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Abstract Standard possible world semantics forpropositional modal lan-
guages ignore truth-value gaps. However, simple considerations suggest that it
should not be so. In Section 1, I identify what I take to be a correct truth-clause
for necessity under the assumption that some possible worlds are incomplete
(i.e., “at” which some propositions lack a truth-value). In Section 2, I build a
world semantics, the semantics ofTV-models, for standard modal propositional
languages, which agrees with the truth-clause for necessity previously identi-
fied. Sections 3–5 are devoted to systematic concerns. In particular, in Section
4, Prior’s systemQ (propositional version) is given a TV-models semantics and
proved adequate (i.e., sound and complete) with respect to it.

1 Incomplete worlds and modality Let aproposition be any statement that is ac-
tually true or false,1 and let us say that possible worldw is (i) complete with respect
to proposition p if and only if p is true or false atw, and(ii) complete (tout court)
if and only if it is complete with respect to all propositions. Then by definition the
actual world is complete. And a classical assumption in possible worlds semantics
for propositional modal logics is thatevery possible world is complete.

There are serious reasons to reject that assumption. Consider, for instance, the
proposition ‘Socrates is mortal’, and assume (i) that there are possible worlds where
Socrates does not exist, and (ii) that for ‘Socrates is mortal’ to have a truth-value at a
world, Socrates must exist therein: two defendable assumptions, which jointly entail
that there are worlds where ‘Socrates is mortal’ has no truth-value.

Once it is granted that some propositions have no truth-value at some worlds, it
is still not decided if and how these truth-value gaps are transmitted to more complex
propositions. In this paper, we shall adopt theprinciple of contamination, according
to which if a proposition has no truth-value at a given world, then every proposition
containing the first thereby has no truth-value at that world.

Received July 29, 1999; revised February 14, 2000



PROPOSITIONAL LOGICS 237

Now, the admission of incomplete worlds, together with the acceptance of the
principle of contamination, raises some difficulties when it comes to stating truth-
clauses for necessity operators. Consider first the usual clause:

(1) �A is true iff A is true at every possible world.

Now, letw be a possible world, incomplete with respect to some propositionA. Then,
by the principle of contamination,w is also incomplete with respect toA∨ ∼A. And
since, of course, being true at a world entails having a truth-value at that world, a
consequence of (1) is thatA∨ ∼A is not necessarily true: an unhappy result.

The classical modal logician has a ready-made solution to this problem. It con-
sists in adopting the spirit, not the letter, of the classical truth-clause for the box:

(2) �A is true iff A is true at every complete world.

The problem with this proposal is that, as far as I can see, there is no good reason
to accept the restriction tocomplete worlds. For consider some propositionA. Then
intuitively, if A is necessarily true, thenA is trueat every world where it has a truth-
value—and not only at every complete world. And conversely, ifA is true at every
world where it has a truth-value, then, plausibly,A is necessarily true. (Note here that
if A is true at every world where it has a truth-value, it is true at every complete world,
and so by the classical clause, it is necessarily true.) That is, intuitively the following
biconditional holds:

(3) �A is true iff A is true at every possible world where it has a truth-value.

Let us now turn to possibility. Defining possibility in terms of necessity by the usual
‘♦ =∼ � ∼’, the following truth-clauses can be derived from (1), (2), and (3) respec-
tively:

(1′) ♦A is true iff there is a possible world at whichA is not false;
(2′) ♦A is true iff there is a complete possible world at whichA is true;
(3′) ♦A is true iff there is a possible world at whichA is true.

(The derivations make use of the basic truth-condition for∼ , the fact that being true
at a world entails having a truth-value at that world, and the principle that having a
truth-value at worldw and not being true atw entails being false atw.) Condition (1′)
is subject to the same type of problem as (1). For letw be a possible world, incomplete
with respect to some propositionA. Then, by the principle of contamination,w is also
incomplete with respect toA & ∼A. And once again, since being false at a world
entails having a truth-value at that world, a consequence of (1′) is that♦(A & ∼A)

is true—an undesirable result. On the other hand, condition (2′), just like condition
(2), seems ill-motivated. As to condition (3′), it sounds perfectly right.

Clause (3) is radically different from any usual truth-clause for the box. The dif-
ference is essentially this. LetWA be the set of all possible worlds at which propo-
sition A must be true for�A to be true. According to any classical truth-clause for
necessity,WA = WB for any two distinct propositionsA andB: WA andWB are in
both cases the set of all possible worlds (accessible from the actual world). On the
other hand, according to condition (3), it may be the case thatWA �= WB; it is actu-
ally so as soon as there is some world at which only one ofA or B has a truth-value.
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In Section2below, I build a simple world semantics for standard languages con-
taining a necessity operator which agrees on necessity with condition (3). Systematic
matters and adequacy results are dealt with in Sections 3–5.

2 Modeling necessity LetL be a formal language, whose vocabulary consists in (i)
adenumerable set of propositional letters (the atoms), and (ii) the operators∼ (nega-
tion), & (conjunction), and� (necessity). What counts as aformula of L is charac-
terized in the usual way, and operators∨ (disjunction),⊃ (material implication),≡
(material equivalence), and♦ (possibility) are standardly defined.

There are many ways one can provideL with a world semantics which agrees
with condition (3) of Section1. However, the most straightforward way to modelL
is by means of what I shall callTV-models. TV-models are essentiallyS5-models
without accessibility relation, modified so as to take into account the possibility
of truth-value gaps. More precisely, a TV-model for languageL is a quadruple
〈@,W ,TV, |=〉, whereW is a set, @ is inW , and TV and|= are two-place rela-
tions between worlds and atoms, meeting conditions:

[TV-@] for every atomp, TV(@, p), and
[|=-TV] for everyw in W and every atomp, if w |= p then TV(w, p).

Under the intended interpretation,W is the set of all possible worlds, @ is the actual
world, ‘TV(w, p)’ i sread ‘p has a truth-value atw’, and ‘w |= p’ is read ‘p is true at
w’. The first condition amounts to the claim that the atoms ofL stand for propositions
in the sense introduced at the beginning of Section1 and the second condition speaks
for itself.

Given an arbitrary TV-model〈@,W ,TV,|=〉, we must specify how TV and|=
extend to relations between worlds and complex formulas. The conditions on truth-
valuedness I choose are

[TV . ∼] TV (w,∼A) iff TV (w, A),

[TV . & ] TV (w, A & B) iff TV (w, A) and TV(w, B), and
[TV .�] TV (w,�A) iff TV (w, A).

The idea behind these three conditions is that (i) a complex formula has no truth-value
at a world if some of its subformulas have no truth-value at that world, and (ii) a com-
plex formula has a truth-value at a world if its subformulas all have a truth-value at
that world. (i) is motivated by the principle of contamination and (ii) seems reason-
able.

The clauses for|= are

[|= . ∼] w |= ∼A iff TV (w, A) andw �|= A,
[|= . & ] w |= A & B iff w |= A andw |= B,
[|= .�] w |= �A iff TV (w, A) and for everyv in W such that

TV(v, A), v |= A.

For an arbitrary TV-model we then have

@ |=∼A iff @ �|= A;
@ |= A & B iff @ |= A and @|= B;
@ |= �A iff for every w in W such that TV(w, A),w |= A.
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The clauses for∼ and & are standard and the condition for� is as foreshadowed.
Wealso have, for every worldw and every formulaA,

1. TV(@, A);
2. if w |= A then TV(w, A);

3. TV(w, A) iff w |= A or w |=∼A;

4. w |= ♦A iff TV (w, A) and for somev in W , v |= A;
5. @|= ♦A iff for somev in W , v |= A.

Let us turn finally to validity. FormulaA will be said to bevalid in TV-model M if
and only if for every worldw of M at whichA has a truth-value,A is true atw. And
formula A will be said to bevalid if and only if A is valid in every TV-model.

As one can easily check, allL-instances of axiom (schema) T(�A ⊃ A) and
axiom E (♦A ⊃ �♦A) are valid, and the rule necessitation(A/�A) is validity-
preserving. On the other hand, someL-instances of axiom K((�(A ⊃ B) & �A) ⊃
�B) are not valid. In fact, letp andq be two atoms. Then(�(p ⊃ q) & �p) ⊃
�q is false at the actual world of any TV-model〈@, {w,@},TV, |=〉 where p and
q are both true at @,p has no truth-value atw and q is false atw. The logics
to be presented below, in particular Prior’sQ, diverge from systemS5 essentially
in that each contains as a theorem a modified version of axiom K. (Here it should
be noted that while someL-instances of axiom K are not valid, every instance of
(�(A ⊃ (B & (A∨ ∼A))) & �A) ⊃ �(B & (A∨ ∼A)) is valid, even thoughB ≡
(B & (A∨ ∼A)) has all its instances valid.)2

3 System S5> The first system I shall envisage isS5>. Like the systems to be de-
fined in Section4, it is formulated in a language richer thanL .

3.1 S5> and its semantics The language forS5> is L>—that is,L with extra two-
place operator>. Wedefine the TV-models forL> in the same way as the TV-models
for L , and the semantical clauses for the new operator are given by

[TV.>] TV (w, A > B) iff TV (w, A) and TV(w, B), and
[|= . >] w |= A > B iff TV (w, A) and TV(w, B) and for everyv in W ,

if TV (v, A), then TV(v, B).

Validity is defined as before. For an arbitrary TV-model, we have

@ |= A > B iff for every w in W , if TV (w, A), then TV(w, B).

Thus, ‘A > B’ i s to beread as ‘at every world whereA has a truth-value,B has a truth-
value’, or as ‘forA to have a truth-valueB must also have a truth-value’. ‘A > B’
can be seen as expressing the idea that there is some kind of relevance link betweenA
andB or between the “information” conveyed byA and byB. SystemS5> is defined
by the following axioms (schemas) and rules.

Classical axioms

Every PC-validL-formula
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Axioms for >

A > B if each atom inB is in A
(A > B & B > C) ⊃ A > C
(A > B & A > C) ⊃ A > (B & C)

(A > B & A > C) ⊃ A > (B > C)

A > B ⊃ �(A > B)

Modal axioms

(K>) (B > A & �(A ⊃ B) & �A) ⊃ �B
(T) �A ⊃ A
(E) ♦A ⊃ �♦A

Rules

(modus ponens) If	 A and	 A ⊃ B then	 B
(necessitation) If	 A then	 �A

3.2 Adequacy SystemS5> is adequate (i.e., sound+ complete) with respect to
the semantics of TV-models. For soundness, it is more or less routine to show that
each axiom ofS5> is valid and that necessitation is validity-preserving. The case for
modus ponens, though, is not standard: the rule does not preserve validity-in-a-model
(if it did, then axiom K would have all its instances valid). However, modus ponens
is validity-preserving, as the following argument shows. LetA, B be formulas,M =
〈@,W ,TV, |=〉 a TV-model, andw0 aworld of M such that TV(w0, B). We want to
prove that ifA andA ⊃ B are valid, thenB is true atw0. Suppose that every atom in
A is in B. Then TV(w0, A) and TV(w0, A ⊃ B). So, if bothA andA ⊃ B are valid,
they are true atw0 in M, and therefore so isB. Suppose now that some atom inA is
not in B. Consider the modelN = 〈@,W ,TV ′, |=′〉 defined by

1. TV′(w0, p) for every atomp in A not in B;

2. TV′(w, p) iff TV (w, p) for every atomp and everyw in W such thatw �= w0

or p is not an atom inA not in B;

3. w0 |=′ p for every atomp in A not in B;

4. w |=′ p iff w |= p for every atomp and everyw in W such thatw �= w0 or p
is not an atom inA not in B.

By the definition ofN, for every atomp in B and for everyw in W ,

(i) TV ′(w, p) iff TV (w, p), and

(ii) w |=′ p iff w |= p.

From this fact, it follows that given any formulaC whose atoms are all inB, for every
w in W ,w |=′ C if and only if w |= C (the proof is by induction on the complexity of
C). As a consequence,w0 |=′ B if and only if w0 |= B. Now by construction, bothA
andA ⊃ B have a truth-value atw0 in N. So, if both A andA ⊃ B are valid, they both
are true atw0 in N and so, by the properties of truth-at-a-world,B is true atw0 in N.
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By the previous result then,B is true atw0 in M. Let us turn now to completeness.
Useful for what follows is the following proposition.

Proposition 3.1

1. If 	 �(A ⊃ B) and 	 B > A, then 	 �A ⊃ �B.
2. A > B ⊃ A > C, provided all atoms in C are in B.
3. A > B ≡ A > C, provided B and C contain exactly the same atoms.
4. If B1, . . . , Bn are all the atoms in B, then 	 (A > B1 & · · · & A > Bn) ≡ A > B.
5. ∼ (A > B) ⊃ � ∼ (A > B).
6. �A ⊃ ��A.
7. (�A & �B) ⊃ �(A & B).

Proof:

1. By axiom K>.
2. Let C1, . . . , Cn be all the atoms inC. If each is inB, then by the first axiom

for >,	 B > C1, . . . ,	 B > Cn. So by the transitivity of>,	 A > B ⊃ A >

C1, . . . ,	 A > B ⊃ A > Cn. So,	 A > B ⊃ (A > C1 & · · · & A > Cn). As
a consequence of the third axiom for>,	 A > B ⊃ A > (C1 & · · · & Cn).
Now, each atom inC is in C1 & · · · & Cn, and so,	 (C1 & · · · & Cn) > C.
By the transitivity of>, it follows that	 A > B ⊃ A > C.

3. By the previous result.
4. Let B1, . . . , Bn be all the atoms inB. By Proposition3.1(3), 	 A > B ≡

A > (B1 & · · · & Bn). Now we prove that	 A > (B1 & · · · & Bn) ≡ (A >

B1 & · · · & A > Bn).

(i) 	 A > (B1 & · · · & Bn) ⊃ (A > B1 & · · · & A > Bn) follows from
Proposition3.1(2).

(ii) 	 (A > B1 & · · · & A > Bn) ⊃ A > (B1 & · · · & Bn) follows from the
third axiom for>.

5. (a) By axiom T,	 �A ⊃ ♦�A.

(b) By axiom E,	 ♦�A ⊃ �♦�A.

(c) By axiom E,	 ♦�A ⊃ �A.

By necessitation then,	 �(♦�A ⊃ �A). But 	 �A > ♦�A. So by Proposi-
tion 3.1(1), 	 (�♦�A) ⊃ ��A. Points (a), (b), and (c) yield the result.

6. By classical logic and necessitation,	 �(A ⊃ (B ⊃ (A & B))). But 	 (B ⊃
(A & B)) > A and 	 A & B > B. We then have the result by Proposi-
tion 3.1(1).

7. 	 ∼�(A > B) ⊃ ∼(A > B). By necessitation then,	 �(∼�(A > B) ⊃ ∼
(A > B)). But by the fifth axiom for>,	 ∼ (A > B) > ∼�(A > B). So
by Proposition3.1(1), 	 � ∼ �(A > B) ⊃ � ∼ (A > B). As aconsequence,
	 ♦(A > B) ⊃ ♦�(A > B). The result follows from axioms E and T. �

Now for the completeness proof, letα be a nontheorem, and let @ be a maximal con-
sistent extension of{∼α} (use a Lindenbaum-type construction to prove the existence
of @). (I use a standard definition of consistency and inconsistency: a set of formulas
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� is inconsistent with respect to a given system if and only if there is a finite collection
A1, . . . , An of members of� such that¬(A1 ∧ · · · ∧ An) is a theorem of that system;
and� is consistent with respect to a given system if and only if it is notinconsistent
with respect to that system.)

Proposition 3.2 Every theorem is in @, and for all formulas A and B, if A ∈ @
and A ⊃ B ∈ @ then B ∈ @.

This proposition will be used without explicit mention. Its proof is standard.
Let At be the set of all atoms, and letχ (constituency) be the function from the

set of all formulas toP (At ) such thatχ(A) is the set of all atoms inA.
Let X be a nonempty subset ofAt . Then theclosure of X, cX, is {p ∈ At | there

arep1, . . . , pn in X such that(p1 & · · · & pn) > p ∈ @}. Note that forX andY any
subsets ofAt , X ⊆ cX, ccX = cX, andif X ⊆ Y thencX ⊆ cY . A nonempty subset
X of At will be said to beclosed if and only if X = cX.

Proposition 3.3 For all formulas A and B, A > B ∈ @ if and only if χ(B) ⊆
cχ(A).

Proof: Let A and B be formulas, letχ(A) be {A1, . . . , An}, and let χ(B) be
{B1, . . . , Bm}.

(i) Let B j be inχ(B). SupposeA > B j ∈ @. Then since	 (A1 & · · · & An) >

A, (A1 & · · · & Am > B j) ∈ @. So by definition of closure,B j ∈ cχ(A).
Conversely, suppose thatB j ∈ cχ(A). By definition of closure, there are
α1, . . . , αk in χ(A) such that(α1 & · · · & αk) > B j ∈ @. But 	 A >

(α1 & · · · & αk). So, A > B j ∈ @. As a conclusion,A > B j ∈ @ iff B j ∈
cχ(A).

(ii) By Proposition3.1(4),	 A > B ≡ (A > B1 & · · · & A > Bm). SoA > B ∈ @
if and only if A > B1 ∈ @and· · · andA > Bm ∈ @. So by (i) above,A > B ∈
@ if and only ifχ(B) ⊆ cχ(A). �

Where X is a closed set of atoms, let @[X] be the set of all formulasA such that
�A ∈ @ andχ(A) ⊆ X. Note that @[X] is never empty (by definition, a closed set
is never empty, and ifX contains, sayp, then @[X] containsp∨ ∼p). Also note that
by axiom T, @[X] ⊆ @ for every closed set of atomsX. As aconsequence, each
@[X] is consistent.

For every set of formulasS and every closed set of atomsX, say thatS is X-
maximal in case (i) for everyA in S, χ(A) ⊆ X and (ii) for every formulaA such
thatχ(A) ⊆ X, either A ∈ S or ∼A ∈ S. Clearly, every consistent set of formulas
satisfying (i), in particular every @[X], has someX-maximal consistent extension
(adapt the usual Lindenbaum-type construction).

LetW be{w|w is anX-maximal consistent extension of @[X] for some closed
set of atomsX}. Note that @ is inW , sinceAt is closed and @ is trivially anAt-
maximal extension of @[At ]. For everyw in W , there is only one closed set of atoms
X such thatw is an X-maximal consistent extension of @[X]. Call it ‘ D(w)’. In
the other direction, for every closed set of atomsX, there is some worldw such that
D(w) = X. The reason is that @[X] is never empty.
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Now, wherep is any atom, put ‘TV(w, p)’ for ‘ p ∈ D(w)’, and ‘w |= p’ for
‘ p ∈ w’. We have, for every atomp and everyw in W ,

1. TV(@, p) (sinceD(@) = At), and

2. if w |= p then TV(w, p) (by maximality).

The 4-tuple〈@,W ,TV, |=〉 is then a TV-model. The aim is now to prove that for
every formulaA and every worldw,w |= A if and only if A ∈ w, which will give us
completeness.

Proposition 3.4 Let w be in W . Then

1. every theorem A such that χ(A) ⊆ D(w) is in w, and for all formulas A and
B, if A ∈ w and (A ⊃ B) ∈ w then B ∈ w;

2. for all formulas A and B, if χ(A) ⊆ D(w) and A > B ∈ @ then χ(B) ⊆ D(w).

Proof: The proof for (1) is quite standard. For (2), letA, B be formulas. Suppose
that χ(A) ⊆ D(w). Then cχ(A) ⊆ cD(w), and sinceD(w) is closed,cχ(A) ⊆
D(w). Now suppose thatA > B ∈ @. By Proposition3.3, it follows thatχ(B) ⊆
cχ(A). So,χ(B) ⊆ D(w). �

Proposition 3.5 For every w in W and for every formula A,�A ∈ w if and only
if �A ∈ @ and χ(A) ⊆ D(w).

Proof: Let A be a formula.

1. Suppose�A ∈ @. Then by Proposition3.1(6), ��A ∈ @. So, for everyw in
W , if χ(A) ⊆ D(w) then�A ∈ @[D(w)], and consequently�A ∈ w.

2. Suppose�A /∈ @. By maximality,∼ �A ∈ @. So by axiom E,� ∼ �A ∈ @.
Consequently, for everyw in W such thatχ(A) ⊆ D(w),∼ �A ∈ @[D(w)].
Thus,∼ �A ∈ w, and so by consistency,�A /∈ w. �

Proposition 3.6 For every w in W and for all formulas A and B,

1. ∼A ∈ w if and only if χ(A) ⊆ D(w) and A /∈ w;

2. A & B ∈ w if and only if A ∈ w and B ∈ w;

3. A > B ∈ w if and only if χ(A)∪ χ(B) ⊆ D(w) and for every v in W such that
χ(A) ⊆ D(v), χ(B) ⊆ D(v).

Proof: Let A andB be formulas and letw be inW .

1. (i) Suppose∼A ∈ w. Thenχ(A) ⊆ D(w) and by consistencyA /∈ w.

(ii) By maximality, if χ(A) ⊆ D(w) and A /∈ w then∼A ∈ w.

2. (i) SupposeA & B ∈ w. Thenχ(A & B) ⊆ D(w), and thusχ(A & B ⊃
A) andχ(A & B ⊃ B) are subsets ofD(w). So since	 A & B ⊃ A
and	 A & B ⊃ B, by Proposition3.4(1) A ∈ w andB ∈ w.

(ii) SupposeA ∈ w and B ∈ w. Then χ(A) ∪ χ(B) ⊆ D(w), and so,
χ(A ⊃ (B ⊃ (A & B))) ⊆ D(w). Thus since	 A ⊃ (B ⊃ (A & B)),
by Proposition3.4(1) A & B ∈ w.



244 FABRICE CORREIA

3. (i) SupposeA > B ∈ w. Then χ(A > B) ⊆ D(w). (a) A consequence
is thatχ(A) ∪ χ(B) ⊆ D(w). (b) Another consequence is thatχ(A >

B ⊃ �(A > B)) ⊆ D(w). But since	 A > B ⊃ �(A > B), it follows
by Proposition3.4(1) that�(A > B) ∈ w. By Proposition3.5, then
�(A > B) ∈ @. So by axiom T,A > B ∈ @. We have then by Propo-
sition3.4(2): for everyv in W if χ(A) ⊆ D(v) thenχ(B) ⊆ D(v).

(ii) SupposeA > B /∈ w and χ(A > B) ⊆ D(w). Then by maximal-
ity, ∼ (A > B) ∈ w. By Propositions3.1(5) and3.4(1), it follows that
�∼ (A > B) ∈ w. So, by Proposition3.5and axiom T∼(A > B) ∈ @,
and as a consequence,A > B /∈ @. By Proposition3.3, then,χ(B) is
not a subset ofcχ(A). Let v be any world withD(v) = cχ(A). We
have:χ(A) but notχ(B) is a subset ofD(v).

�

Proposition 3.7 For every w in W and for every formula A,�A ∈ w if and only
if χ(A) ⊆ D(w) and for every v in W such that χ(A) ⊆ D(v), A ∈ v.

Proof: Let A be a formula and letw be inW .

1. Suppose�A ∈ w. A first consequence is thatχ(A) ⊆ D(w). A second conse-
quence is that�A ∈ @ by Proposition3.5. From this it follows that for every
v in W such thatχ(A) ⊆ D(v), A ∈ @[D(v)]. So, for everyv in W such that
χ(A) ⊆ D(v), A ∈ v.

2. Suppose�A /∈ w andχ(A) ⊆ D(w). By Proposition3.5, then�A /∈ @. Now
let us prove that{∼A} ∪ @[cχ(A)] is consistent. Suppose it is not. Then one
can findB1, . . . , Bn in @[cχ(A)] such that	 (B1 & · · · & Bn) ⊃ A. We have
then the following:

a. �B1, . . . ,�Bn are in @, and so by Proposition3.1(7),�(B1& · · · & Bn)

is in @.
b. By necessitation,�[(B1 & · · · & Bn) ⊃ A] is in @.
c. Since eachBi is in @[cχ(A)], eachχ(Bi) is included incχ(A). So,

by Proposition3.3, each A > Bi is in @. Now by the third axiom for
>,	 (A > B1 & · · · & A > Bn) ⊃ A > (B1 & · · · & Bn). So, A >

(B1 & · · · & Bn) is in @.

These three points plus axiom K> entail that�A is in @. So, since by hypothesis
�A is not in @, we must conclude that{∼A} ∪ @[cχ(A)] is consistent. Now, let
v be acχ(A)- maximal extension of{∼A} ∪ @[cχ(A)]. v is, of course, acχ(A)-
maximal extension of @[cχ(A)], and sov is inW . Moreover,(a)χ(A) ⊆ D(v), and
(b) ∼A ∈ w, which by consistency entails thatA /∈ w. �

Proposition 3.8 For every formula A and every world w, TV(w, A) if and only if
χ(A) ⊆ D(w).

Proof: Easy. �

Proposition 3.9 For every formula A and every world w,w |= A if and only if A ∈
w.



PROPOSITIONAL LOGICS 245

Proof: By induction on the length of the formulas, using Propositions3.6, 3.7, and
3.8. �
This ends the completeness proof.

4 System Q3 Prior was aware that the possibility that a proposition has no truth-
value at some possible world has to be taken into account in a correct treatment of
propositional modal logic. Accordingly, he developed a system,Q, and gave some
indications as to how to provide it with a world semantics (see Prior and Fine [1],
pp. 85–86). These indications show that, essentially, Prior agrees with the TV-
modeling of necessity presented in Section2. In the present section, two results are
achieved. First, it is shown that systemQ can be seen as a fragment of a mild exten-
sion of systemS5>. Second,Q is given a TV-model semantics and proved adequate
with respect to it.

4.1 System Q Prior formulates systemQ in a language with primitive operators
∼, & ,♦, and S—whereS is a one-place operator intended to express necessary
statability (a proposition is necessarily statable if and only if it is statable (i.e., has
a truth-value) at every possible world).4 For the sake of uniformity, I will rather for-
mulateQ in languageLS , namely,L augmented by operatorS.

SystemQ can then be defined thus, with♦ standing for∼ � ∼ as before (see [1],
pp. 84–85).

Classical axioms

Every PC-valid formula

Axioms for S

S A ⊃ S p, for any atomp in A
(S p1 & · · · & S pn) ⊃ S A, wherep1, . . . , pn are all the atoms inA
♦S A ⊃ S A

Modal axioms

(KS ) (S p1 & · · · & S pn & �(A ⊃ B) & �A) ⊃ �B, where
p1, . . . , pn are all the atoms ofA not in B

(T) �A ⊃ A
(E) ♦A ⊃ �♦A

Rules

(modus ponens) If	 A and	 A ⊃ B then	 B
(necessitation) If	 A then	 �A

4.2 Q in S5>t Let L>t beL> augmented by a special atom,t. The TV-models for
L>t are like those forL>, except that we impose the following:
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[TV. t] TV (w, t) for any worldw of any TV-model, and
[|= .t] w |= t for any worldw of any TV-model.

Validity is defined as before and systemS5>t isS5> plust as an axiom andA > t as an
axiom schema. It should be clear thatS5>t is adequate with respect to the semantics
of TV-models forL>t. (Soundness is straightforward. For completeness, the major
modification from the proof of Section3 consists in requiring that every closed set of
atoms containt.)

Now, putS A for t > A. As is readily shown, we have for an arbitrary TV-model

w |= S A iff for every w in W ,TV(w, A).

That is,S A expresses the necessary statability ofA. Moreover, whereA is any for-
mula ofL S, let A∗ be the result of replacing each occurrence ofS in A by t >. Then
it is easy to show that for every formulaA of L S, A is a theorem ofQ if and only if
its translationA∗ in L>t is a theorem ofS5>t.

4.3 Semantics for Q and adequacy We can do better: we can prove that system
Q is adequate with respect to the obvious TV-model semantics for languageL S. The
TV-models forL S are defined in the same way as the TV-models forL , and the se-
mantic clauses for operatorS are

1. TV(w, S A) iff TV (w, A), and
2. w |= S A iff for every w in W , TV(w, A).

As is easily checked,Q is sound with respect to the semantics of TV-models forLS .
For completeness, a slight adaptation of the completeness proof of Section3 gives
the result. The proof forQ is even a bit simpler. Propositions3.1(6) and3.1(7) hold
in the present context, and we have the following proposition.

Proposition 4.1 	 S A ⊃ �S A.

Proof: 	 ♦S A ⊃ S A. By necessitation, then	 �(♦S A ⊃ S A). So by axiom KS ,
	 �♦S A ⊃ �S A. As aconsequence,	 ♦ ∼ S A ⊃ ♦� ∼ S A. From axioms E and
T, it follows that	 ♦ ∼ S A ⊃∼ S A. Hence the result. �
Let α be a nontheorem and let @ be a maximal consistent extension of{∼ α}. Propo-
sition3.2still holds.

Let At be now the set of all atoms ofL S. Functionχ is defined as before. Let
S(At ) be the set of all atomsp of L S such thatS p is in @. WhereX is a nonempty
subset ofAt , theclosure of X, cX, is now X ∪ S(At ). As before, a subsetX of At
will be said to beclosed if and only if X = cX.

WhereX is a closed set of atoms, @[X] andX-maximality are defined as in Sec-
tion 3. As before, each @[X] is consistent and has someX-maximal consistent ex-
tension.

Wefinally define the TV-model〈@,W ,TV, |=〉 as in Section3, andthe aim is to
prove now that for every formulaA and every worldw,w |= A if and only if A ∈ w.

Proposition 4.2 Let A and B be formulas, with p1, . . . , pn all the atoms of B not
in A (we suppose there are such atoms). Then (S p1 & · · · & S pn) ∈ @ if and only
if χ(B) ⊆ cχ(A).
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Proof: Let A, B, p1, . . . , pn be as stated and letX be all the atoms ofB in A.

(i) Suppose(S p1 & · · · & S pn) ∈ @. Then eachS pi is in @ and so eachpi is in
S(At ). Sinceχ(B) is X ∪ {p1, . . . , pn}, andX ⊆ χ(A), it follows thatχ(B) ⊆
χ(A) ∪ S(At ). But χ(A) ∪ S(At ) is cχ(A).

(ii) Supposeχ(B) ⊆ cχ(A). Then each pi is in S(At ). So, eachS pi is in @ and
therefore,(S p1 & · · · & S pn) ∈ @. �

Proposition3.4(1) is easily proved and we have the following.

Proposition 4.3 Let A be a formula. Then if S A ∈ @, for every w in W , χ(A) ⊆
D(w).

Proof: Let A be a formula and supposeS A ∈ @. Thenχ(A) ⊆ S(At). Now let w
be a world. SinceD(w) is closed,S(At) ⊆ D(w). So,χ(A) ⊆ D(w). �

Propositions3.5, 3.6(1), and3.6(2) still hold, and we have the following proposition.

Proposition 4.4 For every w in W and for every formula A, S A ∈ w if and only
if for every v in W , χ(A) ⊆ D(v).

Proof: Let A be a formula, and letw be inW .

(i) SupposeS A ∈ w. Then by maximality,χ(S A) ⊆ D(w). A consequence is that
χ(S A ⊃ �S A) ⊆ D(w). But since by Proposition4.1	 S A ⊃ �S A, we have
by Proposition3.4(1) that�S A ∈ w. By Proposition3.5, then�S A ∈ @. So by
axiom T,S A ∈ @. We have then by Proposition4.3: for everyv in W , χ(A) ⊆
D(v).

(ii) SupposeS A /∈ w. Wehave to prove that there is a worldv such thatχ(A) is not
asubset ofD(v). First case:χ(A) is not a subset ofD(w). Wedirectly have the
result. Second case:χ(A) is a subset ofD(w). Then by maximality,∼ S A ∈
w. Since	∼ S A ⊃ � ∼ S A, wehave by Proposition3.4(1): � ∼ S A ∈ w. So,
by Proposition3.5and axiom T,∼ S A ∈ @, and as consequence,S A /∈ @. So,
there is an atomp in A such thatp /∈ S(At ). Letv be any world withp /∈ D(v).
Wehave:χ(A) is not a subset ofD(v). �

Proposition3.7 also holds. The first half of the proof is the same as in Section3.
For the second half, minor modifications have to be made. Suppose that�A /∈ w

and χ(A) ⊆ D(w). By Proposition3.5, then �A /∈ @. Now let us prove that
{∼A} ∪ @[cχ(A)] is consistent. Suppose it is not. Then one can findB1, . . . , Bn

in @[cχ(A)] such that	 (B1 & · · · & Bn) ⊃ A. Wehave then the following:

1. �B1, . . . ,�Bn are in @, and so by Proposition3.1(7), �(B1 & · · · & Bn) is
in @.

2. By necessitation,�[(B1 & · · · & Bn) ⊃ A] is in @.

3. Since eachBi is in @[cχ(A)], each χ(Bi) is included in cχ(A). So,
χ(B1 & · · · & Bn) ⊆ cχ(A). Let p1, . . . , pm be the atoms ofB1 & · · · & Bn

not in A (if there are such atoms). By Proposition4.2, then(Sp1 & · · · & Spm)

∈ @.
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These three points plus axiom KS entail that�A is in @. So, since by hypothesis�A
is not in @, we must conclude that{∼A} ∪ @[cχ(A)] is consistent. The rest of the
proof is as in Section3.

Proposition3.8 still holds. We conclude that for every formulaA and every
world w,w |= A if and only if A ∈ w, as expected.

5 A simpler system All the systems considered so far are formulated in a language
richer than the purely modal languageL . But consider systemS5−, whose rules are
modus ponens and necessitation and whose axiom schemas are all PC-tautologies, T,
E, and

(K−) �(A ⊃ B) & �A) ⊃ �B, where all the atoms ofA are inB.5

Clearly, K− is a theorem ofQ andS5> (and ofS5>t). So,S5− is sound with respect to
the class of all TV-models forL . Moreover, completeness is easily proved (adapt the
completeness proof forS5> by defining the closure of a nonempty set as that very set;
every proposition in the completeness proof forS5> which does not concern operator
> is provable as it stands).

6 Résumé SystemsS5>, S5>t, Q, andS5− are all both sound and complete with
respect to their respective semantics.S5− ⊂ S5> ⊂ S5>t, S5− ⊂ Q, and for every
formula A in LS , A is a theorem ofQ if and only if its translationA∗ in L>t is a
theorem ofS5>t.
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NOTES

1. Following a standard assumption, I take a statement to be false at a world if and only if
its negation is true at that world. I shall also suppose that no proposition can beboth true
and false at a world.

2. Before turning to systematic concerns, let me mention that Segerberg [2] proves com-
pleteness for modal systems (Q included), whose semantics is similar to the semantics
of TV-models. The reader is invited to glance at this paper for a full comparison. Two
big differences between Segerberg’s systems/semantics and mine are: (1) his semantical
clauses do not all respect the principle of contamination: formulas of type TA are true at
worlds whereA has no truth-value; (2) his systems are closed under a restricted version
of modus ponens, not under full modus ponens.

3. In a previous version of the present paper, no section was devoted to systemQ. It was a
nice surprise for me to discover Prior’s ideas on necessity once I obtained the previous
results aboutS5> and its semantics.

4. Let aconstituent of a proposition (in the sense introduced in Section1) be any object
rigidly denoted by some expression in that proposition. For Prior, a proposition is stat-
able at a world if and only if either it has no constituent, or all its constituents exist in
that world. And accordingly, a proposition is necessarily statable if and only if either
it has no constituent, or all its constituents exist necessarily (see [1], pp. 93–94). Fol-
lowing Prior’s account of statability, the operator> introduced in Section2 should be
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considered as expressing a form of existential dependence. For in case propositionsA
andB both have some constituents, we should then readA > B as something like ‘for
the constituents ofA to exist, those ofB must exist’, or ‘the constituents ofA cannot
exist unless the constituents ofB exist’.

5. I am indebted to an anonymous referee of theJournal for suggesting that I examine sys-
temS5−.
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