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Pitts’ Quantifiers Are Not
Topological Quantification

TOMASZ POŁACIK

Abstract Weshow that Pitts’ modeling of propositional quantification in in-
tuitionistic logic (as the appropriate interpolants) does not coincide with the
topological interpretation. This contrasts with the case of the monadic language
and the interpretation over sufficiently regular topological spaces. We also point
to the difference between the topological interpretation over sufficiently regular
spaces and the interpretation of propositional quantifiers in Kripke models.

When we consider propositional quantification and think of classical logic we eas-
ily find out that the problem is trivial: the truth functional interpretation allows us
to express quantification by means of propositional connectives and constants only.
However, in case of nonclassical logics the situation is different—there propositional
quantification usually gives rise to interesting extensions of the logic in question. The
problem of propositional quantification was investigated in case of modal logics (see
e.g., Fine [2], Bull [ 1], Ghilardi and Zawadowski [6], Kaplan [8], Kremer [11]), rele-
vance logic (see Kremer [12]) and intuitionistic logic (see Gabbay [4], Scedrov [17],
Kremer [10], Pitts [13], Połacik [16], Ghilardi and Zawadowski [5], Visser [22],
Skvortsov [19]). The study of propositional quantification in intuitionistic logic is
continued in this paper.

We consider the Heyting calculus which corresponds to (the fragment of) intu-
itionistic propositional logic in the language of the standard propositional connec-
tives: ¬,∨,∧,→. In this language, the constants�,⊥, and equivalence≡ can be
defined in the usual way. In the sequel,p, q, r, s, . . . will range over the set of prop-
ositional variables and the lettersF, G, H . . . will serve as the metavariables for for-
mulas. The symbol� will be used to denote provability in Heyting calculus. We
extend the language by adding propositional quantifiers∃p ,∀p , . . .; the notions of
formula (in the extended language) and free variable are as usual.

One way of introducing propositional quantification into a propositional logic
is to specify the characteristic properties of quantification in the form of axioms and
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rules of inference and add them to the list of the axioms and rules of inference of the
appropriate logical system. In the case of intuitionistic logic the merits of proposi-
tional quantification can be given, for example, by the following schemata of formu-
las,

∀p F(p) → F(q) F(q) → ∃p F(p),

and rules of inference,

F(p) → G
∃p F(p) → G

G → F(p)

G → ∀p F(p)
,

wherep is not free inG. It is natural to accept also the comprehension schema: for
everyG in which p is not free,

∃p (p ≡ G).

These basic axioms and rules governing the quantifiers, together with a usual axiom-
atization of Heyting calculus, give rise to the systemIPC2 which can be regarded as
the minimal system corresponding to intuitionistic logic (in the standard language)
with propositional quantification.

In [4], undecidability as well as soundness and completeness (with respect to
a variant of Kripke semantics) ofIPC2 is proved. However, it is easy to see that the
systemIPC2 cannot be complete with respect to any natural semantics of intuitionistic
propositional quantification, since for example, the formula¬∀p (p ∨ ¬p)—which
is intuitively true intuitionistically—is not provable inIPC2. This fact shows that
IPC2 covers only a fragment of intuitionistic logic with propositional quantification
and motivates the semantical approach to propositional quantifiers. However, any
natural interpretation of propositional quantification should validate the axioms and
rules ofIPC2.

An interpretation satisfying this property is the so-called Pitts’ interpretation in
which propositional quantifiers are interpreted within Heyting calculus. Let us sketch
how it can be done. Recall that Heyting calculus enjoys the interpolation property:
for all formulasF, G such that the formulaF → G is provable, there is a formula
I—called their interpolant—involving only the variables involved both inF and in
G, such that the formulasF → I and I → G are also provable. It is shown in [13],
that the interpolation property for Heyting calculus can be strengthened. Namely, for
every propositional variablep and every formulaF of the language of Heyting calcu-
lus, the set of interpolants ofF not involving p is not merely nonempty but contains
the weakest and strongest elements with respect to the provability ordering in Heyting
calculus. More precisely, the following can be proven (see [13]).

Theorem 1 (Uniform interpolation theorem for Heyting calculus)Given a propo-
sitional variable p and a formula F, one can effectively find formulas Ap F and Ep F
containing only variables not equal to p which occur in F, such that for all formulas
G not involving p,

� G → Ap F iff � G → F,

� Ep F → G iff � F → G.
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The uniform interpolantsAp F andEp F satisfy the axioms and rules of the system
IPC2 if we substituteAp F for ∀p F andEp F for ∃p F. Thus we can model propo-
sitional quantification in Heyting calculus: given a formulaF we can interpret∃p F
asEp F and∀p F asAp F. This modeling will be calledPitts’ interpretation; con-
sequently,E andA will be calledPitts’ quantifiers.

Recall that, although the existential quantifier is definable in intuitionistic logic
by means of the universal quantifier and the implication, Pitts’ quantifiers are defined
simultaneously via mutual recursion. Moreover,E andA are defined for multisets�
of formulas rather than for single formulas and have the formEp (�) andAp (�; F)

whereF is a formula of the language of Heyting calculus.Ap F is then defined as
Ap (∅; F) andF in Ep F is to be treated as the one-element multiset. From the rules
of calculatingE andA we recall those employed in this paper. Here we give only the
variants of the rules in the case of one-element multisets.

Ep ((F → G) → H) = (Ep (G → H) → Ap (G → H; F → G)) → Ep H,

Ap (∅; F → G) = Ep F → Ap (F; G),

Ap (∅; F ∨ G) = Ap (∅; F) ∨ Ap (∅; G).

However, whenever it is possible we shall avoid the laborious computations of Pitts’
quantifiers and exploit the fact that they are the appropriate interpolants of the formu-
las in question.

A semantical proof of Uniform Interpolation Theorem was discovered recently
by Ghilardi and Zawadowski [5] who used ideas from Shavrukov’s proof of the Uni-
form Interpolation Theorem forGL (see [18]). Ghilardi and Zawadowski’s proof also
conveys a definite meaning on the Pitts’ quantifiers in terms of Kripke semantics.
These results were also obtained independently by Visser [22].

It should be pointed out that, since Pitts’ quantifiers are definable in Heyting cal-
culus, we can compare them with the specific meaning of propositional quantifiers in
any other interpretation. Moreover, the formulasAp F → ∀p F and∃p F → Ep F
are provable inIPC2, hence they are generally valid. This fact suggests the question:
in which of the known models for propositional quantification—if there are any— are
the formulasEp F → ∃p F and∀p F → Ap F also valid, that is, to which of known
interpretations of propositional quantification—if there are any—is Pitts’ interpreta-
tion equivalent?

When looking for an appropriate interpretation of propositional quantification
in intuitionistic logic, one can begin with an arbitrary semantics for Heyting calculus
and extend it by an appropriate interpretation of the quantifiers. We follow this way
to specify the topological interpretation of propositional quantification which will be
considered in this paper.

First, we establish some terminology and notation. ByT we will denote a topo-
logical space. IfX ⊆ T, we write−X for the complement ofX, int X and clX for the
interior and closure ofX, respectively. As usual, we say that a pointx is anaccumula-
tion point of a subsetX of T if x ∈ cl (X \ {x}). Recall that a spaceT is dense-in-itself
if all the points ofT are its accumulation points.

The standard topological semantics for Heyting calculus can be defined as fol-
lows (see Tarski [20]). Given a topological spaceT, to each propositional variable we
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assign an open subset ofT: p �→ P, q �→ Q, r �→ R, s �→ S, . . . . (For convenience we
shall always assume the appropriate correspondence of lower and uppercase letters as
above.) Relative to this assignment of the propositional variables, for each formula
F(q) of the standard language, we define, by induction on the complexity ofF, an
open setF[ Q], whereq, and Q denote finite sequences of propositional variables and
the open sets being assigned toq, respectively:

(¬F′)[ Q] = int (−F′[ Q])
(F′ ∨ F′′)[ Q] = F′[ Q] ∪ F′′[ Q]
(F′ ∧ F′′)[ Q] = F′[ Q] ∩ F′′[ Q]

(F′ → F′′)[ Q] = int (−F′[ Q] ∪ F′′[ Q]).

Now the idea of interpreting quantifiers as supremum and infimum leads us to the
following extension of the interpretation:

(∃p F)[ Q] = ⋃{F[ P, Q] : P – open}
(∀p F)[ Q] = int

⋂{F[ P, Q] : P – open}.

For brevity we shall sometimes writeX→Y instead of int(−X ∪ Y ) and¬X instead
of int (−X). Let F(p, q, . . . , r) be an arbitrary formula of the language ofIPC2. In
the case that for all assignments for the propositional variablesF[ P, Q, . . . , R] = T,
that is, when the formulaF is valid in T, wewrite T |= F.

The topological semantics for intuitionistic logic are closely related to Kripke
semantics, in which to every propositional variablep we assign an upward closed
subset of the frame and interpret propositional quantifiers as ranging over such sets
(see [10]). In fact, in every Kripke frameK = (K,≤) for intuitionistic propositional
logic we can define a topology by assuming that a subset ofK is open if and only if it
is upward closed with respect to the ordering≤. Thus, such an extension of Kripke
semantics can be regarded as a kind of topological semantics.

Notice that the topological space associated with a given Kripke frame need not
satisfy stronger separation properties, for example,T1. In this paper, we generally
leave aside such spaces and direct toward the semantics over topological spaces with
strong separation properties. The reason is twofold. First, such spaces appear natu-
rally in mathematical context. Second, more importantly, they appear naturally when
intuitionistic propositional logic is concerned—recall that every dense-in-itself met-
ric space is a universal space for Heyting calculus, that is, for every dense-in-itself
metric spaceT, a formula F is provable in Heyting calculus if and only if it is valid
in T (see [20]). On the other hand, the full binary tree which is the universal Kripke
model for Heyting calculus is, from the topological point of view, isomorphic to Can-
tor space and thus possesses very strong topological properties.

The semantics for propositional quantification in intuitionistic logic associated
with Kripke models was studied in [10]. There, it is shown that the set of all valid
formulas is recursively isomorphic to second-order predicate logic and hence, in par-
ticular, undecidable (see also [19]). Of course, since Heyting calculus is decidable,
so is the set of the valid formulas for Pitts’ quantifiers. Thus, from undecidability of
the set of valid principles for quantifiers in the semantics of upward closed subsets
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in Kripke models follows that such quantifiers are very different from Pitts’ quanti-
fiers. In this paper—giving appropriate examples—we present direct arguments for
this fact. We show that this also holds for topological quantifiers in the semantics
of sufficiently regular spaces. More precisely, we show that there are formulasF, G
of Heyting calculus involving two propositional variables such that in the class of
dense-in-themselves metric spaces the formulasEp F ≡ ∃p F andAp G ≡ ∀p G are
not valid. It contrasts with the case of the monadic language where Pitts’ interpre-
tation coincides with topological interpretation of propositional quantification in the
class of sufficiently regular spaces (see [16]).

Since the solution of our problem depends not only on the topological properties
of the considered space, but also on the number of variables, our considerations will
depend essentially on this parameter. First, let us consider the language with only the
variablep. The problem of monadic language was studied in detail in [16]. Here—as
Theorem3—we just present the relevant result. In the proof of Theorem3, we shall
rely on the following, more general, fact. Its proof, however, is beyond the scope of
this short paper, so it will be omitted (see [16]).

Theorem 2 Let T be an arbitrary dense-in-itself metric space and let F(p) be
a quantifier-free monadic formula which is not provable in Heyting calculus. Then,
for every x ∈ T, there is an open set Px such that x �∈ F[ Px].

Weemploy Theorem2 as the basic tool in proving the following theorem.

Theorem 3 For every dense-in-itself metric space, the topological interpretation
of quantifiers coincides with Pitts’ interpretation when restricted to the language of
one variable.

Proof: We put aside the obvious case of formulasF(p) for which � F or � ¬F.
The case of the existential quantifier is trivial: for any formulaF in question we
have� Ep F ≡ � and also in every topological spaceT, T |= ∃p F ≡ �. Notice
that� Ap F ≡ ⊥. Assume thatT is a dense-in-itself metric space and letF(p) be a
monadic quantifier-free formula which is not provable in Heyting calculus. Then, by
Theorem2, for everyx ∈ T, there is an open setPx, such thatx �∈ F[ Px]. Thus we
have

int
⋂

{F[ P] : P – open} ⊆ int
⋂

{F[ Px] : x ∈ T} ⊆ int
⋂

x∈T

−{x} = ∅.

HenceT |= ∀p F ≡ ⊥. �

Let us note that the situation here differs drastically from the situation in the topology
associated with Kripke models. There, for example, the formula∀p (p ∨¬p) defines
the set of top nodes, but� Ap (p ∨ ¬p) ≡ ⊥. So, the semantics of upward closed sets
in Kripke models differ from Pitts’ interpretation of propositional quantification even
in the case of the monadic language.

Corollary 4 The semantics of upward closed sets in Kripke models differs from
the topological semantics of dense-in-themselves metric spaces when restricted to the
monadic language and the universal quantifier. In the case of the monadic language
and the existential quantifier, the semantics in question coincide.
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Now consider the language of at least two variables. We shall prove that, in this case,
the standard topological meaning of quantifiers is not, in general, the same as the
meaning of Pitts’ quantifiers. However, instead of proving this negative result for
the existential quantifier only (which would imply the negative result for the univer-
sal quantifier), we divide the problem into two separate cases of the two quantifiers.
The reason is that in the definition of the existential quantifier,

∃p F ≡ ∀q(∀p (F → q) → q),

a new variable occurs and proceeding this way we would not be able to cover the
case of the universal quantifier and the language of two variables. In fact, we give the
solution of our problem in the latter case before we turn to the case of the existential
quantifier.

Theorem 5 For every topological space, the topological interpretation of the uni-
versal quantifier does not coincide with Pitts’ interpretation when restricted to the
language of at least two variables.

Proof: Weput
H(p, q) = p ∨ (p → q).

Obviously,� Ap (∅; p) ≡ ⊥ and� Ap (∅; p → q) ≡ q. Hence

� Ap (∅; p ∨ (p → q)) ≡ Ap (∅; p) ∨ Ap (∅; p → q) ≡ q.1

Thus, in every topological spaceT we have

T |= Ap H ≡ q. (1)

Assume thatT is an arbitrary space andx ∈ T. Let Q = int (T \ {x}). Obviously,
Q ⊆ H[ P, Q] for every openP ⊆ T. Take an arbitrary open setP. There are two
possibilities:x ∈ P or x �∈ P. It is clear that in the former caseT |= H[ P, Q]. Assume
the latter. Observe that then, sinceP is open,−Q = cl {x} ⊆ −P. Consequently
P→Q = T and henceT |= H[ P, Q]. So, for all P, H[ P, Q] = T. Thus we have

∀p H [ Q] = T. (2)

Finally, by (1) and(2) we getT �|= ∀p H → Ap H. �
Notice that in Theorem5 we do not assume any topological properties. So, this
result is fully general, in particular, it is also valid for the semantics of upward
closed sets in Kripke models. Moreover, proving Theorem5, we show in fact that
under the standard topological interpretation ofIPC2 over any topological space
T (including the semantics of upward closed sets in Kripke models), the formula
∀p (F ∨ G) → ∀p F ∨ ∀p G is not valid although, since� Ap (F ∨ G) ≡ Ap F ∨
Ap G, it is valid under Pitts’ interpretation.

Validity of the formula in question is intuitively unacceptable which makes Pitts’
interpretation rather peculiar. The following formulas—in which validity is also in-
tuitively questionable—are valid under Pitts’ interpretation:

∃p ¬(F → G) ≡ ¬∀p (F → ¬¬G),

∃p ¬¬F ≡ ¬∀p ¬F,

∃p (¬F → G) ≡ ∀p ¬F → ∃p G.
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The next two theorems give the solution of the problem of the existential quantifier.
We now proceed as follows: first, we prove the negative result for the language of
(at least) three variables; then, strengthening the assumptions on the space, we give
the final solution in the language of two variables. It is perhaps worth noting that the
mentioned theorems are in fact incomparable in strength, that is, in particular, Theo-
rem6 does not follow from Theorem7.

Theorem 6 For every Hausdorff space with a countable basis in at least one point,
the topological interpretation of the existential quantifier does not coincide with Pitts’
interpretation when restricted to the language of at least three variables.

Proof: Weput

F(p, q) = ¬p → q, G(p, q) = p → q,

H(p, q, r) = (r → F(p, q) ∨ G(p, q)) → r.

Obviously, q is the greatest lower interpolant of both the formulasF(p, q) and
G(p, q), that is,� Ap (∅; F) ≡ Ap (∅; G) ≡ q. Hence

� Ap (∅; F ∨ G) ≡ Ap (∅; F) ∨ Ap (∅; G) ≡ q.

Let us computeEp H(p, q, r):2

� Ep H ≡ (Ep (F ∨ G → r) → Ap (F ∨ G → r; r → F ∨ G)) → Ep r
≡ Ap (∅; (F ∨ G → r) → (r → F ∨ G)) → r
≡ Ap (∅; r → F ∨ G) → r
≡ (r → Ap (∅; F ∨ G)) → r
≡ (r → q) → r.

Thus, in every topological spaceT,

T |= Ep H ≡ (r → q) → r.

Let T be a Hausdorff space andx its point with a countable basisU0 � U1 � · · · .
For everyn ∈ N, we choosezn ∈ Un \ Un+1 and putZ = {zn : n ∈ N}. Observe
that x �∈ Z and Zd = {x}, that is,x is the only accumulation point ofZ. Indeed,x
is an accumulation point ofZ since for every open neighborhoodX of x, Un ⊆ X
for a sufficiently largen; moreover,x is unique, since for everyy �= x we can find
neighborhoodsX � x andY � y such thatX ∩ Y = ∅, and henceY ∩ Um = ∅ for a
sufficiently largen and allm ≥ n.

Let Q = T \ cl Z andR = T \ {x}. Wehave((r → q) → r) [ Q, R] = int (cl (R \
Q) ∪ R) = int (cl Z ∪ R) = T. Hence

T |= Ep H[ Q, R]. (1)

Of course,R ⊆ H[ P, Q, R] for all P. Suppose thatT |= ∃p H[ Q, R], that is, x ∈
∃p H[ Q, R]. Then, for someP,

x ∈ int (cl (R \ F[ P, Q] \ G[ P, Q]) ∪ R),
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whence

x ∈ cl (R ∩ cl (int (−P) \ Q) ∩ cl (P \ Q))

= cl (R ∩ cl (int (−P) ∩ cl Z) ∩ cl (P ∩ cl Z)).

Let Z0 = int (−P)∩ cl Z andZ1 = P ∩ cl Z. Wehavex ∈ cl (R ∩ cl Z0 ∩ cl Z1). But,
sinceZ0, Z1 ⊆ cl Z, wegetZd

0, Zd
1 ⊆ Zd = {x} and, sinceZ0 ⊆ int (−P) andZ1 ⊆ P,

we getZ0 ∩ Z1 = ∅. Hencex ∈ cl (R ∩ {x}) = ∅, acontradiction. Thus,

∃p H [ Q, R] = R, (2)

and consequently, by (1) and(2) , T �|= Ep H → ∃p H. �
Now, to give the final solution of our problem, we turn to the case of the language of
two variables. However, as in Theorem3, in this case, we shall restrict to the class of
dense-in-themselves metric spaces.

Theorem 7 For every dense-in-itself metric space, the topological interpretation
of the existential quantifier does not coincide with Pitts’ interpretation when re-
stricted to the language of two variables.

Before we prove Theorem7 let us state a useful property of dense-in-themselves met-
ric spaces (see [16]). Recall that a subsetX of a topological spaceT is calleddense
if cl X = T; X is calledregularly open, provided int clX = X.

Lemma 8 Every regularly open subset of a dense-in-itself metric space contains a
proper dense subset which is a union of two disjoint regularly open sets.

Proof (sketch): Let W be a regularly open subset of a dense-in-itself metric space
T. Consider two cases: (1) every point of the setW has a countable basis of closed
and open neighborhoods in the relative topology ofW; (2) some pointx ∈ W does
not have a countable basis of closed and open sets.

Case 1: Let x ∈ W and let{Yn : n ≥ 1} be a countable basis of closed and open
neighborhoods ofx. We may assume that· · · � Yn+1 � Yn � · · · � Y1. In this case

we defineY0 = W \ Y1 andU =
∞⋃

n=0
(Y2n \ Y2n+1), V =

∞⋃
n=0

(Y2n+1 \ Y2n+2).

Case 2: Let U be an open neighborhood ofx such thatU is regularly open but not
closed. Then we defineV = W \ cl U.

In both cases, one can show thatU andV are regularly open andU ∪ V � W ⊆ cl (U ∪
V ), that is,U andV satisfy the required property. �
Proof of Theorem 7: The idea of the proof is to construct both the setsQ and R,
which occur in the proof of Theorem6, using only one set. Recall that we wantQ to
beT \ Z for somex ∈ T andZ ⊆ T such thatx �∈ Z, Zd = {x}, andR to beT \ {x}.
Let T be a dense-in-itself space with a metricρ. We fix x ∈ T and put

R = T \ {x}.
Let {Ln : n ∈ N} be a countable basis (of neighborhoods) inx such that the diameters
of Ln’s, forming a strictly decreasing series, converge to 0 (recall that the diameter of
Ln is defined as sup{ρ(x, y) : y ∈ Ln}, whereρ is the metric of the spaceT).
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We define inductively open setsKn, such that, clKn ⊆ Ln \ Ln+1 and clKn ∩
cl Km = ∅ for all n, m ∈ N, n �= m. It is clear that a construction ofKn’s can be car-
ried out in every metric space (using the fact that the diameters of the setsLn are de-
creasing).

Now, for everyn ∈ N we choose an open setWn that Wn ⊆ cl Wn ⊆ Kn. We
can assume thatWn’s are regularly open, that is,Wn = int cl Wn for all n ∈ N. By
Lemma8, for everyWn there is an open and dense proper subset which is the union
of two disjoint regularly open sets. Let, for everyn ∈ N, Un andVn be such that

Un �= ∅ �= Vn, int cl Un = Un, int cl Vn = Vn,

Un ∩ Vn = ∅, Un ∪ Vn � Wn ⊆ cl (Un ∪ Vn).

For everyn ∈ N we takezn ∈ Un and putZ = {zn : n ∈ N}. Obviously,Zd = {x},
that is,x is the only point of accumulation of the setZ.

Weput
Q = T \ cl Z.

Now we can define
S =

⋃

n∈N

Un \ {zn}.

We show how the setsQ andR can be constructed from the setS. Let

F(s) = ¬¬s ∨ (¬¬s → s), G(s) = ¬¬s → s.

Note that� G → F and� (F → G) ≡ G hence

� (F → G) → F. (1)

Weshall show that

F[S] = ¬¬S ∪ (¬¬S→S) = R and G[S] = ¬¬S→S = Q.

First, we show that
cl S =

⋃

n∈N

cl Un ∪ {x}. (2)

Observe that
⋃

n∈N

cl Un ⊆
⋃

n∈N

cl (Un \ {zn}) ⊆ cl
⋃

n∈N

(Un \ {zn}) = cl S.

Moreover,x ∈ cl S, since an arbitrary open neighborhood ofx contains all but finitely
many setsLn ⊇ Uzn \ {zn}; hencex ∈ cl

⋃
n∈N

(Un \ {zn}). To prove the converse in-

clusion, assume thaty �∈ ⋃
n∈N

cl Un and y �= x andY is an arbitrary neighborhood of

y. Then, for a sufficiently largen, Lm ∩ Y = ∅ for all m ≥ n, and consequently
Um ∩ Y = ∅, hencey �∈ cl

⋃
n∈N

Un.

By (2) weget¬¬S = int cl S = int (
⋃

n∈N

cl Un ∪{x}). Note that every open neigh-

borhood ofx contains all but finitely many setsLn; hence, sinceVn ⊆ Ln, we get
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x ∈ cl
⋃

n∈N

Vn. But, since
⋃

n∈N

Vn and
⋃

n∈N

Un are open and disjoint andS ⊆ ⋃
n∈N

Un, we

get cl
⋃

n∈N

Vn ∩ int cl S = ∅. Thus,x �∈ int cl S, that is,

int cl S = int
⋃

n∈N

cl Un.

Let y ∈ int
⋃

n∈N

cl Un. We show, thaty ∈ ⋃
n∈N

Un. Obviously, y ∈ cl Wn ⊆ Kn, for

somen ∈ N. If y ∈ cl (Kn \ cl Wn), then every neighborhood ofy would contain ele-
ments of the setKn \ cl Wn which is disjoint from

⋃
n∈N

cl Un; hence,y could not belong

to int
⋃

n∈N

cl Un—a contradiction. So,y ∈ int (−Kn ∪ cl Wn), and becausey ∈ Kn, it

implies y ∈ int cl Wn = Wn. By the assumption, all the setsUn andVn are pairwise
disjoint, regularly open, andUn ∪ Vn ⊆ Wn ⊆ cl (Un ∪ Vn) for all n ∈ N. Therefore,
for all n ∈ N, (cl Un \ Un) ∩ Wn = (cl Vn \ Vn) ∩ Wn. Now, sincey ∈ Wn, we have
y ∈ cl (Un ∪ Vn) = cl Un ∪ cl Vn. Observe thaty �∈ cl Un \ Un, because otherwise it
would contradict with the fact thaty ∈ int

⋃
n∈N

cl Un. Moreover,y �∈ cl Vn. Indeed,

y �∈ Vn sinceVn ∩ cl Un = ∅, and y �∈ cl Vn \ Vn because otherwise we would have
y ∈ Wn ∩ (cl Vn \ Vn) = Wn ∩ (cl Un \ Un) and hencey ∈ cl Un \ Un which, as we
have shown, is impossible. Consequently,y ∈ Un. And hence

¬¬S = int cl S =
⋃

n∈N

Un ⊇ Z. (3)

Observe that

G[S] = ¬¬S→S = int (−
⋃

n∈N

Un ∪
⋃

n∈N

Un \ {zn}) (4)

= int (−Z) = −cl Z = R \ Z = T \ cl Z = Q,

as we need. Hence, by (3) and (4),

F[S] = ¬¬S ∪ (¬¬S→S) =
⋃

n∈N

Un ∪ R \ Z = R, (5)

as we require. Now, we put

D(p, s) = (F(s) → (¬p → G(s) ∨ p → G(s))) → F(s).

Notice that the formulaD(p, s) results in substituting in the formulaH(p, q, r) of
the proof of Theorem6, formulasF(s) for r andG(s) for q, respectively. So, since
Pitts’ quantifiers commute with substitution, we get� Ep D ≡ (F → G) → F. So,
by (1), � Ep D and hence

T |= Ep D. (6)

On the other hand, similarly as in the proof of Theorem6, weshow that

∃p D [S] = F[S] = R. (7)

Finally, by (6) and(7) we getT �|= Ep D → ∃p D. �
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Let us note that the property stated in Lemma8 is not necessary to prove Theorem7.
However, it allows us to consider a relatively simple formula as the counter-example.
On the other hand, in the semantics of upward closed sets in Kripke models there is
asimpler solution. Consider

H(p, r) = (r → (p ∨ ¬p)) → r.

Notice that� Ep H ≡ ¬¬r, but in Kripke models∃p H is not generally equivalent
to ¬¬r. Moreover, the topological space corresponding to a frame of the required
countermodel need not beT1 (the two-element model withr being forced only at the
top node suffices). This, however, does not work when we consider the topological
semantics of dense-in-themselves metric spaces. The following proposition shows
this more specifically.

Proposition 9 The formula ∃p H ≡ ¬¬r is valid in every dense-in-itself metric
space.

Proof: Notice that the formula∃p H → ¬¬r is generally true. So, it is enough to
show that for every open subsetR of a given dense-in-itself metric spaceT,

int cl R ⊆
⋃

{H[ P, R] : P — open}.

Let us fixT with a metricρ and an open subsetR of T. Put Z = cl (int cl R \ R). We
show that there is a setT ⊆ R such thatTd = Z, that is,Z is the set of the accumulation
points ofT . Of course, sinceT ⊆ R, it follows thatT is disjoint fromZ.

Consider the following property which may be possessed by subsetsT of the
setR:

(T ) ρ(x, y) >
1
2
(ρ(x, Z) + ρ(y, Z)) for everyx, y ∈ T, x �= y.

Notice that (T) is afinite property. Hence, by virtue of Tukey’s Lemma, there is a
maximal set (with respect to inclusion) satisfying (T). Fix such a setT .

First we show thatTd ⊆ Z. Take an arbitraryt ∈ Td and supposet �∈ Z.
Then, sinceZ is closed,ρ(t, Z) > 0. Consider the open ballK = {v : ρ(t, v) <
1
3ρ(t, Z)}. By the assumption, we can findx, y ∈ T such thatx, y ∈ K. Thus we have
ρ(t, Z) ≤ 1

3ρ(t, Z) + ρ(x, Z) andρ(t, Z) ≤ 1
3ρ(t, Z) + ρ(y, Z) whence2

3ρ(t, Z) ≤
1
2(ρ(x, Z) + ρ(y, Z)). Hence we get

ρ(x, y) ≤ ρ(t, x) + ρ(t, y) ≤ 1
3
ρ(t, Z) + 1

3
ρ(t, Z) ≤ 1

2
(ρ(x, Z) + ρ(y, Z)),

acontradiction, sincex, y ∈ T .
Now we prove thatZ ⊆ Td. Suppose that there isz ∈ Z andd > 0 such that

the ball L = {v : ρ(z, v) < d} is disjoint fromT . SinceZ ⊆ cl R, there isy ∈ R
with ρ(y, z) < d

4 . Obviously,y �∈ T and sinceT is a maximal set satisfying (T), we
have 2ρ(x, y) ≤ ρ(x, Z)+ ρ(y, Z) for somex ∈ T . Moreover,ρ(x, Z) ≤ ρ(x, z) and
ρ(y, Z) ≤ ρ(y, z) < d

4. Thus

2ρ(x, y) < ρ(x, z) + d
4

≤ ρ(x, y) + ρ(y, z) + d
4

< ρ(x, y) + d
2
,
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which means thatρ(x, y) < d
2 . Hence we getρ(x, z) ≤ ρ(x, y)+ρ(y, z) < d

2 + d
4 < d

which contradicts the suppositionL ∩ T = ∅. So, we haveT ⊆ R such thatTd = Z,
that is, clT = Z ∪ T.

Now considerP = R \ T. Notice that, sinceP = R \ T = R \ cl T , the setP is
open. Moreover,R ∩ −P ∩ cl P = T and, consequently,

H[ P, R] = int (cl (R ∩ −P ∩ cl P) ∪ R) = int (cl T ∪ R) = int (Z ∪ R) ⊇ int cl R.

SinceR was chosen arbitrarily, we getT |= ¬¬r → ∃p H. �
By Proposition9, in the interpretation over any dense-in-itself metric space the for-
mula∃p ((r → (p ∨ ¬p)) → r) is equivalent toEp ((r → (p ∨ ¬p)) → r). (The
same can be asserted of any formula of the form(r → F(p)) → r whereF is an ar-
bitrary monadic formula with� p ∨ ¬p → F.) Again, it contrasts with the case of
topological semantics in general; in particular with the semantics of upward closed
subsets of Kripke models.

Corollary 10 The semantics of upward closed sets in Kripke models differs from
the topological semantics of dense-in-themselves metric spaces when restricted to the
language of at least two variables.

To conclude, we shed some more light on the topological interpretation of intuition-
istic logic. The problem of new intuitionistic operators was investigated by Fried-
man [3], Goad [7], and Kreisel [9]. In [9] an operator∗ defined by means of propo-
sitional quantification as

∗(q) = ∃p (q ≡ ¬p ∨ ¬¬p)

is considered. As Kreisel shows, the operator∗ is not definable by means of
{¬,∨,∧,→} with regard to, for example, topological models. The investigations
are continued in Troelstra [21], Wojtylak [23], and [14], [15], [16]. The main result
of [23] states that when∃pF is interpreted as the disjunction

∨
{F[ p/G] : G – amonadic formula inp},

then the formula∃p (q ≡ F) is equivalent to afinite disjunction of its instances if
and only if (¬p ∨ ¬¬p) → F is not derivable. This result holds not only in the
case of the standard language, but also when we consider the language extended
by some nonstandard operator. In [21], it is shown that definability of the opera-
tor ∗ depends on the topological space considered. Namely, in some spaces, such
as (0,1) and Cantor space, the operator∗(q) is definable by¬¬q while in [0,1]
∗ is not definable with respect to the standard connectives. It should be noted that
� Ep (q ≡ ¬p ∨ ¬¬p) ≡ ¬¬q, so definability of the operator∗ by ¬¬q in a topo-
logical model means that the topological interpretation of∃p (q ≡ ¬p ∨ ¬¬p) coin-
cides with Pitts’Ep (q ≡ ¬p ∨ ¬¬p). This problem seems to require more attention.
Consequently, in [16] the following is proved.

Theorem 11 Let T be a dense-in-itself metric space whose every open and dense
subset is a union of two disjoint regularly open sets. Then all the operators of the form
q �→ ∃p (q ≡ F(p)), where F(p) is an arbitrary monadic formula of the language
of Heyting calculus, are definable in T by means of {¬,∨,∧,→}. Moreover, T |=
∃p (q ≡ F(p)) ≡ Ep (q ≡ F(p)).
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This means that in every sufficiently regular topological space (such as Cantor space
or the reals) Pitts’ quantifierE coincides with the standard quantifier∃ with respect to
all the formulasq ≡ F(p) in question. Note that these formulas involve two distinct
variables and, according to Theorem7, their definability by formulas of Heyting cal-
culus depends on the properties of the space. Particularly, none of the operators of the
form q �→ ∃p (q ≡ F(p)), for F such that� ¬¬p ∨¬p → F, isdefinable in the stan-
dard language in the topological semantics associated with the upward closed subsets
of Kripke models.
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NOTES

1. This fact can also be seen in the following two ways: (i)q is maximal in the Rieger–
Nishimura Lattice onq belowH; (ii) consider a Kripke modelK (on atoms not involving
p) with root b and supposeb � Ap H. We show thatb � q. Add a new rootb′ below
K with the same forcing asb. Sob′ bisimulates withb. Now extend the forcing on the
new model by stipulating thatx forcesp precisely ifx is in the old model, that is,x �= b′.
Sinceb′ bisimulates withb (with respect to the atoms distinct fromp) we have, by the
Shavrukov-Ghilardi-Zawadowski-Visser semantics,b′ � p ∨ (p → q). Henceb � q.

2. One can also use the bisimulation semantics. Consider any Kripke modelK for a forc-
ing not involving p. Multiply K with the modelM on m0, m1, m2 generated bym0 ≤
m1, m0 ≤ m2 andm1 � p. The forcing on the new model, sayN, isdictated by the forc-
ing onK for the variables exceptp and by the forcing onM as far asp is concerned.
It is easy to see thatN is a bisimulation extension ofK. Moreover, forA not involving
p and everyn of N we have:n � A if and only if n � (p → A) ∨ (¬p → A). So, for
every formulaB(q) not involving p and for anyk of the modelK, whenever we have
k � B(q), wealso havek � Ep B((p → q) ∨ (¬p → q)).

REFERENCES

[1] Bull, R. A., “On modal logic with propositional quantifiers,”The Journal of Symbolic
Logic, vol. 34 (1969), pp. 257–63.Zbl 0184.28101 1

[2] Fine, K., “Propositional quantifiers in modal logic,”Theoria, vol. 36 (1970), pp. 331–
46.Zbl 0302.02005 MR 48:5824 1

[3] Friedman, H., “Adding propositional connectives to countable infinitary logic,”Math-
ematical Proceedings of the Cambridge Philosphical Society, vol. 77 (1975), pp. 1–6.
Zbl 0323.02022 MR 50:6786 1

[4] Gabbay, D.,Semantical Investigations in Heyting’s Intuitionistic Logic, D. Reidel, Dor-
drecht, 1981.Zbl 0453.03001 MR 83b:03012 1, 1

[5] Ghilardi, S., and M. Zawadowski, “A sheaf representation and duality for finitely pre-
sented Heyting algebras,”The Journal of Symbolic Logic, vol. 60 (1995), pp. 911–39.
Zbl 0837.03047 MR 96i:03063 1, 1

[6] Ghilardi S., and M. Zawadowski, “Undefinability of propositional quantifiers in the
modal system S4,”Studia Logica, vol. 55 (1995), pp. 259–71.Zbl 0831.03008
MR 96j:03029 1

http://www.emis.de/cgi-bin/MATH-item?0184.28101
http://www.emis.de/cgi-bin/MATH-item?0302.02005
http://www.ams.org/mathscinet-getitem?mr=48:5824
http://www.emis.de/cgi-bin/MATH-item?0323.02022
http://www.ams.org/mathscinet-getitem?mr=50:6786
http://www.emis.de/cgi-bin/MATH-item?0453.03001
http://www.ams.org/mathscinet-getitem?mr=83b:03012
http://www.emis.de/cgi-bin/MATH-item?0837.03047
http://www.ams.org/mathscinet-getitem?mr=96i:03063
http://www.emis.de/cgi-bin/MATH-item?0831.03008
http://www.ams.org/mathscinet-getitem?mr=96j:03029


544 TOMASZ POŁACIK

[7] Goad, C. A., “Monadic infinitary propositional logic: a special operator,”Reports on
Mathematical Logic, vol. 10 (1978), pp. 43–50.Zbl 0424.03029 MR 81e:03024 1

[8] Kaplan, D., “S5 with quantifable propositional variables,”The Journal of Symbolic
Logic, vol. 35 (1970), p. 355.1

[9] Kreisel, G., “Monadic operators defined by means of propositional quantification in in-
tuitionistic logic,” Reports on Mathematical Logic, vol. 12 (1981), pp. 9–15.
Zbl 0464.03051 MR 83a:03011 1, 1

[10] Kremer, P., “On the complexity of propositional quantification in intuitionistic logic,”
The Journal of Symbolic Logic, vol. 62 (1997), pp. 529–44.Zbl 0887.03002
MR 98k:03020 1, 1, 1

[11] Kremer, P., “Propositional quantification in the topological semantics forS4,” Notre
Dame Journal of Formal Logic, vol. 38 (1997), pp. 295–313.Zbl 0949.03020
MR 99d:03015 1

[12] Kremer, P., “Quantifying over propositions in relevance logic: non-axiomatisability of
∀p and∃p ,” The Journal of Symbolic Logic, vol. 58 (1993), pp. 334–49.
Zbl 0786.03016 MR 94f:03024 1

[13] Pitts, A., “On an interpretation of second order quantification in the first order intuition-
istic propositional logic,”The Journal of Symbolic Logic, vol. 57 (1992), pp. 33–52.1,
1, 1

[14] Połacik, T., “Operators defined by propositional quantification and their interpretations
over Cantor space,”Reports on Mathematical Logic, vol. 27 (1993), pp. 67–79.
MR 95m:03015 1

[15] Połacik, T., “Second order propositional operators over Cantor space,”Studia Logica,
vol. 53 (1994), pp. 93–105.Zbl 0790.03005 MR 95f:03011 1

[16] Połacik, T., “Propositional quantification in the monadic fragment of intuitionistic
logic,” The Journal of Symbolic Logic, vol. 63 (1998), pp. 269–300.Zbl 0959.03005
MR 99h:03004 1, 1, 1, 1, 1, 1, 1

[17] Scedrov, A., “On some extensions of second-order intuitionistic propositional calculus,”
Annals of Pure and Applied Logic, vol. 27 (1984), pp. 155–64.Zbl 0569.03026 1

[18] Shavrukov, V. Yu., “Subalgebras of diagonalizable algebras of theories containing arith-
metic,” Dissertationes Mathematicae CCCXXIII, Polska Akademia Nauk, Mathemati-
cal Institute, Warszawa, 1993.Zbl 0803.03044 MR 94h:03131 1

[19] Skvortsov, D., “Non-axiomatizable second-order intuitionistic propositional logic,”
Annals of Pure and Applied Logic, vol. 86 (1997), pp. 33–46.Zbl 0873.03007
MR 98g:03019 1, 1

[20] Tarski, A., “Der Aussagenkalk̈ul und die Topologie,”Fundamenta Mathemeticae,
vol. 31 (1938), pp. 103–34.Zbl 0020.33704 1, 1

[21] Troelstra, A. S., “On a second order propositional operator in intuitionistic logic,”Stu-
dia Logica, vol. 40 (1981), pp. 113–39.Zbl 0473.03022 MR 84a:03015 1, 1

[22] Visser, A., “Uniform interpolation and layered bisimulation,” pp. 139–64 inGödel ’96,
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