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Abstract The paper starts with an examination and critique of Tarski's well-
known proposed explication of the notion of logical operation in the type struc-
ture over a given domain of individuals as one which is invariant with respect
to arbitrary permutations of the domain. The class of such operations has been
characterized by McGee as exactly those definable in the langliage Also
characterized similarly is a natural generalization of Tarski's thesis, due to Sher,
in terms of bijections between domains. My main objections are that on the
one hand, the Tarski-Sher thesis thus assimilates logic to mathematics, and on
the other hand fails to explain the notion of same logical operation across do-
mains of different sizes. A new notion of homomorphism invariant operation
over functional type structures (with domail of individuals and{T, F} at

their base) is introduced to accomplish the latter. The main resultis that an oper-
ation is definable from the first-order predicate calculus without equality just in
case it is definable from homomorphism invariant monadic operations, where
definability in both cases is taken in the sense ofittealculus. The paper con-
cludes with a discussion of the significance of the results described for the views
of Tarski and Boolos on logicism.

1 Introduction What follows is the text of an invited lecture that | gave at the Boo-
los Symposium held at the University of Notre Dame April 16-18, 199®&.as very
pleased to be a part of that conference in George’s memory. | valued him as a friend
and as a colleague, for his devotion to logic and philosophy, for his clarity and sense
of purpose, and for his unique combination of seriousness and a dry but charming
wit. He left an important legacy in many ways that was well demonstrated by the va-
riety of talks at the symposium. It was difficult for me to choose a topic to talk about
among our areas of mutual interest, but | finally settled on the one that I think was
most fundamental to George’s thought, at least since the mid-1980s.

| have been ruminating for the last few years about the perennial problem of the
precise demarcation of logic—wondering if it is possible to arrive at such a divid-
ing line at all—and that is what is being chewed over here. If you get the feeling
that | don’t have a settled view of the matter, you are right. But—unlike George—I
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have been moving more and more to the position that the classical first-order predi-
cate logic has a privileged role in our thought, and so | have been looking at various
arguments which justify or challenge that position. Surely some, if not much of this
is familiar to the reader, and | apologize for that; but there are new things to say, and
they have to be related to what isn’t néw.

The immediate stimulus for these ruminations was the article by McGee in
the 1996Journal of Philosophical Logic, entitled “Logical operations’f5]. What
McGee did there was provide a complete characterization of the proposal—in terms
of permutation invariant operations—made by Tarski in his posthumous publication
“What are logical notions?” that appeared ten years eali@{summarized in Sec-
tion |Z|be|ow). Very briefly, if Tarski’'s proposal is accepted, McGee's work (de-
scribed in SectioB) shows that the logical operations are exactly those definable in
the full infinitary languageLo. .2 Since this result struck me as blatantly implau-
sible (for reasons given in Secti@), | began to examine the proposal to see why
it goes so far afield from what | would have expected, and then | tried to modify
it in a way that would come closer. Part of what is presented here is devoted to a
new approach in terms of homomorphism invariant operations over functional-type
structures (Sectidalbelow) which is somewhat in the spirit of Tarski’s basic setup,
but gives quite different answers. The main result is that an operation is definable
from the first-order predicate calculus without equality just in case it is definable from
homomorphism-invariant monadic operations, where definability is taken in the sense
of the A-calculus. Whether that (or any other invariance notion) can be justified on
fundamental conceptual grounds is another matter, certainly in need of pursuit. Sec-
tion[Epresents certain arguments in its favor, but no principled defense is attempted
here. The paper concludes in Secfigwith a discussion of the relation of this work
to Tarski and Boolos on logicism.

| do not plan to go into the details of McGee’s work, which is faultless in its
execution. It is nothat that is at issue; rather it isow to formulate the conceptual
problem raised by Tarski which should be the center of our attention. Now, one may
well ask why that even matters. After all, we have a plethora of interesting logics
suited to a variety of purposes in mathematics, philosophy, linguistics, and computer
science (and perhaps other fields), and it may seem perverse to try to single out just
one of these as thaly one deserving the unqualified name ‘logic’. Well, clearly one
difference which that would make concerns the logicist program, which stands or falls
according to the answer; and, as already noted, | take that up in the conclusion of the
paper. | believe another, more important, motivation is to contribute, if possible, to
explanations of “how the mind works.” Conversely, one may try to single out one
logic from some answer tinat question, not on the basis of how men actually reason
but how they strive to do so. A quotation from Fregélundgesetze is apropos: he
said that the laws of logic are “the most general laws, which prescribe universally the
way in which oneought to think if one is to think at all” (italics mine). In any case,
my ideas in that direction are very preliminary, and | do not try to develop them here
at all.

As traditionally defined, “logic is concerned with the principles of valid infer-
ence” (Kneale and Knealed], p. 1), or as “the science that investigates the principles
of correct or reliable reasoning” (Random House Unabridged), and so on, but such
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definitions leave wide open the exact scope of our subject. Namiedy,are the ba-

sic notions with which this science deals—that is exactly Tarski’s question—ahdw
are the principles of inference featuring these notions to be described? Now there is
immediately a subsidiary methodological question to be raised. Nameliich of
the following terms is an answer to be sought: model-theoretic (or set-theoretically
semantic), proof-theoretic, constructive, or still other? Not surprisingly, Tarski's ap-
proach is entirely within a semantic framewdrkloreover, he does not ask, “What is
alogical inference?” in the sense of “WHatmal rules of inference are justified log-
ically?” For—in view of his famous article “On the concept of logical consequence”
[37—that is the wrong question to ask, or at least it gives misleading emphasis to
the syntactic side of logic. Simply, according to his 1936 analysis, “The sentence
follows logically from the sentences of the clalssif and only if every model of the
classK is also a model of the senteng€ So, | begin by following Tarski down the
path of his half-century later publication.

2 Tarski on logical notions The circumstances of the posthumous publication,
edited by Corcoran, are described in the editor’s introduction thdésjo Except

for minor editorial corrections and amplifications by bibliography and footnotes, it
reproduces a typescript for a lecture that Tarski gave—under the same title as that of
the paper, “What is a logical notion?”—at Bedford College in London in 1966 and
again at SUNY Buffalo in 1973. Tarski asked Corcoran to edit it for publication, but
that was only a year before his death in 1983, and he had no further input to its final
form.

Tarski's explication in that paper of the concept of logical notion is by an exten-
sion to the domain of logic of Klein'Brlanger Programm|[L7] for the classification of
various geometries according to invariants under suitable groups of transformations.
Thus, for example, the notions of metric Euclidean geometry are those invariant un-
der isometric transformations, those of nonmetric Euclidean geometry are those in-
variant under similarity transformations, those of “descriptive” geometry under affine
transformations, those of projective geometry under projective transformations, and
so forth. In more modern structural terms, such groups of transformations are simply
determined as the automorphisms of structures in a given similarity iKleessd the
notions appropriate to the part of mathematics encapsulatédhire then just those
invariant under all such automorphisms. Thus, for example, algebra may be consid-
ered as the study of notions invariant under automorphisms of such structures as rings,
fields, and so on, while topology may be considered as the study of notions invariant
under (auto)homeomorphisms of topological spaces. Now, Tarski's Kleinean-style
explication of logical notions simply takés to be the collection oéll structures of
classes and relations of finite type over a basic domain of individuals My, and the
associated transformations to be just those induced at higher types by arbitrary per-
mutations ofMg.°

The following spells this out somewhat more precisely (that was not done in
Tarski's lecture). First, generafimite relational type symbols t from the type sym-
bol 0 by successive formation ef= (t1, ..., 75). Then associate with each such
T adomainM,, beginning with an arbitrary clasély of “individuals” at type 0, by
taking M. for t = (71, ..., 7n) to consist of all subrelationR of M, x --- x M.
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In particular, whem = 1, M; is just the class of all subclassesMf,. The structure

M = (M,) is taken to consist of all the domaii, with the membership relatiors,

for each typer. Now, every permutatiom of Mg induces in a natural way a permu-

tation of eachM; in such a way as to preserve the membership relation at that type.

According to Tarski’s explication, by lgical notion associated wittM is meant a

member of one of thd/, which is invariant under every such induced permutation.
In his lecture, Tarski gave several simple examples of logical notions in this

sense, where bindividual is meanta member of Mg:

(i) No individual is a logical notion, assuming there are at least two individuals.

(i) The only classes of individuals which are logical are the empty class and the
universal class.

(i) The only binary relations between individuals which are logical are the empty
relation, the universal relation, the identity relation, and its complement.

(iv) Atthe nextlevel, thatis, classes of classes of individuals, Tarski mentioned as
logical notions those given by cardinality properties of classes, and says that
“the only properties of classes (of individuals) which are logical are properties
concerning the number of elements in these classes. That a class consists of
three elements, or four element. .that it is finite, or infinite—these are log-
ical notions, and are essentially the only logical notions on this level.”

(v) Finally, among relations between classes (or individuals) Tarski pointed to sev-
eral which are interesting and “well known to those of you who have studied
the elements of logic” such as “inclusion between classes, disjointness of two
classes, overlapping of two classes,” and so on. He continued: “all these are
examples of logical relations in the normal sense, and they are also logical in
the sense of my suggestion.”

Tarski did not attempt to give examples of logical notions in higher types than those
in (iv) and (v) in his lecture, nor did he raise the question of characterizing the logical
notions there. This is understandable in view of the general audience to which it was
addressed. Note that he thus did not go beyoniitype level 2 in his illustrations,
where

lev(0) =0 and lev(ty,..., n) = max(lev(zy),...,lev(th)) + 1.

Before going into McGee’s characterization, | want to say something about the sig-
nificance of Tarski’s proposal as it relates to the background in his own work. In his
1936 paper with Lindenbaum, “On the limitations of the means of expression of de-
ductive theories,” the first theorem stated is that every relation definable in the simple
theory of types is provably invariant under any permutation of the domain of individ-
uals (Lindenbaum and Tarsk(], p. 385 in B8]). Next, in his 1936 article “On the
concept of logical consequence,” Tarski pointed out the following problem concern-
ing his model-theoretic explication of the concept at issue.

Underlying our whole construction is the division of all terms of the language
discussed into logical and extra-logical. This division is certainly not quite ar-
bitrary. If, for example, we were to include among the extra-logical signs the
implication sign, or the universal quantifier, then our definition of the concept of
consequence would lead to results which obviously contradict ordinary usage.
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On the other hand, no objective grounds are known to me which permit us to
draw a sharp boundary between the two groups of terms. It seems to be possible
to include among logical terms some which are usually regarded by logicians
as extra-logical without running into consequences which stand in sharp con-
trast to ordinary usag. . . Inorder to see the importance of this problem for
certain general philosophical views it suffices to note that the division of terms
into logical and extra-logical also plays an essential part in clarifying the con-
cept ‘analytical’. (B7], as translated ifdg], pp. 418-19)

At the time, Tarski concluded his discussion of this problem on a pessimistic note, en-
tertaining the possibility that there would never be definitive results settling the exact
boundary between logical and extra-logical notions. It was exactly this problem to
which the Bedford College lecture was addressed, thirty years later. We shall return
to how this affected his view of what mathematical notions are analytical in the final
section below.

The idea of permutation invariance as a criterion for logicality in a semanti-
cal setting is a prima facie natural one, and has been widely influential, if not ex-
plicitly following Tarski's thesis, at least implicitly. Some sample references are: in
model theory, Mostowsk[Z8], Lindstrom [Z1], and various of the chapters in Bar-
wise and Fefermaig]; in linguistics, Barwise and Coopd2]} Keenan and StaiH],
van Bentheml{Z], Keenan[[3]; and in the philosophy of logic, Peacock&], Mc-
Carthy 4], Simons[B6], Sher B5], and various of the papers #84]. In particular,
Tarski's thesis is embraced wholeheartedly (with a natural modification to invariance
across bijections between domains, as will be discussed below) in Sher’s book just
referred to.

3 McGee’s characterization of logical operationsWhat is characterized iR are
those operation®((A)i-,) = B on sequences of relation’s between individuals
to relationsB, which are invariant under arbitrary permutations of the univége
of individuals. McGee allows the number of argument plgees O to be an infinite
ordinal, and each is allowed to have an infinite number of argument places. To sim-
plify matters technically, he takes the relations in question to be subsets of Mé set
of all variable assignments: V — Mg, whereV is a nonempty set of variables. For
n > Olet (n) be the type oh-ary relations orMy, sothatr = ((ny), ..., (Ny)) is the
type ofk-ary relationsP between relation&y, ..., Ry, whereR; is nj-ary. Tarski’'s
notion of logical relation of type may be reduced to McGee’s notion of logical opera-
tion, as follows. Given a sek of variable assignments and a natural numberwith
O0<n<card(V),letAlnbethesetofag, ..., a,_1) suchthatthereisa: V — My
with o (X)) = a;, for eachi < nando € A, wherex,, ..., X,_1 are the firsh variables

of V. Now assume eaah < card(V). Then takeOp to be the operation given by

o€ Op(Aq,..., A iff the relationP holds betweeriA1|n, ..., Ang).

In other words, the value dDp at a sequence of sets Wfassignments is the uni-
versal set olV-assignments iP is true of the associated relations, and is the empty
set otherwise. ThefR is invariant under arbitrary permutations of the basic domain
(in Tarski’'s sense) just in cag@p is invariant under arbitrary permutations of it (in
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McGee’s sense). In his main characterization theorem, McGee considers only oper-
ationsO of type level 2, but later describes how to extend his result to operations of
higher type level.

The formulas of the languagé,, - are generated from given atomic formulas
by the operations of negation, arbitrarily long conjunctions and disjunctions, and ar-
bitrarily long universal and existential quantifier sequences (cf., e.g., K&fp An
operationO on a sequencé = (A;)i-, of subsets oM(\)’ is said to bedefinablein
L.~ if there is a formula of that language with basic relation symbeisaindV-ary
A; for each(i < y) such that

(Mo, A) = ¢[o] iff o€ O(A),

where each symbd; is interpreted by the sed; for each(i < y) in the structure
(Mo, A).

Theorem 3.1 (25, p. 572) Oisinvariant under arbitrary permutations of the do-
main of individuals if and only if O isdefinablein Ly, oo.

It is straightforward that every., ~, definable operation is invariant under arbitrary
permutations of the domain of individuals. The idea of the proof in the other direction
is to lay out all possibilities for the operati@as its arguments range over all possible
A. This can be achieved using a 8&tof variables containing/, with card (W —

V) =« + 1. EnumeratéMp as{s, : o < k} andW — V as{X, : « < «} U {y}. Thex,

act as formal surrogates of teg Lety A be the diagram oA under this association
together with—(x, = Xg) for eacha < g, and then take a to be the formula which
says that whenevex, (« < k) are such thag 5 holds and eaclin the domain is one
of thex,, then (usingV) the formal expression ef € O(A) holds. Finally, takep to

be the conjunction of all thg A over all sequenceA of the considered kind; note that
this final conjunction is of cardinality at least,2nd the longest quantifier sequences
in ¢ are of length at least.

McGee says (p. 575), that this theorem “gives us good reason to believe that the
logical operations on a particular domain are the operations invariant under permu-
tations.” It is natural, though, not to tie logical operations to specific domains, and
so he goes on to consider operati@esoss domains which for each set of individ-
uals Mg turn sequences of subsetsA; of V-assignments itMg into a subseB of
V-assignments in the given domain. Then he argues (rightly, in my view), that “in
order for an operation across domains to count as logical, it is not enough that its re-
striction to each particular domain be a logical operation.” For example, McGee de-
fines an operation of “wombat disjunctiot)iy across domains such thatelongs
to A; Uw Ay if and only if there are wombats in the universe of discouvkeand
o € AL U Ay, or there are no wombats in the universe of discoursecand®; N A,.
Clearly wombat disjunction is not a logical operation, though on each domain it is
invariant under permutations. Another example given is that of “affluent cylindrifi-
cation” $(A) which holds in a domain just in case some rich person belonds to
again this is not a logical operation, but meets the permutation invariance condition
on “upper-crust domains” in which every person is rich. However, on an equinumer-
ous domain containing at least one rich and one poor person, the operation $ is not
permutation invariant by taking to be a singleton of one of these.
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Thus McGee is led to consider an extension of Tarski's thesis proposed by Sher
according to which

an operation across domains is logical if it is invariant under every bijection
between domains.[ff], pp. 53 ff.)

He refers to this as thiarski-Sher thesis, and | shall follow him in that, with one ex-
ception. As already noted, Tarski is apparently willing to consider logical operations
at any level of the type hierarchy, while Sher explicitly restricts herself to operations
of type level< 2 ([35], p. 54, condition A), so it is only for the latter that their names
are legitimately paired. The following is then a corollary of the result above.

Theorem 3.2 ([25], p. 576) An operation O across domainsisa logical operation
according to the Tarski-Sher thesis if and only if for each cardinal « # O thereisa
formula ¢, of L~ Which describes the action of O on domains of cardinality «.

More specifically, one can takg to be the formula constructed for the proof of The-
oremB3_Ilfor any domainMy of cardinalityx. Whatever suchy, is taken, in order to
obtain a single definition of the operati@across domains, one must take something
like the disjunction over the class of all nonzero cardirad§the statement that there
are exactlyc elements in the domain and that holds. This goes beyond,, », as
ordinarily conceived.

4 Critique of the Tarski-Sher thesis McGee’s results lay bare the character of log-
ical operations according to the Tarski-Sher thesis. | have, accordingly, three basic
criticisms of it.

1. The thesis assimilates logic to mathematics, more specifically to set theory.

2. The set-theoretical notions involved in explaining the semantids.0f, are
not robust.

3. No natural explanation is given by it of what constitutesdree logical op-
eration over arbitrary basic domains.

The first of these, | think, speaks for itself, given McGee’s results, but it will evidently
depend on one’s gut feelings about the nature of logic as to whether this is consid-
ered reasonable or not. For Sher, to take one example, this is no problem. Indeed,
she avers that “the bounds of logic, on my view, are the bounds of mathematical rea-
soning. Any higher-order mathematical predicate or relation can function as a logical
term, provided it is introduced in the right way into the syntactic-semantic apparatus
of first-order logic.” (B5, pp. xii—xiii) What that “right way” is for her, is spelled

out in a series of syntactic/semantic conditions AfE|[pp. 54-55), of which the
crucial ones are condition A—that a logical operation is of type-level at most 2—and
E isthe condition for invariance under bijections. The paradigms of condition A are
the cardinality quantifiers oBB] and, more generally, the generalized quantifiers of
[23], where the bound variables range over individuals of the domain. But note that
L..o accommodates second-order quantification as a logical operation across do-
mains (in the Tarski-Sher sense) as follows. First, given form@s) ando(x) of

this language, wherX is a second-order variable, lgy{x : 6(x)}) is meant the result

of substituting)(t) for each occurrence of an atomic formala X in . Thus, on a
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domain of cardinality, (VX)y(X) is equivalent to the statemept that there exist
k elementsx, which are distinct and exhaustive of the domain, and are such that

Nec VYV gy = %)

holds. (Again, we require a conjunction of cardinalityi@ this formula.) As a logi-

cal operatiorDQ of type-level 2 across arbitrary domairggX) v ( X) is defined by the
disjunction of all these, over all nonzero cardinals So, from Theorerz 2labove,

the restriction to bound first-order variables is only apparent, and Sher’s condition A
is not set-theoretically restrictive. By a trick similar to the preceding, we can quan-
tify over arbitrary relations on the domain, and then say that they are functions, and so
on. In particular, we can express the Continuum Hypothesis and many other substan-
tial mathematical propositions as logically determinate statements on the Tarski-Sher
thesis. Of course, if one follows Tarski by allowing consideration of invariant notions

in all finite types, the assimilation of logic to set theory is patent on his thesis, without
needing to invoke infinite formulas at all. But insofar as one or the other version of
the thesis requires the existence of set-theoretical entities of a special kind, or at least
of their determinate properties, it is evident that we have thereby transcended logic
as the arena of universal notions independent of “what there is.”

Point 2 is in a way subsidiary to point 1. The notion of “robustness” for set-
theoretical concepts is vague, but the idea is that if logical notions are at all to be
explicated set-theoretically, they should have the same meaning independent of the
exact extent of the set-theoretical universe. For example, they should give equiva-
lent results in the constructible sets and in forcing-generic extensiditels well-
known concept of absoluteness provides a necessary criterion for such notions and,
when applied to operations defined iR, -, considerably restricts those that meet
this test. For example, the quantifier “there exist uncountably mamyould not be
logical according to this restriction, since the property of being countable is not ab-
solute. The study of absolute logics was initiated by Barviideapd is surveyed in
detail in Vaaranen[E1]. One should be aware that the notion of absoluteness is it-
self relative and is sensitive to a background set theory, hence again to the question
of what entities exist. For examples of absolute operations which are patently set-
theoretical yet come out as logical on the Tarski-Sher thesis, see the just-mentioned
reference.

For me, point 3 is perhaps the strongest reason for rejecting the Tarski-Sher the-
sis, at least as it stands. It seems to me there is a sense in which the usual operations
of the first-order predicate calculus have gaeme meaning independent of the do-
main of individuals over which they are applied. This characteristmisaptured
by invariance under bijections. As McGee puts it “the Tarski-Sher thesis does not
require that there be any connections among the ways a logical operation acts on do-
mains of different sizes. Thus, it would permit a logical connective which acts like
disjunction when the size of the domain is an even successor cardinal, like conjunc-
tion when the size of the domain is an odd successor cardinal, and like a biconditional
at limits” (25, p. 577). In the end (though perhaps more for other reasons), McGee
accepts the Tarski-Sher thesis as a necessary condition for an operation to count as
logical, but not a sufficient one. | agree completely, and believe that if there is to be
an explication of the notion of a logical operation in semantical terms, it has to be one
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which shows how the way an operation behaves when applied over one dbfpain
connects naturally with how it behaves over any other donvjn The concept of
homomorphism invariant operation studied in the next section is proposed as a first
step in that direction.

5 Homomorphism and similarity invariant operations It is useful here to expand
the relational finite type framework of Sectiffito a functional finite type frame-
work, where we add a basic type symimfor Booleans (that is, truth value$).
Thefunctional finite type symbols (t.s.) are generated from 0 abdy formation of
t=(11,...,Tn — o) Whenever, ..., tp, ando are t.s. By dunctional type struc-
ture M = (M;) over My is meant one wherl, = {T, F} (or {1, 0}), and for each as
above M, consists of functions frorM,, x - - - x M, to M,. M is said to benaximal

if for each suchr, M. is the set oflll such functions. For simplicity, we shall assume
that M is maximal in the following, though for most purposes weaker assumptions
(including closure under definability in the typg&ecalculus) suffice. The relational
type symbolgzy, ..., 7,) are identified hereditarily with theropositional function

type symbols (t1, ..., Tn — b), and subrelations oM., x --- x M, are identified
with their characteristic functions. In the following we shall writéor (z4, ..., tn),
Mz for My, x -+ x Mg, andXfor (X1, ..., Xn) iIn Mz.

Definition 5.1 SupposeM = (M;) andM’ = (M) are two functional type struc-
tures overMy and M), respectively. By aimilarity relation ~ betweenM and M’
we mean a collection of relations, for each t.sz such that

(i) Yxe Mo Ix' € My (x~ X) & VX' € Mj3Ix e Mg (X~ X)),
(i) Yxe Mp VX' e M{[x~X <= x=X], and
(iii) for each t=(r — o) andp e M; andp’ € M. we have

p~p & VXe MVX € M X~ X = p(X) ~ p'(X) ].

(Note that we have dropped the type subscripts to the higher type relatiossce
these are determined by the context.) Relations satisfying (iii) only are ¢a¢jmdl
relations[sic!] in the typedi-calculus literature (cf., e.g., MitchelPE], pp. 416 ff.).
As with the latter, each similarity relation is completely determined-gysing (i)
and (iii).
When one has a map: My — M( which isonto, the relation
(iv) x~g X iff h(x) =X

determines a similarity relation betwedhandM’. We shall callh ahomomorphism
from M onto M’,” thoughh itself is only partially extendible as a mapping to higher
types. For example, if = (0" — b) andp € M; andp’ € M., then

(v) p~p iff VX, X (h(X)=X = p(X) = p'(X)).
Then for eacltp there is at most ong’ with p ~ p’, and we can writé(p) = p’ when
this is defined; namely, if we have(X) = p(Y) wheneverh(X) = h(y). Trivially,

there is for eactp’ a p with h(p) = p’ in this sense. Whep ~ p’, we can think of
p’ as being obtained from by shrinking along h.
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Definition 5.2 An operationO is of type t across domains if for each functional
type structureM we have an associat@!" € M,. Ois said to besimilarity invariant
if for eachM, M’ and similarity relation~ betweenM andM’ we haveOM ~ OM’,
It is said to behomomor phisminvariant if this is only required to hold for similarity
relations determined by homomorphisms frdrnto M’.

It seems to me that there is a natural sense in wipehations O invariant under ho-
momor phisms are logical form preserving, if one ignores equality, at least for propo-
sitional operation® of type level 2 with proposition function arguments. This means
that wheneveh is a homomorphism fronM onto M’ and argumentg; are shrunk
to p/ alongh, thenOM (py, ..., pn) = OM'(py, ..., ).

To get an idea how much closer homomorphism invariance brings us to defin-
ability in first-order logic, consider the following three negative examples.

Example 5.3 (Equality of individuals) This is given by the operatbrof type
(0? — b) defined by

IMx,y) =[T if x=y, elseF].
Clearly | is not homomorphism invariant.

Example 5.4 (Cardinality quantifiers) For each nonzero cardinal numbethe
quantifierg, of type ((0 — b) — b) is defined by

EM(p) =[ T if there are at least distinctx such thatp(x) = T, elseF ].
None of the operatorEk, is homomorphism invariant for > 2.

Example 5.5 (Internal function quantifiers) The quantifig for universal second-
order function quantification of typg (0 — b) — b) — b) is defined forf of type
((0— b) — b) by

AM(f) =[Tif (Vvqe Mosp) f(q) =T, elseF ].

If A were homomorphism invariant so also would be the following operafion
defined from it in combination with the operations of the first-order predicate cal-
culus, which (as we shall show latea)e homomorphism invariant.O is of type

((0 - b) — b), andOM(p) = T if the extensionp of p, {x| p(x) = T }, isthe
intersection of all the proper extensiogef p, that is, of all thosey with p C § for
which 3y(q(y) = T and p(y) = F); otherwiseOM(p) = F. Let Mg contain three
distinct elements, y, andz, and letq(x) = T, q(y) =q(2) = F. LetMj = {x, y} and

g (x) =T, dq(y) = F. Then the homomaorphistm(x) = X, h(y) = h(z) = y sendq

to ', but OM(q) = T while OM'(q') = F. Thus?A is not homomorphism invariant.

Now we turn, by contrast, to the familiar operations of the first-order predicate cal-
culus (without equality), denoted PC below.

Example 5.6 (Negation) The operatiol of negation is of typgb — b) and is
defined in eaciM by

NM(p)=[ Fif p=T, elseF].

N is clearly similarity invariant.
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Example 5.7 (Conjunction)  The operatio@ of conjunction is of typgb, b — b)
and is defined in eachl by

CM(p,q) =[Tif p=Tandg=T, elseF].
C is clearly similarity invariant.

Example 5.8 (Existential quantification over individuals) The operatigrof ex-
istential quantification over the domain of individuals is of tyge — b) — b) and
is defined in eaciM by

EM(p) =[ Tif 3xe Mg(p(x) = T), elseF].

E is similarity invariant by the following argument. Suppacsaés a similarity rela-
tion betweenM and M’, and suppose, p’ are of type(0 — b) in M and M’, re-

spectively, withp ~ p’. Thus, whenevek € Mg andx’ € Mg are such thak ~ x’

thenp(x) = p'(xX). If EM(p) = T, then alsoEM (p') = T; for, given anyx € Mg

such thatp(x) = T, by the first similarity condition there existé € M| such that
x~X,sop (X)= p(x) = T. By symmetry, ifEM (p’) = T thenEM (p) = T. Hence
EM(p) = EM'(p)) for all suchp, p’, and soEM = EM'.

Definition 5.9  An operationO is said to balefinable from operations Oy, ..., Ok
if it is given by a definition from them in th&-calculus uniformly over eacM, that
is, if there is a term(zy, ..., z) of the typedi-calculus with constant$ and F,
where eacly; is of the same type a®; andt is of the same type a®, such that in
each functional type structutd, OM =t(OM, ..., OM).8

Itis easily seen that every operation definable in this way from similarity (homomor-
phism) invariant operations is again similarity (homomorphism) invariant. The main
result, Theorerf. 18lbelow, characterizes the operatioDslefinable from the oper-
ations of the first-order predicate calculus PC without equality in terms of those de-
finable from homomorphism invariant operations of monadic type.

We first have from Examplds.6H5.8lthe following theorems.

Theorem 5.10 If Oisdefinable from N, C, and E then O issimilarity invariant.

Theorem 5.11  Every operation O determined by a formula of PC, the first-order
predicate cal culus without equality, is definable from N, C, and E, and henceissim-
ilarity invariant.

Proof: This is illustrated by the operatiod of type (0> — b), (0° — b), 0 — b)
determined by the formubex| P(x, z) — 3yQ(X, v, 2)], which we rewrite as

—3IX[P(x,2) A =3yQ(X, Y, 2)].
Then in eachiV with p of type (0> — b), g of type (0° — b) andzof type 0, we have
OM(p, a,2) = N(E(X.C(p(x, 2), N(E(AY.q(X, ¥, 2)))).

The idea is clear: each time one quantifies existentially over a subformula with re-
spect to a variablg, in the corresponding term one fivsstabstracts with respect 1
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and then applies the operathr The propositional connectives are defined directly
in terms ofN andC. For a general proof one can also make use of Q@EAE yvhich
basically provides a variable-free form of PGdefinable fromN, C, andE (cf. also
van Benthani43], p. 276). Note that only abstraction with respect to individual vari-
ables is here required. O

We cannot expect a simple converse to Thedfeid] as the following counterexam-
ple shows.

Example 5.12 (Wellfoundedness quantifier) The tedt for wellfoundedness of
binary relations between individuals is of typ@ — b) — b). Using N for the set
of natural numbersyV is defined by

WM =[Tif (Vf:N— Mg)@@ne N)r(f(n+1), f(n)) =F, elseF];

that is, WM(r) = T just in case there are no infinite descendirgpquences. Then

W is similarity invariant. To show this, consider any similarity relatierbetween

M andM’ such thatr ~ r’ for r, 1’ of type (0° — b) in M, M/, respectively. Given
f:N— Mo, f': N— Mjdefinef ~ f"if vn(f(n) ~ f'(n")): then by the con-
dition (i) on similarity relationsv f3f/(f ~ ") andvf'3f(f ~ f’). Also, if

f ~ f'thenr(f(n+ 1), f(n)) =r'(f'(n+ 1), f'(n)). It then follows easily that
WM(r) = WM'(r"), asrequired®

As we see next, it is essential in the preceding counterexample that the argument of
W is of the type of relations, or binary propositional functions.

Definition 5.13 Take r for the type(0 — b) of unary propositional functions,
which correspond to monadic predicates. A type (7 — o) is said to banonadic
if o = b (thatis, it is a propositional function) and each argument tiyp® eitherr,

b or 0. 7 is said to bepure monadic if it has the form(z" — b).

Note that the operationd, C, and E are of monadic type, witlt of type (w — b).

Theorem 5.14 Suppose O is of monadic type and is homomorphism invariant.
Then Oisdefinableintermsof N, C, and E.

Proof: Wegive the proof for the case that the type®fs pure monadic; the general
case is obtained by a slight modification to be explained below. In the following, we

shall deal with structuresM, p) wherep = (ps, ..., Pn). In each such structure, the
unary propositional functionp; determine a partition ol whose components are
given by a choice of or F for eachi =1, ..., n. Itisconvenient here to identify

with 1 andF with 0; then each component is identified withmtermed sequende
of zeros and ones, and an individyabelongs to that component just in cgsg/) =
k. Each nonempty component can be shrunk to a single point, and this determines a
homomorphism oM onto M’ sendingp onto p/, and is hence such th@ (p) =
OM'(p"). The behavior of0 is then determined by its behavior on the finitely many
reduced such structur¢dl’, p').

In more detalil, the proof goes as follows. GiveWl, p), let

y=z<= p(y) =p2
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and leth(y) = [y], where [y] isthe equivalence class gfunder the equivalence re-
lation =. Further, let

DM, P)={k| A@y)p(y) =k} and [K]={y|p(y) =k}

Then[[K]] # @ ifand only ifk € D(M, P). Furthermore, if [K]] # @ theny e [[K]] if
and onlyif [[K]] = [y], so the nonempty equivalence classes are the same akjjfire [[
D(M, P). Moreover, ifk I then [K]] N[[1]] = @. So, the imagé/, of Mo underhis
in one-one correspondence WERM, p). Letp'([y]) = P(y) for eachy in Mg; then
by the invariance o under homomorphisms, we ha@ (p) = O™ (p’). Now,
consider any othefM*, p*) with D(M, p) = D(M*, p*). Defining the equivalence
relation and homomorphism @™, p*) just as we did above ofM, ), we see that
its homomorphic image is isomorphic (v’, p’). Hence OM (p) = OM* (p*). This
shows that the behavior @ is completely determined by the s€3% andO~ defined
as follows:

Of={DM, P |OMP) =T}andO ={D(M,p) | OM(P)=F}.

Each of these is afinite set of subsets of the set oftdtrmed sequences of zeros and
ones, say

Ot ={D1,...,Di}andO™ = {Dy41, ..., Dg}.
ThenO is defined in general by

OM(_p): T if DIM,p)=D; forsomei=1,...,r, and
F if DIM,p)=D; forsomei=r+1,...,s °

Finally, given any subsdD of the set of alh-ary sequencesof zeros and ones, the
conditionD (M, P) = D is equivalent to the conjunction of all formulag(p(y) = k)
for kin D and of all formulas-3y(p(y) = k) for k in the complement ob. ThusO
is definable in terms of the operatioNs C, andE; logically speaking, it is given by
a formula of the monadic predicate calculus witmonadic predicate symbols.

Now suppose thaD is a homomorphism invariant operation of ty@e’, 0™—b).
Here we have to show ho®@ behaves on structuréd, p, X) wherex = (X, ..., Xm)-
Again, one forms “diagramsD (M, P, X). This includes the information for eact)
that it is in a unique member of the partition determinedbygnoreover, ifx; € (K1,
then the conditiory( P(y) = k) is superseded bp(xj) = k. The proof then pro-
ceeds as before, and one ends up once more@dafinable fromN, C, andE, cor
responding logically to a formula in the monadic predicate calculus mvtionadic
predicate symbols anoh free variables. The most general case for an operation of
monadic type is that it also contains arguments of typehis simply adds a certain
number of purely propositional arguments, whose truth value is invariant under ho-
momorphisms, and thus do not disturb the proof. O

Theorem 5.15 The operations definable from the operations of the predicate cal-
culus PC without equality are exactly those definable from homomor phisminvariant
operations of monadic type.

Proof: By Theorenf.11] every operation definable from a PC operation is definable
from N, C, andE, each of which is of monadic type and is similarity invariant, hence
is homomorphism invariant. The converse is a corollary of Thedxgm g
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6 Homomorphism invariance as a criterion for logicality, pro and conThe dis-
cussion in this section is divided up according to a series of issues, particularly con-
cerning identity, cardinality quantifiers, higher-order quantification, and the evidence
from natural language. It concludes with a brief pointer to other approaches.

6.1 Isidentity alogical notion? If one is sympathetic to seeking a model-theoretic
characterization of the operations of first-order logic in terms of some invariance con-
dition, there might still be disappointment in—if not opposition to—the use of ho-
momorphism invariance for that purpose, since it excludes the relatbidentity.
Quine, for example, worries over the general issue as to whether identity is to be con-
sidered a logical notion in hiBhilosophy of Logic ([31], pp. 61 ff.). On the one hand,

he says that it “seems fitting” that the predicate=ofs to be counted with predi-
cates such as ande as part of mathematics and not of logic. On the other hand,
he gives three arguments for countiagas part of logic. The first is the complete-
ness of the logic of PC with equality, the second is the “universality®gfandthe

third is the possibility of “simulating”= in a languageL containing finitely many
predicate symbols; by that, he means its explicit definition from those predicates to
satisfy the condition of identity of indiscernibles. The first and third arguments are
irrelevant to a logicality-cum-invariance project, both because of their character and
because they do not treat the operatidndependently of the logical operations of

the first-order predicate calculus without equality. The second argument is perhaps
the most convincing in general terms but does not rely on invariance in the Tarski-
Sher sense per se. In the end, it is the third argument that persuades Quine the most.
“The upshot § . . .that identity theory has stronger affinities with its neighbors in
logic than with its neighbors in mathematics. It belongs in logic. Yet we saw it as a
threat to our structurally conceived definitions of logicalttrut . A reconciliation

is afforded [by the definition of in terms of the other predicates, and then] all laws

of identity become mere abbreviations of logical truths of the purely quantificational
sat . . . Thestructural view of logic is sustained{[], p. 64). However, this is not

an argument in favor of identity as a logical notion in its own right, but rather as a
notion that can be reduced in certain contexts to logical notions.

It is undeniable that the relation of identity has a “universal,” accepted, and sta-
ble logic (atleastin the presence of totally defined predicates and functions, as is usual
in the PC with=), and that argues for giving it a distinguished role in logic even if
it should not turn out to be logical on its own under some cross-domain invariance
criterion, such as under homomorphisms. Of course, even if a form of the latter is
accepted as a criterion for logicality, one is still free to consider the operations which
are definedrom | by those provided in Theorel15] That, of course, buys one the
quantifierskg, for « finite, but not those fok infinite, whose loss is discussed sepa-
rately, next.

6.2 What about the cardinality quantifiers and second-order quantificationt
seems clear to me that the cardinality quantifiergor « uncountable belong to math-
ematics (specifically, set theory) and not to logic; they are all excluded by the homo-
morphism invariance condition, along with tEg for x countable. As just remarked,

the finite ones are recovered once one includes the iddntithe quantifier “there
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exist infinitely many,” fork = X¢ is a borderline case to which intuition and experi-
ence do not provide a clearcut answer as to its status. It can, however, be assimilated
to logical notions under the homomorphism invariance criterion simply by restricting
one’s consideration to those operations which are invariant over infinite doiMgjns
without thereby including th&, for « uncountable. The “completeness” argument
for logicality (suggested by Quine in the case=gffhere gives quite anomalous re-
sults, since one has a complete logic Eyrfor the case that = X1 by the work of
Keisler while, as is well known, there is no such logic for the case thatXy.

| also agree with Quin@, p. 64 ff.) that second-order and higher-order quan-
tification go beyond the bounds of logic. He takes these (famously) to be “set theory
in sheep’s clothing,” and it is certainly true that the understoeahing of such quan-
tifiers depends on what sets exist, or alternatively—if such quantifiers are regarded as
binding predicate variables—of what predicates exist. To putit in other more explicit
terms, that dependence (on what objects exist) certainly holds if second-order logic
is to be more than a two-sorted version of first-order logic and is taken to verify the
principle of existential instantiation in the foraXe(X) — ¢({X: ¥(X)}), which in-
corporates the comprehension principle for sets or predicates. But logic is supposed
to be independent of ontology, and on those grounds, must exclude second-order and
higher quantification. This is evidently a matter of some philosophical controversy,
represented by the articles in the first part of the collecfidh jncluding a defense of
second-order logic by Boolog][1° In any case, | count it as an argument in favor of
the homomorphism invariance condition for logicality that it excludes second-order,
and thence higher-order, quantification, by Exarfipfgbf the preceding section.

6.3 Generalized quantifiers, logical operations, and natural languagin [28]
Mostowski introduced generalized quantifiers as follows (with change of notation
to accord with that used here). A quantifier over a domdinis a functionQM :

£ (Mg) — {T, F} which is invariant under permutations of that domain; given this
invariance condition, it can alternatively be identified with the collectjénC
Mo|QM (A) = T}. A quantifier in general is a functio from domainsVig to quanti-
fiersQM on M. Quantifiers in this sense correspond to operat@os$type (7 — b),

that is, ((0 — b) — b), which are invariant under the similarity relatioh ~ M
given by a permutation of the underlying domain.

Lindstrom [ﬁ generalized considerably the notion of generalized quantifier
as follows. By a relational signature is meant a sequence of natural nukikers
(k, ..., kn). Then a quantifier of signatutleis a collectionK of relational struc-
tures(Mg, Ry, ..., Ry), of signaturel_(, that is, where eacR, is ak;-ary relation on
Mo, such thaK is closed under isomorphism. (0-ary relations are identified with the
truth valuesrT or F.)

Alternatively, a quantifier in Lindstrm’s sense can be identified with a function
Q which assigns to each domadify a function

QY p(ME) x -+ x p(ME) — (T, F},

with QM(Ry, ..., Ry) = T if and only if (Mg, Ry, ..., Ry) € K. SuchQ may be
identified with operation® of type (0 — b), ..., (0% — b) — b) which are in-
variant under isomorphismd = M’.
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The role of generalized quantifiers in natural language (NL) goes back to Mon-
tague[P7], though not explicitly connected with either of the preceding. Barwise and
Cooper B] made the first systematic study of quantifiers in NL in relation to gener-
alized quantifiers in Mostowski’'s sense. They identified NL quantifiers with noun
phrases (NPs) which are, as usual, followed by verb phrases (VPs) to form sentences
(Ss); one way to form an NP is as a Determiner (Det) followed by a common noun
(N). From a semantic point of view items in both N and VP are interpreted as predi-
cates, that is, unary relations, and a Det acts like a Liddsguantifier of signature
(1,1).

Keenan and Weste#sil provide an up-to-date survey of work on general-
ized quantifiers in NL, with a substantial list of references, and my discussion of the
question of which operations should be counted as logical as supported by NL evi-
dence is based on that presentation. Basically three kinds of quanfeaesinitially
considered in]5], denoted by them to be of typd), (1, 1) and((1, 1), 1), respec-
tively. Over each domaiMp, a Q of type (1) acts like a functiorQM : p(Mg) —

{T, F}; typical examples in NL are proper nouns, pronouns, and indefinite pronouns.
We content ourselves with one example for purposes bel@amé like it hot’ ; re-

fer to for many more examples. Quantifiers of tyfe 1) include one-place
Dets which combine with common nouns to form tygeexpressions; semantically,
they mapgp(Mp) into type (1) objects. Here one has, among the many, many ex-
amples, All poets daydream’, andMost linguists are bilingual’. Finally, the two-
placed determiners such a®re. . . than . .. in ‘More studentghan teachers at-
tended the party’, are counted as quantifiers of tifdel), 1); semantically, they

are treated as maps frop(Mp) x g (Mp)into type(1). To relate to our notation us-

ing # = (0 — b), the quantifiers of these three types match up with operations of
type (x — b), (x - (& — b)), and(x® — (7 — b)), respectively; and the sec-
ond and third of these are in correspondence with operations of(tfpe> b) and

(7 — b), respectively. All of these are thusonadic operations and fall under Lind-
strom quantifiers of signature (1, ..., 1). We shall considgoolyadic operations in

NL separately below. My first concern here is how logicality of quantifiers relates to
NL evidence. The criterion taken iig], (p. 8491f.) is, “standardly,” isomorphism
invariance. This would admit all the Mostowski quantifiers in type though most

of those do not occur in everyday NL usage. Keenan and Wesé gt 851) ex-
tend logicality to cover also vague cardinality quantifiers, sucibast a hundred in
‘About a hundred students are in my physics class’, on the grounds that this can be
taken to satisfy the isomorphism invariance condition by specification according to
context. But they go on (p. 852) to point out that, if sensitivity to context is permit-
ted, the isomorphism invariance condition permits implausible Dets to act as logical
operations, for example, a D& which is interpreted asvery in domains of< 10
elements and a®me when there are- 10 elements in the domain. This leads to my
second concern, which was the main point in my critique of the Tarski-Sher thesis,
that it does not explain the idea of same logical operation across all domains. That is
addressed i[5 (pp. 854-55) in terms of a condition callegension (EXT) sug-
gested by van Benthem for typg, 1) quantifiersQ, which is met ifQ"' is an exten-

sion of QM wheneveiviy € Mg. The constraint EXT is an apparent NL universal, as
witnessed, for example, by thvequantifier considered as a typg 1) Det in VAB,
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interpreted asEvery A is a B, which is independent of the universe encompassing
the As and the Bs (classes of supposedly fixed extent). But Keenan and Védsterst
acknowledge (p. 856, n. 10) that the corresponding condition for {jpguantifiers
fails, as witnessed, again byin the formV A, interpreted asEverythingis anA’. It

is here, in my opinion, that homomorphism invariance wins the day as a criterion for
logicality which explains sameness across domains of different sizes.

6.4 Monadic versus polyadic quantification Next comes the question whether NL
evidence supports the view of quantifiers as, first and foremost, monadic operators.
Examples such asviost critics reviewedjust four films, seem to contravene this.
Keenan and Weste#dtl (p. 867 ff.), construe this as a quantif@oof type ((1, 1), 2)

which acts to take monadic predicatésB (critic, film) and a binary relatiomR (re-
viewed) to Q(A, B)(R), whose semantics is

QA.B)(R =T
{ae A:|{be B:R(@ab)}|=4}| > [{ac A:|{be B: R(a b)}| # 4}I.

If construed as a Lindstm quantifieK of type (1, 1, 2), this is essentially polyadic.
But it is shown in[[[5] how to interpret the given example as a kind of composition
of two type (1) quantifiersmost critics and(just) four films, obtained from the type
(1, 1) quantifiersmost andfour with the relation reviewed, as

most critics (four films (reviewed)).

This saves treating the quantifiers involved as monadic, at the price of “lifting” the
type by two abstraction steps with respect to an argument. The form is

Qi(A){ae A: Qa(B)({b: R(a,b)})}).

Thus bothQ; andQ, remain of type(x — (7 — b)), and are in turn themselves ob-
tained by abstraction from operatioBs andO, of type (7? — b). The entire second
half of is devoted to the general question of reducibility of polyadic quantifiers
in NL to monadic quantifiers via suitable lifting by abstraction, and they come to the
following generalization:

Polyadic quantification in natural languages in general results from lifting
monadic quantifiers.[{[], p. 890)

The NP-VP analysis of NL sentences shows the centrality of monadic predicates to
human thought as expressed in natural language. | take the preceding conclusion in
[15], together with the ubiquity of monadic quantifiers of the sort considered in Sub-
sectiorl6.3] as evidence that the same extends to quantifiers in general. Combined
with my argument for homomorphism invariance as a criterion for sameness of op-
erations across domains, this makes it plausible that the class of operations definable
from homomorphism invariamtonadic operations is a natural one to consider from
the point of view of what one might call “natural logic.” If that is granted, then The-
orem5.15kupports my view that the first-order predicate calculus PC enjoys a priv-
ileged role in human thought.

Wehave seen in Examie12bf Sectiors that homomorphism invariance when
applied to essentially polyadic quantifiers, like that for wellfoundedness of a relation,
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takes one out of the PC definable operations. As a purely theoretical question then,
that leads us to the following.

Question 6.1 Is there a natural characterization of the homomorphism invariant
propositional operations in general, in terms of logics extending PC?

6.5 Other approaches? Inthe introduction, | pointed out that a basic methodolog-
ical choice has to be made when considering the question What is a logical opera-
tion? Just to give a brief indication, the following are two quite different approaches,
methodologically, from the model-theoretic ones studied in this paper. They will not
be examined here, but would need to be dealt with in any full scale comparative anal-
ysis of the general problem.

6.5.1 Proof-theoretic The idea here goes back to the work of Gentzen and Prawitz
on systems of natural deduction; namely, that the meaning of a logical operation is
given by its rules of introduction. When that is explained in precise formal terms, one
can then try to see which operations it is possible to characterize in that way. Rel-
evant publications of importance here are Zucker and Tragd&SeiZucker 5],

and Hacking[[1]; compare also Dgen[[L0] for a general discussion and further ref-
erences. The first of these leads exactly to PC.

6.5.2 Holistic By this | mean model-theoretic characterizations of logics as a
whole, without attempting to isolate the separate contributions of individual opera-
tions which may generate them. The first and most famous example of such is pro-
vided by 2], which characterizes first-order logidth equality PC£&) in terms of
general properties of its satisfaction relation. That work was paradigmatic for con-
siderable further research, surveyed in many par{8jofilharp (0] contains an in-
teresting discussion.

7 Tarskionlogicism Inhis“What are logical notions?” lecture that was the starting
point for this paper, Tarski concluded with a discussion of its relevance to the logicist
program:
The question is often asked whether mathematics is a part of logic. Here we are
interested in only one aspect of this problem, whether mathematical notions are

logical notions, and not, for example, in whether mathematical truths are logical
truths, which is outside our domain of discussioBJ[ p. 151)

His answer is, curiously, “As you wish!” The argument is that since “the whole of
mathematics can be constructed within set theory, or the theory of classes,” and since
“all usual set-theoretical notions” can be defined in terms of the relation of member-
ship, the determination comes down to whether membership is a logical Abtion.
But—Tarski goes on—two methods have been provided for the foundations of set
theory following the discovery of paradoxes in that subject, namely, the theory of
types as exemplified iRrincipia Mathematica (which he takes implicitly in unram-

ified form), and axiomatic set theory as formulated by Zermelo et al. If one follows
the method of the theory of types, then memberstigpart of logic, since it is in-
variant under the extension to higher types of any permutation of the domain of in-
dividuals. On the other hand, if axiomatic set theory is followed, there is “only one
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universe of discourse and the membership relation between its individuals is an un-
defined relation, a primitive notion.” On that account, membershipis logical
notion, since as Tarski had shown earlier, there are only four permutation-invariant
relations between individuals, the universal relation, the empty relation, the identity
relation, and its complement. Tarski winds up these considerations as follows.

This conclusion [*As you wish!"] is interesting, it seems to me, because the two
possible answers correspond to two different types of mind. A monistic con-
ception of logic, set theory, and mathematics, where the whole of mathematics
would be a part of logic, appeals, | think, to a fundamental tendency of mod-
ern philosophers. Mathematicians, on the other hand, would be disappointed to
hear that mathematics, which they consider the highest discipline in the world,
is a part of something so trivial as logic; and they therefore prefer a development
of set theory in which set-theoretical notions are not logical notions. The sug-
gestion which | have made does not, by itself, imply any answer to the question
of whether mathematical notions are Iogicﬁ p. 153)

Though Tarski’'s consideration only of the question “whether mathematical notions
are logical notions” and not of “whether mathematical truths are logical truths” ap-
pears at first sight to be a reasonable one, it is not clear that the two can be separated
so neatly. For, any argument one way or the other about the first question must neces-
sarily invoke assumptions about various properties of the notions involved, and those
lead one into the second question. Tarski skirts this by only considering the outer
syntactic form of the two theories for “mathematics” that he compares, namely, the
theory of types and the theory of sets. Moreover, he treats these questions in an all-
or-nothing way, not distinguishing whether some prima facie mathematical notions
(or truths), such as those of arithmetic, might be logical, but not others, such as those
of higher set theory. Indeed, on his thesis, it would appear that at least finite cardinal
arithmetic is in a suitable sense a part of logic. Finally, what is puzzling to me about
his whole discussion is that (as | have argued in Sebfidrarski’s thesis assimilates

logic to a substantial part of set-theoretical mathematics, so that there is a circularity
involved in the question whether mathematical notions are logical. But, | will have
to leave his views of the matter at that.

8 Boolos on logicism Let me turn, finally, to Boolos’s work on logicism, more
specifically on Frege’s program, to the study of which he contributed a number of
incisive essays. | divide that into two parts, the first being his defense, on nominal-
istic grounds via plural quantification, of the second-order logic that Frege used for
his program, and the second being his rejection of Frege’s claim to having reduced
arithmetic to logic, even after his system is reconstructed in a consistent form.

8.1 Sublogicism, second-order logic, and plural quantificationin the Begriffss-

chrift, Frege argued against Kant, as to the necessity of a priori intuitions for mathe-
matics, that there are examples of mathematical judgments that “at first sight appear to
be possible only on the basis of some intuition,” but which can be brought forth in pure
thought “solely from the content that results from its own constitution.” In his “Read-
ing theBegriffsschrift,” Boolos defends a weakened version of Frege’s logicism that
he calls ‘sublogicism: the claim that there are (many) interesting mathematical truths
that can be reduced (in the appropriate sense) to loglt"This depends first of all
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on a careful reading of Frege’s work and secondly on Boolos’s claimed nominalistic
reduction to plural quantification of the second-order quantification iBégeiffss-

chrift. It isthe latter that is my main concern here. That aim was promoted in two
papers, “To be is to be a value of a variable (or to be some values of some variables)”
[5], and “Nominalist platonism*]. These essays have been given serious attention
by a number of philosophers. What Boolos’s claim to have “tamed” second-order
logic in this way comes to is well summarized by Resnik in his critique, “Second-
order logic still wild” [BZ], and there is no point in my repeating it here. His con-
clusion, with which | concur completely, is that no genuine ontological reduction is
obtained thereby. “Boolos is involved in a circle: he uses second-order quantification
to explain English plural quantification and uses this, in turn, to explain second-order
quantification” (BZ], p. 83)12 Whatever the merits of this proposed reduction, even
Boolos does not accept Frege’s logicism in full on its basis, and the reasons for that
are what | turn to next.

8.2 The consistent reconstruction of Frege’s arithmetic and its significancén
his paper “The consistency of Freg&sundations of Arithmetic” [[8], a second-order
system FA is presented and shown to be consistent, unlike that of Fageidla-
gen der Arithmetik, in which the mathematical results of the latter can be redeveloped
exactly following Frege’s work. The system FA has three sorts of variables: first-
order (individual or object) variables vy, z, . . .; unary second-order (or “concept”)
variablesF, G, H, .. .; and binary second-order (relation) variabjes/, . ... There
is only one nonlogical symbol;, relating concept and object variables. The atomic
formulas are of the fornx, xpy, and Fnx. Equality is defined byx = y «—
VF(Fx «<— Fy). Using the binary second-order variables, the equinumerosity re-
lation F eq G between two concepts, G is defined as usual. There are three main
axioms. The first two are the usual comprehension axiom schemes consisting of the
universal closures of

AFVX(FX «— A(X)),

whereA is a formula that does not contaiR"free, and
JpVXVY(Xpy «<— B(X, ),
whereB is a formula that does not contaig’ ‘free. Boolos regards both of these as
logical. The third (nonlogical) axiom is the single sentence
(Numbers) VFIIXYG(Gnx «<— F eq G).

The idea is that the uniqueassociated with- by this axiom is a first-order object
representing the equivalence classrofinder the relation of equinumerosity. If we
denote that unique by N(F), one has, as a consequence of Numbers,

(Hume's principle) VFVG(N(F) = N(G) «— F eq G).

Frege had used axioms for extensions of concepts to define the opéddticuch a

way as to be able to derive Hume’s principle in Section 73 ofdrnisndlagen. Rus-

sell's paradox showed that those axioms are inconsistent. By contrast, Boolos shows
that FA, which does not use extensions, is consistent. Then, following the lead of
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Wright [44], he shows that “once Hume’s principle is provéaege makes no fur-

ther use of extensions” ([B], p. 191). In his discussion of the significance of this work,
Boolos comes to the following provocative conclusiof®, (p. 200): “(1) Numbers

is no logical truth; and therefore (2) Frege did not demonstrate the truth of logicism
in the Foundations of Arithmetic. (3) Logic is synthetic if mathematics is, because
(4) there are many interesting, logically true conditionals with antecedent Numbers
whose mathematical content is not appreciably less than that of their consequents.”
And he adds to these: “(5) Since we have no understanding of the role of logic or
mathematics in cognition, the failure of logicism is at present quite without signifi-
cance for our understanding of mentality.” In view of my working identification of
logic with the first-order predicate calculus PC, | am in agreement with (1) and (2). |
am more or less in disagreement with (3), though | do not have strong feelings about
what being synthetic amounts to. | do not see (4) since all results of mathematics
can be represented as logical consequences of mathematical hypotheses. As to (5), |
agree with the conclusion, but not the premise; it seems to me thab Wavesome
understanding of the role of logic, and to some extent of mathematics, in cognition,
though we surely have much farther to go in both respects. To reiterate my intro-
ductory remarks, | think that the theoretical study of what a logical operation is, and
hence of what the scope of logic is, must be connected with the more empirical study
of the role of logic in the exercise of human rationality. | am optimistic that a better
understanding of either will inform the other.

NOTES

1. Itwasonly atthe Notre Dame conference that | learned of the forthcoming publication by
Harvard Press of a collection of George Boolos'’s papers under thé. i, Logic and
Logic[€]. 1 am not sure | would have selected my own title for this lecture if | had known
that in advance, but having done so, | am glad that they resonate with each other. (The
volume, edited by Richard Jeffrey, with an introduction and afterword by John Burgess,
was laid out by Boolos shortly before his death in 1996; it appeared very soon after the
conference.)

2. Afirst version of the material in this paper was presented at the Sixth CSLI Workshop
on Logic, Language and Computation held at the Center for the Study of Language and
Information at Stanford University on May 30, 1997, under the title “Logical operations
according to Tarski, McGee and me,” and again as the First Spinoza Lecture at the 1997
European Summer School in Logic, Language and Information (ESSLLI '97) in Aix-
en-Provence, on Aug. 13, 1997 under the title “What is a logical operation?” Only the
material of SectionBl]agree with the previous presentations. In particular, the pro-
posed notion of similarity invariant operations introduced in Se@iand the main re-
sults there about it and homomorphism invariant operations are new, as is the discussion
in SectionglandZ] | wish to thank Johan van Benthem for useful early conversations
about this work, and Michael Detlefsen and Geoffrey Hellman for useful comments on
adraft of this paper.

3. McGee also used this result to characterize in related terms a natural generalization of
Tarski’s proposal in terms of isomorphism invariant operations due to B&tfis will
figure more prominently below. Sectififcontains a critique of the Tarski-Sher thesis.

4. Tarski's 1986 paper is reprinted in the interesting and useful collection ShEgio [
which consists of essays largely devoted to the issue of the limits of logic from a seman-
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tic point of view. For example, one of its main sections concerns the question whether
second-order logic is to be counted as logic. Several of Boolos'’s papers on this topic and
on plural quantification are also reprinted there, as well, of coursB].in [

. Tarski seems to have been unaware of the first proposal of that type for logic by Maut-

ner 3. In any case, Mautner pursued the idea in a somewhat different direction from
the one taken by Tarski.

. Other standard notations for base types are Churdbisthe type of individuals and 0

for that of truth values, while in categorial grammar of natural language it is frequent to
usee for individuals and for truth values. On the other hand, it is standard in pure type
theory to take O for the type of individuals, and that dictated my choibd@fBooleans.

. A more appropriate use of mathematical terminology for this notion wousbilmaor -

phism. As only onto homomorphisms are considered here throughout, | did not feel it
was necessary to use that less suggestive terminology.

Alternatively, we can taketo be a term in the typed combinatory calculus generated by
application from the variables, ..., z, the constant§ andF, and the typed combi-
natorsK andSin each appropriate combination of types.

The example oW as an homomorphism invariant operation not definable in PC was
suggested to me by van Benthem. The contrast with the opergiari Exampld5.5]

is interesting; the latter makes use of function quantificatiber nal to M, whereasV/
uses function quantificatioexternal to M.

| shall take up Boolos’s proposed “first-orderization” of second-order logic via plural
quantification in Sectio

It is also curious that Tarski ignores the fact due to his fundamental result on the non-
definability of truth-in-L within a languageL, that the mathematical notion of truth of
sentences of the language of set theory cannot be defined within set theory (and similarly
for type theory).

Another critique which has been brought to my attention is that of Sh&sfo@n the

other hand, as Geoffrey Hellman has written me, Lefi& [pp. 62—71) makes (what

he considers to be) a persuasive case thatievieave an independent grasp of plural
quantification that does not have to be explained in terms of second-order quantifica-
tion, though there appears to be an asymmetry between existential plurals (natural) and
universal plurals (not natural) in English.
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