= ({(plco/cD"}, {(—¢ldo/cH™}, {(vo, Co)}, {{vo, do)})

is an element of (JA, 71, 72], <). Once again, by an application of Theorem [B.6]
(A, 11, 1], <, I) isshown to beaninterpolation property. Hencethereisasuitable
sequence (S, | N € w) withsg = s. Let | bethelimit of thissequence. Thenitstwo sets
I'1 and I', are pseudo-compl ete theories, thistime over the vocabulary U C; respec-
tively T U Cy. For the corresponding models (-, and 2, it holdsthat 2, = I'1 and
2Ar, =T As g iscontained in £, (7 U {c}) thisimplies (Ar, [ 71, Co) = ¢ and
(2, | 12, do) = —¢. Moreover, by an application of LemmasB9land B-I0}—note
that A containsall atomic formulas aswell astheir negations, and is closed under A,
\/, 3r and Yr—we obtain Z, : (Ar, | 11, Co) ~fo'® (Ar, | 72, do). To complete the
proof, define (B1, by) := (Ar, [ 1, Co) and (B, bp) := (Ar, | 12, dy). O

Thefinal result of this section, and of the whole paper, characterizes positive, univer-
sal and existential M L,,,-formulas by their preservation properties.

Theorem 10.2  Let r U {c} be a modal vocabulary. For ¢ € ML, (U {c}) the
following three equivalences hol d:

1. ¢ ispreserved under extensions if and only if thereisa ¢ € X (7 U {c}) such
that = ¢ «<— .

2. ¢ ispreserved under submodelsif and only if thereisa v € IT(t U {c}) such
that = ¢ «<— .

3. g ispreserved under weak extensions if and only if thereisa ¢ € Y(t U {c})
suchthat = ¢ <— .

Proof:

Casel: A routineinductionshowsthat existential formulasare preserved under ex-
tensions. For the other direction suppose ¢ has no equivalent formulain X(z U {c}).
The structure of the proof is again very similar to the proof of the interpolation the-
orem. In the present situation we will construct two models (21, by), (3B», b,) such
that (%1, bl) |= ®, (%2, bz) '= —Q and (%1, bl) - (%2, bz), and from this we will
conclude that ¢ is hot preserved under extensions.

Ci1, Cy, V, 11 and 7, are chosen as in the proof of Theorem[L0.1] For A we take
»C(z, V) andfor I theunionof IR andall thesets I*/, withx € {T, A, V, v, 3} and
i € {1, 2}. By utilizing the assumption on ¢ it is not hard to prove that

s:= ([(SU@)[co/cH™ Y}, {(St(=g)[do/c))™}, {{vo, Co)}, {{vo, do)})
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iscontainedin J A, 71, t2]. Asaways, only P4 requires some argument. So assume
thereisa ¢ € A such that

1. thefreevariables of v are contained in {vg},

2. (Sig)[co/e)™ = ¥ ((vo, Co)),

3. (St(=¢)[do/cD"" = =¥ ((vo, do)).
From 1 and the second part of LemmalZ.4] it follows that y[c/vo] is equivalent to
the standard translation of an existential modal formula . Together with 2 and 3 this
impliesthat ¢ is equivalent to an existential modal formula, in contradiction to what
we have assumed. Thuss e JA, 11, 12].

The next steps in the proof may be taken from the proof of Theorem sowe

skip them here. At a certain point we meet the following situation:

() (Ar, [ 71,0 Egand
(i) (&Ar, [ 72, do) = —e.
Because A hasthe same closure properties asin the proof of Theorem[9.1] except VR,

Z, satisfies B1 and B2a from Definition[2.6] Hence Z, isa t U {c}-simulation, which
means that

(iii) Z @ (A, | 11, Co) ~™ (Ap, | 12, dp).
Let (A1, co) betheunraveling of (Ar, | t1, Co) and (Az, do) theunraveling of (Ar, |
17, dp). For these models we easily conclude

(iv) (U, [ 72, C0) ~pg' (21, Co),

(V) Ar, [ 72, do) ~£2'¥ Az, do)
and, because of (iii),

(Vi) (21, co) ~™ (2, do).
An application of the first claim of Lemmal[3.5kupplies amode (2, dg) such that
(vii) (A1, co) S (A5, do) and
(viii) (A2, do) ~5' (A, do).
Finally, set (B4, by) := (24, ¢o) and (B, by) := (2L, dy). To complete the proof,
weargueasfollows:; (i) and (iv) imply (281, b1) = ¢, whereas (ii), (v) and (viii) yield

(B2, by) = —¢. Moreover, from (vii) weinfer (B4, by) C (85, by). Thisshowsthat
@ isnot preserved under extensions.

Case2: The second claim of the Theorem is a consequence of the first claim. The
argument goes asfollows: Suppose ¢ is preserved under submodels. Then —¢ ispre-
served under extensions. By thefirst claim thereis an existential formula ¢ whichis
equivalent to —¢. Hence ¢ is equivalent to —, consequently to (—9)". Now it is
easy to check that thelatter isauniversal formula. For the other direction suppose ¢ is
equivalent to auniversal formula®. Then —¢ is equivalent to the existential (—)".
By 1, —¢ ispreserved under extensions; therefore ¢ is preserved under submodels.

Case3: The proof is a duplicate of the proof of the first claim. Instead of using
the first part of Lemmal3.5] one has to apply the second part of the lemma; the rest
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goes through without any change. So we can leave the details as an exercise to the
(skeptical) reader. O
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