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Interpolation and Preservation in MLω1

HOLGER STURM

Abstract In this paper we deal with the logic MLω1 which is the infinitary
extension of propositional modal logic that has conjunctions and disjunctions
only for countable sets of formulas. After introducing some basic concepts and
tools from modal logic, we modify Makkai’s generalization of the notion of con-
sistency property to make it fit for modal purposes. Using this construction as
a universal instrument, we prove, among other things, interpolation for MLω1

as well as preservation results for universal, existential, and positive MLω1 -
formulas.

1 Introduction For a long time infinitary logics were widely ignored in the area
of modality. This situation changed only quite recently. About five years ago lo-
gicians, computer scientists, and philosophers began to investigate infinitary modal
logics more deeply, thereby concentrating on extensions of ML , such as ML∞ and
MLω1 .

By ML we mean the polymodal version of standard propositional modal logic,
that is, the logic one gets by adding several boxes and diamonds to the logical part
of the language of propositional logic, and by using a Kripke-style semantics for in-
terpreting its formulas. The infinitary modal logic ML∞ is obtained from ML by
adjoining conjunctions and disjunctions for arbitrary sets of formulas and by adapt-
ing the semantics correspondingly. If conjunctions and disjunctions are only defined
for sets of cardinality smaller than κ, for a fixed regular cardinal κ, we have the logic
MLκ.

One can make out several good reasons why infinitary modal logics should de-
serve our attention. In the first place, and this does not only apply to the modal case,
infinitary logics provide a natural means for overcoming the expressive weakness of
the corresponding finite systems; this concerns both aspects of expressiveness, the
ability to express certain properties of structures, as well as the ability to charac-
terize certain relations between structures and to distinguish pairs of structures be-
tween which these relations hold. Second, several interesting modal logics may be
regarded—via suitable translations—as fragments of infinitary extensions of ML ;
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the most popular ones are certainly propositional dynamic logic and the logic of com-
mon knowledge. There is legitimate hope that a deeper understanding of infinitary
logics will lead to important insights into their respective fragments. Third, infinitary
modal logics themselves might be analyzed as fragments of other logics, namely, as
fragments of infinitary versions of first-order logic. This can be done with the aid of a
straightforward adaptation of van Benthem’s standard translation to the infinite; ob-
viously, in the case of ML∞ we get L∞ω as the target logic, and Lκω in the case of
MLκ. From a logical point of view these fragments show well-behavior: quite a few
metalogical properties are hereditary from logics to their modal fragments. Last but
not least, in a recent book Barwise and Moss [2] have pointed out interesting connec-
tions between infinitary modal logics and the theory of non-wellfounded sets.

The first results that were proved with regard to infinitary modal logics were cen-
tered around the notion of bisimulation and its linguistic characterizability. Bisimu-
lations are a special kind of equivalence relation between models that has turned out
to play an important role in the model theory of modal logic. What makes them suit-
able for modal purposes is this: modal formulas cannot distinguish between bisimi-
lar models, that is, if two models are bisimilar, then the same ML-formulas hold in
them. On the other hand, there are modally equivalent models that are not bisimilar.
To bridge the gap, one needs infinitary tools. Around 1990, several authors made the
observation that bisimilarity and elementary equivalence with respect to ML∞ coin-
cide. This result has since been improved upon and developed in a number of different
directions. In [12], for instance, van Benthem and Bergstra obtained a modal vari-
ant of Scott’s isomorphism theorem; they proved that every countable model (over
a countable vocabulary) can be characterized up to bisimilarity by a single MLω1 -
formula. In the same paper the authors extended van Benthem’s bisimulation theo-
rem to Lω1ω; they showed that a Lω1ω-formula is equivalent to (the translation of) a
MLω1 -formula if and only if it is invariant for bisimulations. For L∞ω such a char-
acterization was given in van Benthem [9]. Further results on infinitary modal logics
are contained in Barwise and van Benthem [1], Barwise and Moss [2], van Benthem
[10], van Benthem [11], de Rijke [3], Sturm [6], and Sturm [7].

In [1], Barwise and van Benthem obtained a number of interpolation and preser-
vation results for ML∞ as corollaries to an abstract interpolation theorem. A more
down-to-earth presentation of these results may be found in [11]. In spite of the wide
applicability of their techniques, it is far from obvious how to apply them to MLω1 .
This might give the reader some further motivation for paying attention to the method
developed in the present paper.

Our paper exclusively deals with the logic MLω1 . Together with its companion
piece [7], it provides an analysis of MLω1 with respect to its most basic metalogi-
cal properties. The paper has the following structure: in the next section, we intro-
duce basic concepts of the syntax and semantics of modal logic. Section 3 is devoted
to two model constructions, a polymodal version of unraveling and a kind of modal
amalgamation. The paper’s main results are all obtained by a single method. This
method may be described as a modal variant of a proof construction as introduced by
Makkai [4] in the context of Lω1ω. The key to this construction is what we will call
the notion of an interpolation property, a concept that generalizes the notion of a con-
sistency property, one of the main tools in the model theory of infinitary logics. The
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purpose of Section 4 is to give an informal description of how the whole construc-
tion works. It should help the reader to understand the things to come, and moreover,
should give him some motivation for working through the formal details. An interpo-
lation property is a more concrete version of an inductive property, a notion that forms
the topic of Section 5. In Section 6 we introduce pseudo-complete theories and recall
some basic facts on them. Roughly speaking, pseudo-complete theories are to Lω1ω

what maximal consistent theories are to first-order logic. To complete our prelimi-
nary work, we have to introduce a wider class of modal formulas, so-called general-
ized modal formulas; this is done in Section 7. Section 8 finally defines interpolation
properties and develops their main features; from the methodological point of view,
this section forms the center of the article. By an application of the results from Sec-
tions 8 and 3, we obtain a proof of Craig’s interpolation theorem for MLω1 in Section
9. Slight variations of this proof yield preservation results for universal, existential,
and positive formulas in the final section, 10. In addition, Section 10 contains an al-
ternative proof of van Benthem and Bergstra’s bisimulation theorem.

2 Syntax and semantics A vocabulary τ is a set of relation symbols and individual
constants. Every relation symbol is equipped with a positive natural number, its arity.
We use Pτ for the set of unary relation symbols, and R τ for the set of relation sym-
bols of greater arity. Throughout this paper we assume that R τ only contains binary
relation symbols. A vocabulary with no individual constants is called a relational
vocabulary. If a vocabulary contains exactly one individual constant it is said to be a
modal vocabulary.

In this paper we will heavily exploit the fact that via standard translation, MLω1

may be considered as a fragment of Lω1ω. In order to emphasize this relationship even
on the syntactical level, we describe modal languages as based on (certain) first-order
vocabularies. We choose vocabularies with a unique constant for two reasons. First,
first-order languages over such a vocabulary and modal languages are interpreted on
models of the same signature. Second, we prefer to correlate modal formulas with
first-order sentences rather than with first-order formulas (with one free variable).

Definition 2.1 Let τ be a modal vocabulary. The set MLω1 (τ) of MLω1 -formulas
is defined as the smallest set X such that

1. for every P ∈ Pτ, the propositional letter pP is in X,

2. if ϕ is in X, then ¬ϕ is in X,

3. if � ⊆ X is countable, then
∧

� and
∨

� are in X,

4. if R ∈ R τ and ϕ is in X, then �Rϕ and �Rϕ are in X.

By “countable,” we mean finite or of cardinality ω. We also allow � to be the empty
set. In this case

∧
� is the verum and

∨
� the falsum. Accordingly, we use � as an

abbreviation for the empty conjunction and ⊥ for the empty disjunction.
An MLω1 -formula (over τ) is called a universal formula if and only if it is built

up from propositional letters and negated propositional letters using
∨

,
∧

and �R,
with R ∈ R τ. By �(τ) we denote the set of universal formulas (over τ). Analogously,
the set �(τ) of existential formulas is defined as the smallest subset of MLω1 (τ)

which contains all propositional letters as well as their negations and is closed under



INTERPOLATION AND PRESERVATION 193

∧
,
∨

, and �R. A formula that is built up without using the negation symbol is called
a positive formula. ϒ(τ) denotes the set of positive formulas over the vocabulary τ.

The reader might have noticed that the above definitions only take modal for-
mulas into account that are negation normal, that is, formulas in which the negation
symbol only occurs in front of propositional letters. However, this restriction is not a
serious one: it can easily be proved that for every modal formula, there is an equiva-
lent formula which is negation normal. Through the following, we make the assump-
tion that we have fixed a mapping which correlates each formula ϕ with an equivalent
negation normal formula ϕn f .

The semantics of modal logic is based on the same type of models as the seman-
tics of first-order logic (and its infinitary extensions), restricted to modal vocabularies.
Given a modal vocabulary τ, a τ-model consists of the following ingredients: a non-
empty set A, a binary relation RA on A for each R ∈ R τ, a subset PA of A for each
P ∈ Pτ, and an element a ∈ A which interprets the unique constant of τ. To adjust
the notation to the modal setting, we use (A, a), (B, b), . . . to designate τ-models.

Definition 2.2 Let τ be a modal vocabulary. The truth of an MLω1 -formula with
respect to a τ-model is defined inductively:

(A, a) |= pP :⇐⇒ PAa, for P ∈ Pτ,
(A, a) |= ¬ϕ :⇐⇒ (A, a) �|= ϕ,
(A, a) |= ∨

� :⇐⇒ there is a ϕ ∈ �: (A, a) |= ϕ,
(A, a) |= ∧

� :⇐⇒ for all ϕ ∈ �: (A, a) |= ϕ,
(A, a) |= �Rϕ :⇐⇒ ∃a′ ∈ A(RAaa′ & (A, a′) |= ϕ),
(A, a) |= �Rϕ :⇐⇒ ∀a′ ∈ A(RAaa′ ⇒ (A, a′) |= ϕ).

In the last two clauses of the next definition, the variable x is assumed to be the first
variable from a list of variables that do not occur in St(ϕ).

Definition 2.3 Let τ be a modal vocabulary and c be the unique individual constant
in τ. The following clauses define a mapping St from MLω1 (τ) into the set of Lω1ω-
sentences over τ:

St(pP) := Pc, for P ∈ Pτ,
St(¬ϕ) := ¬St(ϕ),
St(

∨
�) :=

∨{St(ϕ) |ϕ ∈ �},
St(

∧
�) :=

∧{St(ϕ) |ϕ ∈ �},
St(�Rϕ) := ∃x(Rcx ∧ St(ϕ)[x/c]), for R ∈ R τ,
St(�Rϕ) := ∀x(Rcx → St(ϕ)[x/c]), for R ∈ R τ.

Notation 2.4 For a formula ψ and individual terms t1 and t2, ψ[t1/t2] denotes the
formula we obtain by replacing every occurrence of t2 in ψ by t1.

The following lemma tells us that a modal formula and its translation are true in the
same models. For this reason it is legitimate to regard MLω1 as a fragment of Lω1ω.

Lemma 2.5 Let τ be a modal vocabulary and (A, a) a τ-model. Then for every
ϕ ∈ MLω1 (τ), (A, a) |= ϕ if and only if (A, a) |= St(ϕ).

Proof: By induction on the complexity of ϕ. �
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Definition 2.6 Let τ and τ′ be modal vocabularies such that τ ⊆ τ′, and let (A, a)

and (B, b) be τ′-models. A relation Z ⊆ A × B is a τ-bisimulation between (A, a)

and (B, b), abbreviated by Z : (A, a) ∼τ
bs (B, b), if and only if it satisfies the fol-

lowing conditions:

B0 Zab,
B1 ∀a′, b′(Za′b′ =⇒ ∀P ∈ Pτ(PAa′ ⇐⇒ PBb′)),
B2a ∀a′, b′

(
Za′b′ =⇒ ∀R ∈ R τ∀a′′(RAa′a′′ =⇒ ∃b′′(RBb′b′′ & Za′′b′′))

)
,

B2b ∀a′, b′
(

Za′b′ =⇒ ∀R ∈ R τ∀b′′(RBb′b′′ =⇒ ∃a′′(RAa′a′′ & Za′′b′′))
)

.

(A, a) and (B, b) are said to be τ-bisimilar, denoted by (A, a) ∼τ
bs (B, b), if and only

if there exists a τ-bisimulation between (A, a) and (B, b).

Lemma 2.7 Let τ be a modal vocabulary and suppose (A, a) ∼τ
bs (B, b). Then for

every ϕ ∈ MLω1 (τ), (A, a) |= ϕ if and only if (B, b) |= ϕ.

Proof: By induction on the complexity of ϕ. �
When we drop clause B2b in Definition 2.6, we obtain the definition of a τ-simulation.
τ-simulations are to existential formulas what τ-bisimulations are to modal formulas
in general. By induction it can be shown that existential formulas are preserved un-
der τ-simulations, that is, if there is a τ-simulation from (A, a) to (B, b)—(A, a) �τ

(B, b) for short—then every existential formula which is true in (A, a) is also true
in (B, b). This raises the following question: is it possible to convert the above ob-
servation into a full preservation result, that is, can we characterize �(τ) as the set
of exactly those modal formulas that are preserved under τ-simulations? In Section
10 we will give a a positive answer to this question. In fact, we will do a slightly
better job. The first part of Theorem 10.2 tells us that a modal formula is equivalent
to an existential formula if and only if it is preserved under extensions, where “ex-
tension” is understood in the sense of classical model theory. From this we also will
obtain a preservation result for universal formulas: a modal formula will be shown to
be equivalent to a universal formula if and only if it is preserved under submodels.

Looking for relations suitable for positive formulas, we come across posi-
tive τ-bisimulations. A positive τ-bisimulation is a relation Z which satisfies B0,
B2a, B2b from Definition 2.6 as well as the following weakening of clause B1:
∀a′, b′(Za′b′ =⇒ ∀P ∈ Pτ(PAa′ =⇒ PBb′)). By (A, a) �τ+ (B, b) we mean that
there exists a positive τ-bisimulation from (A, a) to (B, b). It is easy to verify that
positive formulas are preserved under these relations. However, as in the preceding
case, the corresponding preservation result in Section 10 is stated and proved with
respect to a different notion, which is again taken from classical model theory. This
time we make use of the notion of a weak extension, where (B, b) is said to be a weak
extension of (A, a)—(A, a) ⊆w (B, b) for short—if and only if A = B, a = b, the
two models agree with respect to each R ∈ R τ, and for every P ∈ P τ, PA ⊆ PB.

3 Unraveling and amalgamation In [5], Sahlqvist introduced a universal method
of transforming a Kripke model into a treelike Kripke model which is bisimilar and
hence modally equivalent to the original model. In this section we first generalize
the construction of unraveling to the polymodal case. Then we prove two lemmas
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in which unraveled models are essentially involved and which will be needed in the
proofs of our main results. Lemma 3.4 will play an important role in the proof of
Craig’s interpolation theorem in Section 9, whereas Lemma 3.5 enables us to sharpen
our preservation results in Section 10 in the way it was described in the foregoing
section.

Definition 3.1 Let τ be a modal vocabulary and (A, a) be a τ-model. We define
the sets of paths through (A, a) of length n, Pathτ

n(A, a) for short, by induction.

1. Path0
τ (A, a) := {〈a〉},

2. Pathn+1
τ (A, a) := {σ ◦ 〈R, a′〉 |σ ∈ Pathn

τ (A, a)& R ∈ R τ & RA[σ]�(σ)a′}.
Notation 3.2 ‘◦’ denotes the concatenation operation on sequences. If σ is a finite
sequence, �(σ) designates the length of σ, and if 0 < i ≤ �(σ), then [σ]i designates
the i-th item of σ.

We use Pathτ(A, a) to designate the set of paths through (A, a), that is the union of
the sets Pathn

τ (A, a).

Definition 3.3 Let τ be a modal vocabulary and (A, a) be a τ-model. The unrav-
eling of (A, a), denoted by (Au, au), is defined as follows.

1. Au := {σ |σ ∈ Pathτ(A, a)},
2. au := 〈a〉,
3. for P ∈ Pτ and σ ∈ Au, set PAu

σ :⇐⇒ PA[σ]�(σ),
4. for R ∈ R τ and σ, σ′ ∈ Au, set RAu

σσ′ :⇐⇒ σ′ = σ ◦ 〈R, [σ′]�(σ′)〉.
A model (A, a) is said to be unraveled if it is isomorphic to its unraveling, that is, if
(A, a) ∼= (Au, au). For each element a′ of an unraveled model, there is exactly one
σ ∈ Pathτ(A, a) that ends in a′. We use σa′ to designate this unique path. It is easy
to verify that the following clause defines a bisimulation between a τ-model (A, a)

and its unraveling: for every a′ ∈ A and σ ∈ Au, Za′σ :⇐⇒ [σ]�(σ) = a′.

Lemma 3.4 (Amalgamation) Let τ, τ1, τ2 be modal vocabularies such that τ =
τ1 ∩ τ2. Suppose (A, a) is an unraveled τ1-model and (B, b) an unraveled τ2-
model such that (A, a) ∼τ

bs (B, b). Then there exists a (τ1 ∪ τ2)-model (E, e) with
(A, a) ∼τ1

bs (E, e) and (B, b) ∼τ2
bs (E, e).

Proof: Without loss of generality we may assume that A and B are disjoint sets. By
assumption there is a τ-bisimulation Z between (A, a) and (B, b). Utilizing Z we
define the model (E, e) as follows: for E we choose the union of the following three
sets.

1. {〈a′, b′〉 | Za′b′ & σa′ ∈ Pathτ(A, a)& σb′ ∈ Pathτ(B, b)}
2. {a′ ∈ A |σa′ �∈ Pathτ(A, a)}
3. {b′ ∈ B |σb′ �∈ Pathτ(B, b)}.

Let e be 〈a, b〉. For P ∈ Pτ1∪τ2 and e′ ∈ E we put PEe′, if e′ ∈ A and PAe′, or e′ ∈ B
and PBe′, or there are a′ ∈ A and b′ ∈ B such that e′ = 〈a′, b′〉 and PAa′ or PBb′.
Finally, for R ∈ R τ1∪τ2 and e′, e′′ ∈ E we put REe′e′′, if one of the following holds:

1. ∃a′∃b′(e′ = 〈a′, b′〉&∃a′′, b′′(RAa′a′′ & RBb′b′′ & e′′ = 〈a′′, b′′〉)),
2. ∃a′∃b′(e′ = 〈a′, b′〉& e′′ ∈ A & RAa′e′′),
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3. ∃a′∃b′(e′ = 〈a′, b′〉& e′′ ∈ B & RBb′e′′),
4. e′ ∈ A & e′′ ∈ A & RAe′e′′,
5. e′ ∈ B & e′′ ∈ B & RBe′e′′.

To prove that (A, a) ∼τ1
bs (E, e) we define a relation Z1 by

∀a′∀e′(Z1a′e′ :⇐⇒ e′ = a′ ∨ ∃a′′∃b′′(e′ = 〈a′′, b′′〉& a′ = a′′)),

and verify that Z1 forms a τ1-bisimulation between (A, a) and (E, e). The conditions
B0 and B1 are obvious. For B2a suppose Z1a′e′ and RAa′a′′. Two cases need to be
distinguished.

Case 1: e′ = a′. By the definition of E it follows that σa′ �∈ Pathτ(A, a), hence
σa′′ �∈ Pathτ(A, a), hence a′′ ∈ E. Together with the definitions of Z1 and E, this
yields REe′a′′ and Z1a′′a′′, closing the first case.

Case 2: e′ = 〈a′, b′〉. If R �∈ R τ, then a′′ ∈ E, and the desired result follows eas-
ily. If R is in R τ, we reason as follows. By the definition of E we obtain Za′b′,
thus there is a b′′ ∈ B such that RBb′b′′ and Za′′b′′. From the latter we obtain
〈a′′, b′′〉 ∈ E. This, together with RAa′a′′ and RBb′b′′, implies Z1a′′〈a′′b′′〉 as well
as RE〈a′, b′〉〈a′′, b′′〉. This concludes the proof for B2a. B2b is proved in a similar
way.

For (B, b) ∼τ2
bs (E, e) we use exactly the same argument. �

Lemma 3.5 Let τ be a modal vocabulary and let (A, a), (B, b) be unraveled τ-
models.

1. If (A, a) �τ (B, b), then there exists an unraveled τ-model (B′, b′) such that
(B′, b′) ∼τ

bs (B, b) and (A, a) ⊆ (B′, b′).
2. If (A, a) �τ+ (B, b), then there exist unraveled τ-models (A′, a′) and (B′, b′)

such that (A′, a′) ∼τ
bs (A, a), (B′, b′) ∼τ

bs (B, b) and (A′, a′) ⊆w (B′, b′).

Proof: The proofs of the two claims are based on a tedious though straightforward
copying procedure which goes back to van Benthem [9]. For lack of space we dis-
pense with their presentation. The reader interested in (detailed) proofs should con-
sult [6]. �

4 Interpolation properties: the informal account The purpose of this section is
to give an informal presentation of the method of interpolation properties as it will
be carried out in the following sections. Our approach adapts a method as introduced
by Makkai (see [4]) in the context of Lω1ω to the modal setting. Moreover, it gen-
eralizes the method of consistency properties. For that reason we start our informal
account by recalling the basic structure of the latter. Roughly, a consistency property
S (for Lω1ω) is a set of finite consistent sets s of Lω1ω-formulas which satisfies certain
closure conditions. With a few exceptions, these closure conditions show the follow-
ing pattern: if s ∈ S contains a formula of the shape . . . , then there is a set s′ ∈ S
which extends s and contains a formula of the shape .... In the next section we define
such closure conditions as pairs (I1, I2) of subsets of S. To say that S is closed under
(I1, I2) means that for every s ∈ S ∩ I1, S contains a set s′ ∈ I2 which extends s.
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Example 4.1 For a concrete example, consider the condition regarding existential
formulas. It requires that for every set s ∈ S containing a formula of the shape ∃xϕ,
there is a set s′ ∈ S with s ⊆ s′ and a constant c such that ϕ[c/x] ∈ s′.

The closure conditions are chosen so that the following claim becomes provable: let S
be a consistency property and suppose s ∈ S, then there exists an ω-sequence 〈sn | n ∈
ω〉 such that

1. ∀n ∈ ω : sn ∈ S,

2. s0 = s,

3. ∀n ∈ ω : sn ⊆ sn+1,

4. the limit � := ⋃
n∈ω sn of this sequence is a pseudo-complete theory, that is, a

set of sentences that uniquely determines a model A�,

5. A� |= �.

For an application, consider completeness. Suppose we have a calculus that is sound
with respect to the semantics of Lω1ω. To prove completeness, it suffices to show that
the set U of all finite consistent subsets of Lω1ω is a consistency property. For if this
has been shown we can reason as follows: let ϕ be consistent, then the set {ϕ} is an
element of U, hence there is a sequence as described above. Since A� is a model of
� it is a model of ϕ as well; therefore ϕ has a model, which concludes the proof.

The role that is played by (finite) sets of sentences in the context of consis-
tency properties will in our construction be overtaken by triples of the form s =
〈
1,
2, z〉—this is not quite correct: for technical reasons we will use objects of a
slightly different sort; the triples were only chosen to make our informal presentation
more suggestive—where 
1 and 
2 are finite consistent sets of sentences over two
(possibly distinct) vocabularies τ1 and τ2, and where z is the finite approximation of
a suitable relation between τ1- and τ2-models. To be more precise, such an interpo-
lation property S is a set of triples 〈
1,
2, z〉 which again satisfies certain closure
conditions, this time ensuring that for every triple s = 〈
1,
2, z〉 in S there exists an
ω-sequence 〈〈
n

1,

n
2, zn〉 | n ∈ ω〉 such that

1. ∀n ∈ ω : 〈
n
1,


n
2, zn〉 ∈ S,

2. 〈
0
1,


0
2, z0〉 = s,

3. ∀n ∈ ω : 
n
1 ⊆ 
n+1

1 ,
n
2 ⊆ 
n+1

2 , zn ⊆ zn+1,

4. �1 := ⋃
n∈ω 
n

1 uniquely determines a τ1-model A�1 such that A�1 |= �1,

5. �2 := ⋃
n∈ω 
n

2 uniquely determines a τ2-model A�2 such that A�2 |= �2,

6. Z := ⋃
n∈ω zn defines a suitable structural relation between A�1 and A�2 .

For an illustration of how this construction works, we give a quite simplified sketch
of the proof of Craig’s interpolation theorem (for a detailed proof see Section 9).
The theorem is proved by contraposition. Suppose ϕ and χ are two MLω1 -formulas
which have no interpolant, meaning that there is no modal formula ϑ over their com-
mon vocabulary such that ϕ |= ϑ and ϑ |= χ. In other words, the sets {ϕ} and {¬χ}
are modally nonseparable. Let τ1 be the vocabulary of ϕ, τ2 of χ and τ = τ1 ∩ τ2.
Let 
1 := {St(ϕ)}, 
2 := {St(¬χ)[d/c]} for a fresh constant d, and z := 〈c, d〉. It
can be shown that the triple 〈
1,
2, z〉 is an element of an interpolation property.
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Hence there is a sequence 〈〈
n
1,


n
2, zn〉 | n ∈ ω〉, satisfying the above conditions 1–

6; in this special situation the relation Z will turn out to be a τ-bisimulation between
(A�1 , cA�1 ) and (A�2 , dA�2 ). From this we infer (A�1 , cA�1 ) |= ϕ and (A�2 , dA�2 ) |=
¬χ. By an application of Lemma 3.4 we obtain a model (E, e) such that (E, e) ∼τ1

bs

(A�1 , cA�1 ) and (E, e) ∼τ2
bs (A�2 , dA�2 ). Finally, an application of Lemma 2.7 yields

(E, e) |= ϕ and (E, e) |= ¬χ, which means that χ does not follow from ϕ. This com-
pletes the proof.

5 Inductive properties The fact that each element of an interpolation property S
may serve as the first item of a suitable ω-sequence, relies on features of S that can
be described in a much more abstract setting. By utilizing the notion of an inductive
property this will be done in the present section. Apart from notation, the following
is strongly inspired by [4].

Let (S,≤) be a partial order. A pair I = (I1, I2) of subsets of S is called a con-
dition on (S,≤) if and only if for every s ∈ I1 and for every s′ ∈ S, if s ≤ s′ then
s′ ∈ I1. A partial order (S,≤) is closed under the condition I = (I1, I2) if and only
if for every s1 ∈ I1 there is an element s2 of S such that s1 ≤ s2 and s2 ∈ I2.

Definition 5.1 A triple (S,≤,I ) is an inductive property if and only if (S,≤) is a
partial order, I a set of conditions on (S,≤) under which (S,≤) is closed, and for
each s ∈ S the set {I ∈ I | s ∈ I1} is countable.

Definition 5.2 Let (S,≤,I ) be an inductive property. We call a sequence 〈sn | n ∈
ω〉 closed with respect to (S,≤,I ) if and only if

1. for every n ∈ ω: sn ∈ S,
2. for every n ∈ ω: sn ≤ sn+1,
3. for every n ∈ ω and I ∈ I : if sn ∈ I1, then there is m ≥ n with sm ∈ I2.

Lemma 5.3 Let (S,≤,I ) be an inductive property and s ∈ S. Then there is a se-
quence 〈sn | n ∈ ω〉 which is closed with respect to (S,≤,I ) such that s0 = s.

Proof: For each s ∈ S let Ls be an enumeration of the set {I ∈ I | s ∈ I1}. By Defini-
tion 5.1, we can assume that the length of Ls does not exceed ω. Let g be a bijection
between ω × ω and ω \ {0} such that for every j, n ∈ ω: n < g( j, n).

The sequence is defined by induction: for the start put s0 := s. Suppose
〈s0, . . . , sn〉 has already been defined. By assumption there exist unique m, j ∈ ω with
g( j, m) = n + 1. By the choice of g it holds that m < n + 1. Consider sm; we need
to distinguish two cases.

Case 1: If j is not smaller than the cardinality of {I ∈ I | sm ∈ I1}, we just put
sn+1 := sn.

Case 2: For the other case, let I be the jth item of Lsm . From sm ∈ I1, sm ≤ sn and
Definition 5.1, it follows that sn ∈ I1, hence there is a set s′ ∈ S such that sn ≤ s′ and
s′ ∈ I2. Define sn+1 := s′.

It remains to check that the defined sequence 〈sn | n ∈ ω〉 is closed with respect to
(S,≤,I ). Suppose sm ∈ I1 for I ∈ I . Then there is a j smaller than the cardinality of
{I ∈ I | sm ∈ I1} such that I is the jth item of Lsm . Again, by the definition of g there
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is a unique n ∈ ω with m < g( j, m) = n + 1. By construction we obtain sn+1 ∈ I2;
this completes the proof. �

6 Pseudo-complete theories The present section is devoted to pseudo-complete
theories. Pseudo-complete theories occupy a central position in the model theory of
Lω1ω. This is due to the fact that the internal structure of such a theory enables us
to create a Henkin-style model out of it. So we may regard them as the legitimate
infinitary counterparts of maximal consistent theories. Though the notion seems to
be older, the wording of the definition as well as the name trace back to [4].

Definition 6.1 Let τ be a countable relational vocabulary and C a set of individual
constants of cardinality ω. A set � of Lω1ω-sentences over τ ∪ C is called a pseudo-
complete (τ, C)-theory if and only if

T0 each ϕ ∈ � is negation normal,
T1 if ϕ ∈ �, then (¬ϕ)n f �∈ �,
T2 for every valid first-order sentence ϕ over (τ ∪ C), ϕn f is in �,
T3 if

∧
� is in �, then every ϕ ∈ � is in �,

T4 if ∀xϕ is in �, then for every c ∈ C the sentence ϕ[c/x] is in �,
T5 for every

∨
� in �, there is a ϕ ∈ � such that ϕ is in �,

T6 for every ∃xϕ in �, there is a c ∈ C such that ϕ[c/x] is in �.

Suppose � is a pseudo-complete (τ, C)-theory. The model A� is then defined as fol-
lows. As the carrier of A� we choose the set of constants C. The elements of C are
interpreted by themselves. For R ∈ R τ and c0, c1 ∈ C we put RA�c0c1 if and only
if Rc0c1 ∈ �. The interpretation of P ∈ Pτ is defined analogously by PA� := {c ∈
C | Pc ∈ �}.
Lemma 6.2 Let � be a pseudo-complete (τ, C)-theory.

1. A� |= �.
2. For every first-order sentence ϕ over (τ ∪ C): A� |= ϕ ⇐⇒ ϕn f ∈ �.

Proof: The first claim is proved by induction. The atomic case is an immediate
consequence of the construction of A�. Together with T1 this implies the claim for
negated atomic formulas. As the elements of � are negation normal, negations of
more complex formulas need not be considered. For the remaining cases we make
use of T3 to T6. For the second claim we reason as follows: by T2, T5, and T1 we
either have ϕn f ∈ � or (¬ϕ)n f ∈ � for each first-order sentence ϕ. An application of
the first claim leads to the desired result. �

7 Generalized modal formulas In defining the notion of an interpolation property
in Section 8 we will make use of a special class of Lω1ω-formulas. For reasons that
will appear in Lemma 7.4 we call them generalized modal formulas. In the context
of ML they trace back to van Benthem’s [8].

From now on we are operating with two countable disjoint sets of individual
variables, Var and V ; the elements of V are exclusively used as the free variables in
the generalized modal formulas.
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Definition 7.1 Let τ be a relational vocabulary. The set of generalized modal for-
mulas over (τ, V ), designated by MLG

ω1
(τ, V ), is defined as the smallest set X such

that

1. for every P ∈ Pτ and every v ∈ V , Pv ∈ X,

2. if ϕ is in X, then ¬ϕ is in X,

3. if � ⊆ X is countable, then
∧

� and
∨

� are in X,

4. if ϕ ∈ X, R ∈ R τ, v, v′ ∈ V , x ∈ Var and x does not occur in ϕ, then the formulas
∃x(Rvx ∧ ϕ[x/v′]) and ∀x(Rvx → ϕ[x/v′]) are in X.

In the next definition we assemble a number of closure conditions, which will be used
to fix special subclasses of MLG

ω1
(τ, V ).

Definition 7.2 Let τ be a relational vocabulary and R ∈ R τ. A set � of generalized
modal formulas over (τ, V ) is said to be closed under

AT if and only if for every P ∈ Pτ and every v ∈ V , Pv is in �.

¬AT if and only if for every P ∈ Pτ and every v ∈ V ,¬Pv is in �.∧
if and only if for every countable � ⊆ �,

∧
� is in �.∨

if and only if for every countable � ⊆ �,
∨

� is in �.

∃R if and only if for every ϕ ∈ �, v, v′ ∈ V , and every x ∈ Var which does not
occur in ϕ, the formula ∃x(Rvx ∧ ϕ[x/v′]) is in �.

∀R if and only if for every ϕ ∈ �, v, v′ ∈ V , and every x ∈ Var which does not
occur in ϕ, the formula ∀x(Rvx → ϕ[x/v′]) is in �.

In the following definition we introduce generalized versions of existential, universal,
and positive MLω1 -formulas.

Definition 7.3 Let τ be a relational vocabulary.

1. �G(τ, V ) is defined as the smallest subset of MLG
ω1

(τ, V ) that is closed under
AT , ¬AT ,

∧
,
∨

and ∃R, for each R ∈ R τ.

2. �G(τ, V ) is defined as the smallest subset of MLG
ω1

(τ, V ) that is closed under
AT , ¬AT ,

∧
,
∨

and ∀R, for each R ∈ R τ.

3. ϒG(τ, V ) is defined as the smallest subset of MLG
ω1

(τ, V ) that is closed under
AT ,

∧
,
∨

, ∀R and ∃R, for each R ∈ R τ.

Lemma 7.4 Let τ ∪ {c} be a modal vocabulary. Suppose ϕ is a generalized modal
formula over (τ, V ) and the free variables of ϕ are contained in {v0}. Then

1. there is a ϕ∗ ∈ MLω1 (τ ∪ {c}) such that ϕ[c/v0] and St(ϕ∗) are equivalent;
moreover,

2. if ϕ ∈ �G(τ, V ), then ϕ∗ ∈ �(τ ∪ {c});
3. if ϕ ∈ �G(τ, V ), then ϕ∗ ∈ �(τ ∪ {c});
4. if ϕ ∈ ϒG(τ, V ), then ϕ∗ ∈ ϒ(τ ∪ {c}).

Proof: The first claim is proved by induction on the complexity of ϕ. A careful ex-
amination of this proof verifies the remaining claims as well. �



INTERPOLATION AND PRESERVATION 201

8 Interpolation properties: the formal account Let τ, τ1, and τ2 be countable re-
lational vocabularies with τ = τ1 ∩ τ2, let C1 and C2 be two disjoint sets of individual
constants of cardinality ω, and let � be a subset of MLG

ω1
(τ, V ). S[�, τ1, τ2] is then

defined as the set of all quadruples (
1,
2, g1, g2) such that

P1 
i is a finite subset of Lω1ω(τi ∪ Ci) which contains only finitely many con-
stants from Ci, for i ∈ {1, 2},

P2 the sentences in 
1 and 
2 are negation normal,
P3 g1 and g2 are finite functions with dom(g1) = dom(g2) ⊆ V , rng(g1) ⊆ C1,

and rng(g2) ⊆ C2,
P4 there is no ψ ∈ � such that

the free variables of ψ are contained in dom(g1),

1 |= ψ(g1), and

2 |= ¬ψ(g2).

Notation 8.1 For a formula ψ and a function g from a set of variables into a set of
constants, ψ(g) denotes the sentence we obtain by replacing every v free in ψ by the
constant g(v). Whenever we use this notation it is presupposed that the domain of g
contains all free variables of ψ.

Definition 8.2 If s = (
1,
2, g1, g2) ∈ S[�, τ1, τ2] and ϕ ∈ Lω1ω(τ1 ∪ C1), then
we use s +1 ϕ as an abbreviation for (
1 ∪ {ϕ},
2, g1, g2). For ϕ ∈ Lω1ω(τ2 ∪ C2)

s +2 ϕ is defined in a similar way.

Lemma 8.3 Let � be closed under
∧

,
∨

. Then for every s = (
1,
2, g1, g2) in
S[�, τ1, τ2] and every i ∈ {1, 2} the following hold:

1. 
i is consistent,
2. if ϕ is a valid first-order sentence over τi ∪ Ci, then s +i ϕ

n f is in S[�, τ1, τ2],
3. if

∧
� is in 
i, then for every ϕ ∈ �, s +i ϕ is in S[�, τ1, τ2],

4. if ∀xϕ is in 
i, then for every c ∈ Ci, s +i ϕ[c/x] is in S[�, τ1, τ2],
5. if

∨
� is in 
i, then there is a ϕ ∈ � such that s +i ϕ is in S[�, τ1, τ2],

6. if ∃xϕ is in 
i, then there is a c ∈ Ci such that s +i ϕ[c/x] is in S[�, τ1, τ2].

Proof :
Case 1: Suppose 
1 is inconsistent, hence 
1 |= ⊥. Since � is closed under

∨
, it

holds that ⊥ := ∨
∅ ∈ �. Taken together this contradicts s ∈ S[�, τ1, τ2]. For 
2

we argue in a similar way, this time using � := ∧
∅ ∈ �.

To prove the remaining statements of the lemma it suffices to concentrate on
condition P4; P1 to P3 are satisfied by definition. By using the assumption s ∈
S[�, τ1, τ2] the statements 2–4 are easily shown; the proofs are left to the reader.

Case 5: Let
∨

� ∈ 
1. Suppose there is no ϕ ∈ � such that s +1 ϕ satisfies P4. Then
for every ϕ ∈ � there is a ψϕ ∈ � such that 
1 ∪ {ϕ} |= ψϕ(g1) and 
2 |= ¬ψϕ(g2).
This implies (i) 
1 ∪ {∨�} |= ∨{ψϕ |ϕ ∈ �}(g1) as well as (ii) 
2 |= ¬∨{ψϕ |ϕ ∈
�}(g2). Moreover,

∨
� ∈ 
1 and (i) imply (iii) 
1 |= ∨{ψϕ |ϕ ∈ �}(g1). By the

closure properties of � it holds that
∨{ψϕ |ϕ ∈ �} is in �. But this, together with
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(iii) and (ii), contradicts the assumption s ∈ S[�, τ1, τ2]. In the case of
∨

� ∈ 
2 we
make use of the fact that � is closed under

∧
; the rest is analogous.

Case 6: Let ∃xϕ ∈ 
1. By definition, 
1 only contains finitely many constants from
C1, hence there is a c ∈ C1 that does not occur in 
1. For such a c it is easy to verify
that s +1 ϕ[c/x] is in S[�, τ1, τ2]. Assume to the contrary. Then there is a ψ ∈ �

such that (i) 
1 ∪ {ϕ[c/x]} |= ψ(g1), and (ii) 
2 |= ¬ψ(g2). As c does not occur in

1, (i) implies 
1 ∪ {∃xϕ} |= ψ(g1). To complete the proof we argue as in case 5.
The case ∃xϕ ∈ 
2 is proved in a similar way. �

We are now ready to introduce the main notion of this paper.

Definition 8.4 (Interpolation property) An inductive property (S,≤,I ) is called
an interpolation property if and only if there are τ, τ1, τ2, C1, C2, and � such that
S[�, τ1, τ2] = S, and ≤ is defined as follows: (
1,
2, g1, g2) ≤ (
′

1,

′
2, g′

1, g′
2) if

and only if 
i ⊆ 
′
i and gi = g′

i � dom(gi) for i ∈ {1, 2}.
There are only three concrete �’s in this paper: the collection of all generalized modal
formulas (in Theorems 9.1 and 10.1) and its two subcollections �G and ϒG (in the
first respectively third part of Theorem 10.2).

In the following list we assemble a number of sets of conditions. In the second
part of this section we use these sets in order to define certain interpolation properties.
Let S[�, τ1, τ2] and i ∈ {1, 2} be fixed.

I �,i The set of all pairs I = (I1, I2) such that there is a valid first-order sentence ϕ

over τi ∪ Ci in negation normal form with:
I1 := S[�, τ1, τ2],
I2 := {(
1,
2, g1, g2) |ϕ ∈ 
i}.

I ∧,i The set of all pairs I = (I1, I2) such that there is a Lω1ω-sentence
∧

� over
τi ∪ Ci and ϕ ∈ � with:
I1 := {(
1,
2, g1, g2) | ∧

� ∈ 
i},
I2 := {(
1,
2, g1, g2) |ϕ ∈ 
i}.

I ∀,i The set of all pairs I = (I1, I2) such that there is a Lω1ω-sentence ∀xϕ and c ∈ Ci

with:
I1 := {(
1,
2, g1, g2) | ∀xϕ ∈ 
i},
I2 := {(
1,
2, g1, g2) |ϕ[c/x] ∈ 
i}.

I ∨,i The set of all pairs I = (I1, I2) such that there is a Lω1ω-sentence
∨

� with:
I1 := {(
1,
2, g1, g2) | ∨

� ∈ 
i},
I2 := {(
1,
2, g1, g2) | ∃ϕ ∈ � : ϕ ∈ 
i}.

I ∃,i The set of all pairs I = (I1, I2) such that there is a Lω1ω-sentence ∃xϕ with:
I1 := {(
1,
2, g1, g2) | ∃xϕ ∈ 
i},
I2 := {(
1,
2, g1, g2) | ∃c ∈ Ci : ϕ[c/x] ∈ 
i}.
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I R,1 The set of all pairs I = (I1, I2) such that there are R ∈ R τ, c, c′ ∈ C1 and d ∈ C2

with:
I1 := {(
1,
2, g1, g2) | Rcc′ ∈ 
1 &∃v ∈ dom(g1)(g1(v) = c & g2(v) = d)},
I2 := {(
1,
2, g1, g2) | ∃d′ ∈ C2(Rdd′ ∈ 
2 &

∃v ∈ dom(g1) : g1(v) = c′ & g2(v) = d′)}.
I R,2 The set of all pairs I = (I1, I2) such that there are R ∈ R τ, d, d′ ∈ C2 and c ∈ C1

with:
I1 := {(
1,
2, g1, g2)|Rdd′ ∈ 
2 &∃v ∈ dom(g1)(g1(v) = c & g2(v) = d)},
I2 := {(
1,
2, g1, g2) | ∃c′ ∈ C1(Rcc′ ∈ 
1 &

∃v ∈ dom(g1) : g1(v) = c′ & g2(v) = d′)}.

Definition 8.5 Let (S[�, τ1, τ2],≤,I ) be an interpolation property, and suppose
〈(
n

1,

n
2, gn

1, gn
2) | n ∈ ω〉 is closed with respect to (S[�, τ1, τ2],≤,I ). The limit l

of this sequence is the quadruple (�1, �2, h1, h2) defined by

�1 := ⋃
n∈ω 
n

1 and �2 := ⋃
n∈ω 
n

2,
h1 := ⋃

n∈ω gn
1 and h2 := ⋃

n∈ω gn
2.

Theorem 8.6

1. Let I := ⋃{I ∗,i | ∗ ∈ {�,∧,∀,∨,∃}& i ∈ {1, 2}}, and let � be closed under∧
and

∨
, then (S[�, τ1, τ2],≤,I ) is an interpolation property.

2. Let I := I R,1 ∪ ⋃{I ∗,i | ∗ ∈ {�,∧,∀,∨,∃}& i ∈ {1, 2}}, and let � be closed
under

∧
,
∨

and ∃R (for every R ∈ R τ), then (S[�, τ1, τ2],≤,I ) is an inter-
polation property.

3. Let I := I R,2 ∪ ⋃{I ∗,i | ∗ ∈ {�,∧,∀,∨,∃}& i ∈ {1, 2}}, and let � be closed
under

∧
,
∨

and ∀R (for every R ∈ Rτ), then (S[�, τ1, τ2],≤,I ) is an inter-
polation property.

4. Let I := ⋃{I ∗,i | ∗ ∈ {R,�,∧,∀,∨,∃}& i ∈ {1, 2}}, and let � be closed under∧
,
∨

, ∃R and ∀R (for every R ∈ R τ), then (S[�, τ1, τ2],≤,I ) is an interpo-
lation property.

Proof: We only prove the fourth claim; it should then be clear how the remaining
cases go. So let � and I be as in 4. Obviously, (S[�, τ1, τ2],≤) is a partial order
and I forms a set of conditions on this partial order. Suppose s = (
1,
2, g1, g2) is
an element of S[�, τ1, τ2]. As the vocabularies are countable and the 
i’s are finite,
there are at most countably many I ∈ I such that s ∈ I1. What remains to be shown
is that S[�, τ1, τ2] is closed under every I ∈ I . Suppose I ∈ I . We must distinguish
several cases.

Case 1: In case I is taken from one of the sets I ∗,i, with ∗ ∈ {�,∧,∀,∨,∃} and
i ∈ {1, 2}, we apply the relevant part of Lemma 8.3. For an example consider I ∈ I ∨,1.
By definition there is an Lω1ω-sentence

∨
� over the vocabulary τ1 ∪ C1 such that

I1 = {(
1,
2, g1, g2) | ∨
� ∈ 
1} and I2 = {(
1,
2, g1, g2) | ∃ϕ ∈ � : ϕ ∈ 
1}.

Now, assume s = (
1,
2, g1, g2) is in I1, hence
∨

� ∈ 
1. By an application of 5
in Lemma 8.3 there is a ϕ ∈ � such that s +1 ϕ is in S[�, τ1, τ2]; by the definition of
s +1 ϕ we obtain s ≤ s +1 ϕ as well as s +1 ϕ ∈ I2, which completes the proof.

The most interesting cases are I ∈ I R,1 and I ∈ I R,2.
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Case 2: At first assume I ∈ I R,1. By definition there are R ∈ R τ, c, c′ ∈ C1 and
d ∈ C2 such that

I1 = {(
1,
2, g1, g2) | Rcc′ ∈ 
1 &∃v ∈ dom(g1)(g1(v) = c & g2(v) = d)},

and

I2 = {(
1,
2, g1, g2) | ∃d′ ∈ C2(Rdd′ ∈ 
2 &

∃v ∈ dom(g1)(g1(v) = c′ & g2(v) = d′))}.
Suppose s = (
1,
2, g1, g2) ∈ I1. Choose d′ to be a constant from C2 that does not
occur in 
2, and choose v′ to be a variable from V such that v′ �∈ dom(g1). It suffices
to show that

s′ := (
1,
2 ∪ {Rdd′}, g1 ∪ {〈v′, c′〉}, g2 ∪ {〈v′, d′〉})

is an element of S[�, τ1, τ2]: since s ≤ s′ and s′ ∈ I2 this would complete the proof.
Assume to the contrary that s′ is not in S[�, τ1, τ2]. By definition— P1 to P3 are
satisfied by s′—there is a ψ ∈ � such that

(i) the free variables of ψ are contained in dom(g1) ∪ {v′},
(ii) 
1 |= ψ(g1 ∪ {〈v′, c′〉}), and

(iii) 
2 ∪ {Rdd′} |= ¬ψ(g2 ∪ {〈v′, d′〉}).
Let x ∈ Var be new, and v be that variable from V which satisfies g1(v) = c and
g2(v) = d. Then (i), (ii) and “Rcc′ ∈ 
1” imply

(iv) the free variables of ∃x(Rvx ∧ ψ[x/v′]) are contained in dom(g1), and

(v) 
1 |= ∃x(Rvx ∧ ψ[x/v′])(g1).

Furthermore, as d′ does not occur in 
2, (iii) yields

(vi) 
2 |= ¬∃x(Rvx ∧ ψ[x/v′])(g2)

by easy logical reasoning. From the fact that � is closed under ∃R we also get
∃x(Rvx ∧ ψ[x/v′]) ∈ �. This, together with (vi) and (iv), leads to s �∈ S[�, τ1, τ2],
in contradiction to our assumption. Therefore it is shown that s′ ∈ S[�, τ1, τ2]. This
completes the case I ∈ I R,1.

Case 3: For I ∈ I R,2 we reason in a similar way, taking advantage of the fact that
� is closed under ∀R. �

Lemma 8.7 Let (S[�, τ1, τ2],≤,I ) be one of the interpolation properties from
Theorem 8.6, and suppose l = (�1, �2, h1, h2) is the limit of a sequence that is closed
with respect to (S[�, τ1, τ2],≤,I ). Then the following statements hold:

1. �i is a pseudo-complete (τi ∪ Ci)-theory, for i ∈ {1, 2}.
2. dom(h1) = dom(h2) ⊆ V.

3. hi[dom(hi)] ⊆ Ci, for i ∈ {1, 2}.
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Proof: For the first claim we only make a few simple observations. First, �i is the
union of sets of sentences over the vocabulary τi ∪ Ci; hence �i belongs to the right
language. Second, all �’s under consideration are closed under

∧
and

∨
; hence the

prerequisites of Lemma 8.3 are satisfied. Third, all the relevant I ’s are subsets of⋃{I ∗,i | ∗ ∈ {�,∧,∀,∨,∃}& i ∈ {1, 2}}. Exploiting the fact that l is the limit of a
sequence which is closed with respect to the corresponding (S[�, τ1, τ2],≤,I ), the
first claim follows by an application of Lemma 8.3. The details may easily be filled
in by the reader. The two remaining claims are obvious. �

Now, this seems to be a good place for a short break. Let’s reconsider what we
have done so far in this section, and compare it with our informal sketch from sec-
tion 4. First, in Theorem 8.6 we saw that all the objects (S[�, τ1, τ2],≤,I ) un-
der consideration are interpolation properties. By Lemma 5.3 we obtain for each
s = (
1,
2, g1, g2) ∈ S[�, τ1, τ2] a sequence that is closed with respect to the cor-
responding property, and with s as its first item. Furthermore, Lemma 8.7 tells us that
the limit of such a sequence supplies two pseudo-complete theories, �1 and �2, where
the first belongs to the language τ1 ∪ C1 and the second to the language τ2 ∪ C2. More-
over, in section 6 it was shown that a pseudo-complete theory uniquely determines a
model which satisfies the theory; therefore l fixes—via �1 and �2—two models A�1

and A�2 . Finally, it is an immediate consequence of the definition of l that A�1 sat-
isfies 
1 and A�2 satisfies 
2. What remains to be taken into account in order to
complete our formal development is the structural relation that should hold between
the two constructed models. This will be done in the remainder of this section.

Definition 8.8 Let (S[�, τ1, τ2],≤,I ) be one of the interpolation properties from
Theorem 8.6, and let l = (�1, �2, h1, h2) be the limit of a sequence which is closed
with respect to that property. The relation Zl between A�1 and A�2 is then defined as
follows:

∀c ∈ C1∀d ∈ C2(Zlcd :⇐⇒ ∃v ∈ dom(h1)(h1(v) = c & h2(v) = d)).

Lemma 8.9 Let (S[�, τ1, τ2],≤,I ) and l be as in the preceding definition.

1. Suppose � is closed under AT. Then for every c ∈ A�1 and d ∈ A�2 , if Zlcd
then ∀P ∈ Pτ(PA�1 c =⇒ PA�2 d).

2. Suppose � is closed under ¬AT . Then for every c ∈ A�1 and d ∈ A�2 , if Zlcd
then ∀P ∈ Pτ(PA�2 d =⇒ PA�1 c).

Proof: For the first claim assume that � contains all atomic formulas of the form
Pv, with P ∈ P and v ∈ V . Let P ∈ P , c ∈ A�1 and d ∈ A�2 such that Zlcd and
PA�1 c. By an application of the second statement of Lemma 6.2, we obtain Pc ∈ �1.
Therefore, there is a natural number n with Pc ∈ 
n

1, where sn = (
n
1,


n
2, gn

1, gn
2) is

the n-th item of the sequence that has l as its limit. Moreover, Zlcd implies that there
are sm = (
m

1 ,
m
2 , gm

1 , gm
2 ) and v ∈ dom(gm

1 ) with gm
1 (v) = c and gm

2 (v) = d. Let
k be the supremum of {m, n}. For sk it holds that Pc ∈ 
k

1, v ∈ dom(gk
1), gk

1(v) = c
and gk

2(v) = d. From Pv ∈ � we infer ¬Pd �∈ 
n′
2 , for each n′ ≥ k, hence ¬Pd �∈ �2.

On the other hand, by an application of the second claim in Lemma 8.3 we obtain
(Pd ∨ ¬Pd) ∈ �2. Taken together this yields Pd ∈ �2. Finally, by the first part of
Lemma 6.2 we obtain PA�2 d, which completes the proof of the first claim.
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The second claim is proved in a similar way. �

Lemma 8.10 Let (S[�, τ1, τ2],≤,I ) and l = (�1, �2, h1, h2) be as in the preced-
ing lemma.

1. Suppose I R,1 ⊆ I and � is closed under
∧

,
∨

and ∃R (for every R ∈ R τ),
then Zl satisfies the forth-condition (clause B2a) in Definition 2.6.

2. Suppose I R,2 ⊆ I and � is closed under
∧

,
∨

and ∀R (for every R ∈ R τ),
then Zl satisfies the back-condition (clause B2b) in Definition 2.6.

Proof:

Case 1: Assume Zlcd and RA�1 cc′, for c, c′ ∈ C1, d ∈ C2 and R ∈ R τ. By Lemma
6.2 we obtain Rcc′ ∈ �1. Hence, there is an item sn = (
n

1,

n
2, gn

1, gn
2) in the se-

quence of which l is the limit such that Rcc′ ∈ 
n
1. Moreover, Zlcd yields the ex-

istence of a sm = (
m
1 ,
m

2 , gm
1 , gm

2 ) and a variable v ∈ dom(gm
1 ) with gm

1 (v) = c
and gm

2 (v) = d. Again, let k be the supremum of {m, n}. For sk we easily obtain
Rcc′ ∈ 
k

1, v ∈ dom(gk
1), gk

1(v) = c and gk
2(v) = d. Now, let I be the element of I R,1

such that I1 = {(
1,
2, g1, g2) | Rcc′ ∈ 
1 &∃v ∈ dom(g1) : g1(v) = c & g2(v) =
d}: Obviously, sk ∈ I1. As l is the limit of a sequence that is closed with respect
to (S[�, τ1, τ2],≤,I ), and I contains I by assumption, there is a k′ ≥ k such that
sk′ = (
k′

1 ,
k′
2 , gk′

1 , gk′
2 ) ∈ I2. Hence Rdd′ ∈ 
k′

2 and there is a v′ ∈ dom(gk′
1 ) with

gk′
1 (v) = c′ and gk′

2 (v′) = d′. From this we obtain Rdd′ ∈ �2, h1(v
′) = c′ as well as

h2(v
′) = d′. To complete the proof we apply Lemma 6.2 and make use of the defini-

tion of Zl . This leads to RA�2 dd′ and Zlc′d′.

The second case is shown by a similar argument. �

9 Interpolation For a modal vocabulary τ′ ∪ {c} and ϕ ∈ MLω1 (τ
′ ∪ {c}), Voc(ϕ)

designates the smallest relational vocabulary τ ⊆ τ′ such that ϕ ∈ MLω1 (τ ∪ {c}).
Theorem 9.1 (Craig Interpolation) Let τ′ ∪ {c} be a modal vocabulary and let
ϕ, χ ∈ MLω1 (τ

′ ∪ {c}) with ϕ |= χ. Then there exists a formula ϑ ∈ MLω1 (τ
′ ∪ {c})

such that

ϕ |= ϑ,

ϑ |= χ and

Voc(ϑ) =Voc(ϕ)∩Voc(χ).

Proof: The theorem is proved by contraposition. Assume ϕ and χ are two MLω1 -
formulas which have no interpolant, that is, there is no MLω1 -formula ϑ which sat-
isfies the conditions stated in the theorem. Under this assumption we are able to find
a model (E, e) in which ϕ is true, but χ is false. Therefore ϕ |= χ does not hold.

To begin with, choose two disjoint sets of constants C1 = {cn | n ∈ ω} and C2 =
{dn | n ∈ ω}, and a set V = {vn | n ∈ ω} of new variables. Furthermore, put τ1 :=
Voc(ϕ), τ2 := Voc(χ), τ := τ1 ∩ τ2 and � := MLG

ω1
(τ, V ), and define a quadruple

s by

s := ({(St(ϕ)[c0/c])n f }, {(St(¬χ)[d0/c])n f }, {〈v0, c0〉}, {〈v0, d0〉}).
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It is easy to see that s is an element of (S[�, τ1, τ2],≤). P1 to P3 are obvious. For
P4 assume, aiming for a contradiction, that there is a ψ ∈ � such that

1. the free variables of ψ are contained in {v0},
2. (St(ϕ)[c0/c])n f |= ψ(〈v0, c0〉),
3. (St(¬χ)[d0/c])n f |= ¬ψ(〈v0, d0〉).

By the first claim in Lemma 7.4 there is a MLω1 -formula ϑ such that ψ[c/v0] and
St(ϑ) are equivalent. Together with 2 and 3, this leads to ϕ |= ϑ and ϑ |= χ, in con-
tradiction to the assumption that ϕ and χ possess no interpolant. Thus it is shown that
s ∈ (S[�, τ1, τ2],≤).

For the next step define I as the union of all sets I ∗,i, with ∗∈ {R,�,∧,∀,∨,∃}
and i ∈ {1, 2}. According to Theorem 8.6, (S[�, τ1, τ2],≤,I ) is an interpola-
tion property; note that by assumption � satisfies the required closure conditions.
Thus, by Lemma 5.3 there is a sequence 〈sn | n ∈ ω〉 that is closed with respect to
(S[�, τ1, τ2],≤,I ) such that s0 = s. Let l = (�1, �2, h1, h2) be the limit of this se-
quence.

By Lemma 8.7, �i is a pseudo-complete (τi ∪ Ci)-theory, for i ∈ {1, 2}. Then
Lemma 6.2 supplies models A�1 and A�2 such that

(i) A�1 |= �1,
(ii) A�1 is a (τ1 ∪ C1)-model,

(iii) A�2 |= �2, and
(iv) A�2 is a (τ2 ∪ C2)-model.

From (i), (iii) together with (St(ϕ)[c0/c])n f ∈ �1 and (St(¬χ)[d0/c])n f ∈ �2 we in-
fer by an easy argument

(v) (A�1 � τ1, c0) |= ϕ and
(vi) (A�2 � τ2, d0) |= ¬χ.

Note that in Henkin-style models constants are interpreted by themselves.
Next, consider the relation Zl defined in Definition 8.8. Under the present

conditions we can show that Zl forms a τ ∪ {c}-bisimulation between the models
(A�1 � τ1, c0) and (A�2 � τ2, d0). As �(= MLG

ω1
(τ, V )) contains both the atomic

τ-formulas and their negations, Lemma 8.9 ensures that Zl satisfies clause B1 in Def-
inition 2.6. To verify B2a note that I R,1 ⊆ I and that � is closed under ∃R, for every
R ∈ R τ. An application of the first statement in Lemma 8.10 completes the case. B2b
is proved by an analogous argument; this time we make use of the fact that � is closed
under ∀R, and apply the second claim of Lemma 8.10. Moreover, by v0 ∈ dom(g1),
g1(v0) = c0 and g2(v0) = d0 we obtain Zlc0d0. Putting everything together we ob-
tain

(vii) Zl : (A�1 � τ1, c0) ∼τ
bs (A�2 � τ2, d0).

Let (B1, c0) be the unraveling of (A�1 � τ1, c0) and (B2, d0) the unraveling of (A�2 �
τ2, d0). Obviously

(viii) (A�1 � τ1, c0) ∼τ1
bs (B1, c0),

(ix) (A�2 � τ2, d0) ∼τ2
bs (B2, d0),

and, by an application of (vii),
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(x) (B1, c0) ∼τ
bs (B2, d0).

So the prerequisites of the Amalgamation Lemma 3.4 are satisfied. An application of
this lemma provides a (τ1 ∪ τ2 ∪ {c})-model (E, e) with the following features:

(xi) (E, e) ∼τ1
bs (B1, c0),

(xii) (E, e) ∼τ2
bs (B2, d0).

As ϕ ∈ MLω1 (τ1 ∪ {c}), ϕ is preserved under τ1 ∪ {c}-bisimulations. Therefore (v),
(viii) and (xi) imply (E, e) |= ϕ. Similarly, by (vi), (ix), (xii) and ¬χ ∈ MLω1 (τ2 ∪
{c}) we obtain (E, e) |= ¬χ. Thus it is shown that ϕ ∧ ¬χ has a model, hence ϕ |= χ

does not hold. This completes the proof of the interpolation theorem. �
As an immediate consequence of the interpolation theorem we obtain a modal version
of Beth’s definability theorem. To state this result in a precise way, we first have to say
what we mean by “explicitly definable” and by “implicitly definable” in the context
of (infinitary) modal logic. This is done in the next definition.

Definition 9.2 Let τ be a modal vocabulary and let ϕ ∈ MLω1 (τ).

1. ϕ implicitly defines a propositional letter p if and only if there is a propositional
letter q, different from p, which does not occur in ϕ, such that ϕ ∧ ϕ[q/p] |=
(p ←→ q).

2. ϕ explicitly defines a propositional letter p if and only if there is an MLω1 -
formula ψ in which p does not occur, such that ϕ |= (p ←→ ψ).

Theorem 9.3 (Beth) Let τ be a modal vocabulary and let ϕ ∈ MLω1 (τ). ϕ implic-
itly defines a propositional letter p if and only if ϕ defines p explicitly.

Proof: The proof is standard and can be skipped here. The direction from right to
left is fairly obvious. For the other direction consider the interpolant of the formulas
ϕ ∧ p and ϕ[q/p] → q; the result follows by some easy logical manipulations. �

10 Preservation In section 2 we saw (Lemma 2.7) that MLω1 -formulas are invari-
ant for bisimulations. This observation suggests the following natural question: does
van Benthem’s bisimulation theorem also apply to MLω1 , that is, can we prove that
an Lω1ω-sentence is equivalent to the standard translation of an MLω1 -formula if and
only if it is invariant for bisimulations? In [12] van Benthem and Bergstra gave a pos-
itive answer to this question. At the beginning of this last section we prove this result
by an application of our own method.

By a careful examination of the two proofs the reader will probably come to the
conclusion that the proof in [12] and our proof do not differ too much from each other.
This is no surprise. For the construction van Benthem and Bergstra use in their proof
may be described as a special case of our construction.

Theorem 10.1 Let τ ∪ {c} be a modal vocabulary. For ϕ ∈ Lω1ω(τ ∪ {c}) the fol-
lowing are equivalent:

1. There is a ϑ ∈ MLω1 (τ ∪ {c}) such that ϕ and St(ϑ) are equivalent.

2. ϕ is invariant for τ ∪ {c}-bisimulations.
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Proof: The direction from 1 to 2 is an immediate consequence of Lemma 2.7 and
Lemma 2.5. The other direction is proved by contraposition. Let ϕ ∈ Lω1ω(τ ∪ {c})
and suppose there is no modal formula ϑ such that ϕ and St(ϑ) are equivalent. We
will construct two bisimilar models (B1, b1) and (B2, b2) for which (B1, b1) |= ϕ

and (B1, b1) |= ¬ϕ hold; from this we can infer that ϕ is not invariant under bisim-
ulations, which concludes the proof.

Because a large part of the proof strongly resembles the proof of the interpolation
theorem, we will be content here with a sketch. Choose C1, C2, V , � and I as in the
proof of Theorem 9.1, and let τ1 := τ and τ2 := τ. Under the assumption that ϕ has
no modal equivalent it is easy to verify that

s := ({(ϕ[c0/c])n f }, {(¬ϕ[d0/c])n f }, {〈v0, c0〉}, {〈v0, d0〉})
is an element of (S[�, τ1, τ2],≤). Once again, by an application of Theorem 8.6
(S[�, τ1, τ2],≤,I ) is shown to be an interpolation property. Hence there is a suitable
sequence 〈sn | n ∈ ω〉 with s0 = s. Let l be the limit of this sequence. Then its two sets
�1 and �2 are pseudo-complete theories, this time over the vocabulary τ ∪ C1 respec-
tively τ ∪ C2. For the corresponding models A�1 and A�2 it holds that A�1 |= �1 and
A�2 |= �2. As ϕ is contained in Lω1ω(τ ∪ {c}) this implies (A�1 � τ1, c0) |= ϕ and
(A�2 � τ2, d0) |= ¬ϕ. Moreover, by an application of Lemmas 8.9 and 8.10—note
that � contains all atomic formulas as well as their negations, and is closed under

∧
,∨

, ∃R and ∀R—we obtain Zl : (A�1 � τ1, c0) ∼τ∪{c}
bs (A�2 � τ2, d0). To complete the

proof, define (B1, b1) := (A�1 � τ1, c0) and (B2, b2) := (A�2 � τ2, d0). �
The final result of this section, and of the whole paper, characterizes positive, univer-
sal and existential MLω1 -formulas by their preservation properties.

Theorem 10.2 Let τ ∪ {c} be a modal vocabulary. For ϕ ∈ MLω1 (τ ∪ {c}) the
following three equivalences hold:

1. ϕ is preserved under extensions if and only if there is a ψ ∈ �(τ ∪ {c}) such
that |= ϕ ←→ ψ.

2. ϕ is preserved under submodels if and only if there is a ψ ∈ �(τ ∪ {c}) such
that |= ϕ ←→ ψ.

3. ϕ is preserved under weak extensions if and only if there is a ψ ∈ ϒ(τ ∪ {c})
such that |= ϕ ←→ ψ.

Proof:

Case 1: A routine induction shows that existential formulas are preserved under ex-
tensions. For the other direction suppose ϕ has no equivalent formula in �(τ ∪ {c}).
The structure of the proof is again very similar to the proof of the interpolation the-
orem. In the present situation we will construct two models (B1, b1), (B2, b2) such
that (B1, b1) |= ϕ, (B2, b2) |= ¬ϕ and (B1, b1) ⊆ (B2, b2), and from this we will
conclude that ϕ is not preserved under extensions.

C1, C2, V , τ1 and τ2 are chosen as in the proof of Theorem 10.1. For � we take
�G(τ, V ) and for I the union of I R,i and all the sets I ∗,i, with ∗ ∈ {�,∧,∀,∨,∃} and
i ∈ {1, 2}. By utilizing the assumption on ϕ it is not hard to prove that

s := ({(St(ϕ)[c0/c])n f }, {(St(¬ϕ)[d0/c])n f }, {〈v0, c0〉}, {〈v0, d0〉})
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is contained in S[�, τ1, τ2]. As always, only P4 requires some argument. So assume
there is a ψ ∈ � such that

1. the free variables of ψ are contained in {v0},
2. (St(ϕ)[c0/c])n f |= ψ(〈v0, c0〉),
3. (St(¬ϕ)[d0/c])n f |= ¬ψ(〈v0, d0〉).

From 1 and the second part of Lemma 7.4, it follows that ψ[c/v0] is equivalent to
the standard translation of an existential modal formula ϑ. Together with 2 and 3 this
implies that ϕ is equivalent to an existential modal formula, in contradiction to what
we have assumed. Thus s ∈ S[�, τ1, τ2].

The next steps in the proof may be taken from the proof of Theorem 8.4; so we
skip them here. At a certain point we meet the following situation:

(i) (A�1 � τ1, c0) |= ϕ and
(ii) (A�2 � τ2, d0) |= ¬ϕ.

Because � has the same closure properties as in the proof of Theorem 9.1, except ∀R,
Zl satisfies B1 and B2a from Definition 2.6. Hence Zl is a τ ∪ {c}-simulation, which
means that

(iii) Zl : (A�1 � τ1, c0) �τ∪{c} (A�2 � τ2, d0).

Let (A1, c0) be the unraveling of (A�1 � τ1, c0) and (A2, d0) the unraveling of (A�2 �
τ2, d0). For these models we easily conclude

(iv) (A�1 � τ1, c0) ∼τ∪{c}
bs (A1, c0),

(v) (A�2 � τ2, d0) ∼τ∪{c}
bs (A2, d0)

and, because of (iii),

(vi) (A1, c0) �τ∪{c} (A2, d0).

An application of the first claim of Lemma 3.5 supplies a model (A′
2, d0) such that

(vii) (A1, c0) ⊆ (A′
2, d0) and

(viii) (A2, d0) ∼τ∪{c}
bs (A′

2, d0).

Finally, set (B1, b1) := (A1, c0) and (B2, b2) := (A′
2, d0). To complete the proof,

we argue as follows: (i) and (iv) imply (B1, b1) |= ϕ, whereas (ii), (v) and (viii) yield
(B2, b2) |= ¬ϕ. Moreover, from (vii) we infer (B1, b1) ⊆ (B2, b2). This shows that
ϕ is not preserved under extensions.

Case 2: The second claim of the Theorem is a consequence of the first claim. The
argument goes as follows: Suppose ϕ is preserved under submodels. Then ¬ϕ is pre-
served under extensions. By the first claim there is an existential formula ϑ which is
equivalent to ¬ϕ. Hence ϕ is equivalent to ¬ϑ, consequently to (¬ϑ)n f . Now it is
easy to check that the latter is a universal formula. For the other direction suppose ϕ is
equivalent to a universal formula ϑ. Then ¬ϕ is equivalent to the existential (¬ϑ)n f .
By 1, ¬ϕ is preserved under extensions; therefore ϕ is preserved under submodels.

Case 3: The proof is a duplicate of the proof of the first claim. Instead of using
the first part of Lemma 3.5, one has to apply the second part of the lemma; the rest
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goes through without any change. So we can leave the details as an exercise to the
(skeptical) reader. �
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