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Modal Logics That Need
Very Large Frames
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Abstract The Kuznetsov-Index of a modal logic is the least cardinalich

that any consistent formula has a Kripke-model of sizg if it has a Kripke-
model at all. The Kuznetsov-Spectrum is the set of all Kuznetsov-Indices of
modal logics with countably many operators. It has been shown by Thomason
that there are tense logics with Kuznetsov-Index.,. Futhermore, Chagrov

has constructed an extensionkf with Kuznetsov-Indexd,. We will show

here that for each countable ordinahere are logics with Kuznetsov-Indg.
Furthermore, we show that the Kuznetsov-Spectrum is identical to the spectrum
of indices forI1i-theories which is likewise defined. A particular consequence
is the following. If inaccessible (weakly compact, measurable) cardinals ex-
ist, then the least inaccessible (weakly compact, measurable) cardinal is also a
Kuznetsov-Index.

1 Introduction Supposey is an elementary formula and thais consistent with

an elementary theory in a countable language. Then there exists a countible
model forg. Furthermore, in any infinite cardinality there exists & -model fore.

For other languages this does not need to hold, for example, for second-order logic.
Modal logic also has first-order structures, namely, Kripke-frames, but the language
is a fragment of monadic second-order predicate logic. Moreover, modal logics nei-
ther necessarily define first-order classes of frames nor is every first-order definable
class of frames modally definable (sB&Jj. The same is true for intermediate logics.
Therefore, Hosoi and On@] raised the following question:

Do there exist intermediate logigs such thatA is complete but not complete
with respect to countable Kripke-frames?

Shehtman gave a positive answer (E&g)[ After showing his solution to Kuznetsov,
Kuznetsov then asked the following natural question:

What is the least cardinal numbgersuch that any intermediate logic complete
with respect to Kripke-frames is also complete with respect to frames of cardi-
nality < u?
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This question remains unsolved. However, the same questions naturally arise also for
modal logics. A first example of a logic thatis complete but not complete with respect
to countable frames was given by Thomadid jn tense logic. Thomason also es-
tablished that there are logiés, for A < w + w such tha®, is complete, but all its
rooted frames have siZ8,. One might suspect that the availability of such logics
depends on the number of modal operators. Yet, as Thomason has also shown, any
example involving a finite number of operators can be transformed into an example
with a single operator. We will improve this in Secti{@lshowing that any example

with countably many operators can be transformed into one using a single modal op-
erator. Since we are dealing only with countable languages, this is the best possible
result. We define th&uznetsov-Index of a logic ® to be the leastt such that any
formula which is refutable on @-Kripke-frame is already refutable on@&Kripke-

frame of size< u.

The examples constructed using Thomason’s method are not transitive. There-
fore, to construct logics containingt or evenGrz of the requested kind is not solved
by appealing to polymodal logics. In the intermediate case, an answer was provided
by Shehtman[I5]. For transitive logics Chagrov has shown[8] fhat there exists a
logic A containingk4 whose Kuznetsov-Index i8,,.

Both Thomason and Chagrov have indicated that their methods can be extended
to higher cardinals. Yet, they did not establish an upper bound on the Kuznetsov-
Indices for modal logics. The main result of this paper is that]aifsdefinable car-
dinal number is the Kuznetsov-Index of some monomodal logic. It follows that the
set of possible Kuznetsov-Indices depends on the set-theoretic assumptions. For ex-
ample, if inaccessible (weakly compact, measurable) cardinals exist, then the least
inaccessible (weakly compact, measurable) cardinal is the Kuznetsov-Index of some
monomodal logic. Moreover, we will show that the set of Kuznetsov-Indices is a set
of size at most ¥ which is closed under countable limits, the functijor> 2*, and
under thel-function. It has to be said though that we have not been able to determine
whether the logics defined in this paper are complete. This is a handicap when dis-
cussing the Kuznetsov-Indices of finitely axiomatizable logics. It is easy to see that
if A has Kuznetsov-Index, the completion ofA also has Kuznetsov-Index But
even if A is finitely axiomatizable, its completion need not be.

2 TheKuznetsov-index Before we give examples, it will be worthwhile discussing

the question somewhat. Firstof all, since the languages we are dealing with are count-
able, any consistent formula for a logic can be satisfied in a countable algebra. So the
question is not whether for any consistent formglthere exists a countable model
(this is always so) but if there always exists a countable Kripke-model, if a Kripke-
model forg exists at all. The last condition is needed, for there are also incomplete
logics. As Chagrov and Zakharyaschev showdh fhere also always exists a gen-

eral frame with underlying countable Kripke-frame. However, it is easy to see that
the question of Hosoi and Ono (for modal logic) is equivalent to the following:

Does there exist a complete logicand aA-consistent formula which has no
countable Kripke-model?

For if A is a logic of the first kind ang has a Kripke-model but has no countable
Kripke-model, letA° be the logic of the Kripke-frames af. This logic is complete
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andg is consistent with it. ClearlyA© has the same Kripke-frames Asand sap has
no countable Kripke-model. We call® the completion of A.
We define theKuznetsov-Index Kz(A ) of a modal logicA as follows.

Definition 2.1 Let A be a modal logic,u a ardinal number. ¢ is called u-
satisfiable in A if it has a A-Kripke-model of size< n. A is called-complete if
every consistent formula ig-satisfiable. Th&uznetsov-Index of A is the leasiu
such thatA® is u-complete.

Notice that we have used the completion/ofin the definition. This has for con-
sequence that the Kuznetsov-Index is always defined even if the logic is incomplete
or has no Kripke-frames at all (in which case its Kuznetsov-Index is 0). However,
Kuznetsov's original problem concerned the question of finitely axiomatizable log-
ics, and we remark here thAf need not be finitely axiomatizable evenAfis.

Proposition 2.2
Kz(A) := supgc inf{|3] : § & ¢, 5 = A, § Kripke-frame}.

For example, ifA is tabular, its Kuznetsov-Index is finite. The converse also holds,
on condition of completeness. If a logic has the finite model property, its Kuznetsov-
Index is countable. Here, the converse may be false even if the logic is complete.
This suggests that we define the modified Kuznetsov-Index:

Kz (A) :=inf{Ar: forall ¢ & A® existsg such that|F| < A, T = AS, T~ ¢}.
We may therefore modify the previous definition as follows.

Definition 2.3 Let A be a modal logic,u a cardinal number. ¢ is called u-
satisfiablé if there is aA-Kripke-model forg which has size< u. A is calledu-
complete* if every consistent formula ig-satisfiablé. The Kuznetsov-Index* of A
is the leasj such thatA® is u-completé.

For the modified Kuznetsov-Index we have
Kz(A) < KZ*(A) < Kz(A)T.

A logic A has the finite model property if and only if it is complete & (A) <

Ro. If A is a transitive logic of finite width without the finite model property, then
KZ'(A) = Ry, Kz(A) = Rg by a result of Fine that all logics of finite width are com-
plete with respect to countable frames (& [similarly, if A is a subframe logic
(not necessarily containirkg). (This result is shown iff1], Corollary 3.8.) For the
purpose of the next theoresf,(¢) is the set of subformulas of

Proposition 2.4  Kz(A) = Kz*(A) onlyif Kz(A) hascofinality w. Hence, Kz*(A)
is either finite or a successor cardinal or has cofinality w.

Proof: Letu :=Kz(A) =Kz (A). Consider the functions
flo) = iInf{|3|:T i ¢.§ E A, § Kripke-framg;
gn) = sup{f(p): e &AS [sf(p)| <n}

Then{g(n) : n € w) is an ascending sequence of cardinal numbegs. However,
the supremum of this sequenceuisby assumption onw. Hence u has cofinalityw.
O
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In this proof we have defined the functign This is the (generalization of the) com-
plexity function of [£]. It measures the size of models required to refute formulas of
agiven length. For logics with the finite model property, this is a function from natu-
ral numbers to natural numbers but in general it is a function from natural numbers to
cardinal numbers. We just mention that one can also study for compact logics the size
of models for infinite sets of formulas. We have not done so here since it is outside
the scope of this paper.

Kuznetsov's initial question gives rise to the following two questions:

What is the set of cardinal numbers that are the Kuznetsov-Indices of
monomodal logics and what is its least upper bound?

The least upper bound is called théwenheim number of modal logic. The above-
mentioned example by Chagrov is a logic with Kuznetsov-Indgxand Kuznetsov-
Index: 3.

There is an interesting connection between the Kuznetsov-Index for canonical
logics and a longstanding conjecture concerning the elementarity of canonical logics.

Conjecture2.5 Let ® beanormal modal logic. If ® iscanonical, then it is com-
plete with respect to some A-elementary class of frames.

The reader is referred thf] for the background of this conjecture and some attempts
to prove it. Suppose now that is canonical. First of all, we note the following.

Proposition 2.6  Let ® be canonical. Then Kz(®) < 2%,

For proof, note that the countably generated feealgebra is countable, and its un-
derlying frame has cardinalitg 2%. (So, assuming GCH, the Kuznetsov-Index of a
canonical logic can be at mast.) If Conjecturd2. Slis correct then it will follow from
PropositiofZ_3kthat the Kuznetsov-Index of a canonical logicisky. Itis, however,
clear that if a canonical logic has Kuznetsov-Index it is not necessarily com-
plete with respect to A-elementary class of frames. So, the following is therefore a
weaker conjecture than Conject{ié]

Conjecture2.7 Assumethat ® iscanonical. Then Kz(©) < Rg.

3 Basicnotionsandterminology Before we begin, let us briefly fix some notation

and terminology. We assume some knowledge of set theory, such as cardinal and or-
dinal numbers and basic arithmetic thereof. Everything needed for our purposes can
be found in[E]. As usual, a cardinal is an ordinal number such that no predecessors
have the same cardinality. if is a cardinal numbep ™ denotes the successor cardi-

nal and 2 the cardinality of the powerset. @f), thecofinality of w is the least ordi-

nal A such that there exists an ascending sequénce A’ < 1) whose limitisu. p

is calledsingular if cf (1) < u andregular otherwise. The Generalized Continuum
Hypothesis (GCH), which is known to be independent of ZFC, is the postulate that
wt = 2*. To make the results independent of GCH we make use aBthenction,

which is defined as follows. For an ordinal3, is the cardinal number obtained by
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iterating exponentiatiop-times, starting alo.

o = Ny
:}/+l = 231/
3, = sup{ds:8 <y}, yalimitordinal.

Suppose thatT, <) is a transitive, irreflexive order with unique least element, such
that any branch is well-ordered, every element has no or exactly 2 immediate succes-
sors, and all branches have the same well-ordering type. Then we s&y tkatis a
homogeneously binary branching tree. It isuniquely determined up to isomorphism

by the ordering type of one of its branches. The following is well known.

Proposition 3.1  Let y be an infinite successor ordinal and (T,, <) be a homoge-
neously binary branching tree of depth y. Then |T, | = 2171,

Proof:  First, itis clear that ify < § are ordinals thefiT,| < |Ts|. We may identify

the nodes of the binary branching tr@e, <) with well-ordered sequences of Os and
1s of length< y. Letb, denote the set of sequendes : § < y), wherex; € {0, 1}

for eachs < y. Obviously,|b,| = 27!, since each sequence is the (unique) code of a
subset ofy. Now, two cases arise. (3)is a limit ordinal. ThenT, | = |U6<y bs| =
Y5y 105l (2) ¥ =¥/ + 1, y infinite. Then|T,| = |U;-,, bs| = |b,| =21, The
other inequality is established as follows. By (1) and (2) we|ggt < 27! for all
infinite y. Hence|T,| < |y| - 2”1 < 2l by elementary cardinal arithmetic. So,
IT,| = 2I”'I. Since|y| = |y/| the claim follows. O

The cardinalities foi alimit ordinal are much harder to establish but not needed in
sequel. For example, if the branches have well-order typie tree is countable,
but if the well-order type is at least» + 1 and countable, thefT,, | = 2.

The present paper assumes a fair amount of knowledge in modal logic. For back-
ground in modal logic we refer tiL.P], in which all notions relevant to this paper are
explained. We assume that the reader knows the sys$éraedG and has some
understanding of tense logic. We will consider not only modal logics of a single op-
erator but in fact logics with arbitrarily many operators; we only require that the set
O of basic operators is countable. This ensures that the language (the set of well-
formed formulas) is a countable set. rAodal logic over O is a normal polymodal
logic using the se© of modal operators. IfO| = «, we dso say thatA is ax-modal
logic. If k =1 we callA amonomodal logic. A Kripke-framefor A is a pair(F, R)
whereF is a set (possibly empty) ard: O — F x F afunction assigning to each
O € O its accessibility relationR(C). Alternatively, whenO = «, a cardinal num-
ber, a frame is a paifF, (< : j € )), where<; € F x F for eachj € «. (Often,
we will use ordinal numbers rather than cardinals to index the modal operators. This
makes life easier. We also wrife< « in place ofj € k.) A (generalized) frameis a
triple (F, R, F) such that F, R) is a Kripke-frame an@ C g (F) a st closed under
relative complement, intersection, union, and

A {x: forall ysuchthat R((J) y:ye A}

whereld is a modal operator of the language. The notions of valuation and satisfac-
tionin a (Kripke-)frame are defined as usual. The operatitefined byd ¢ := —[—¢
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is the usual dual operator. We call an operaioa tense dual of O (with respect to
alogicA)if p— 0O0'p, p— O0'Op e A. If 0 is a tense dual df] with respect to

A, then in anyA-Kripke-frameg we haveR(0)) = R(CJ)~, where for a relatiorR

we denote byR™~ the converse oR. Given a logicA and a seX of modal formu-

las, A @ X denotes the least normal modal logic containingnd X. Furthermore,

given two modal logicsA and® with disjoint sets of operatorgy ® O is the least

logic in the union of the languages which contains hatand®. (If A and® share

some modal operators, they are suitably renamed to make the sets of operators dis-
joint.) We note that as a consequence of the theoreﬁ)ﬁr{e obtain the following
lemma.

Lemma3.2 Letu andvbeinfinite. Supposethat A and © are p-complete*. Then
A ® O is u-complete* aswell. S, if Kz*(A) = 1 and Kz*(®) = v, thenKz* (A ®
©) = max{u, v}.

Proof: The construction of[3] is as follows. Given a framg, for A, welet grow

a ®©-frame at each world d§y and obtain a framg,. Next we let grow aA-frame at
each node of, and so on. We need to iterate this finitely often. Each of the frames
can be choser: &, whereé .= max{u, v}. Hence, at each stage the frame has size
< &. Since we iterate finitely often, the entire frame has sizg O

We remark that ifu andv are finite, themax{u, v} < KZ'(A ® ®) < Rp. In both
cases, the inequality may be strict. To ease the manufacturing of logics with special
Kuznetsov-Index we note the following useful fact.

Lemma3.3 There exists a logic with Kuznetsov-Index* pt if and only if there
exists a complete logic ® and a formula which is u-satisfiable in ® but not -
satisfiable*.

Proof: Let A have Kuznetsov-Indexu™. Then there is & such that there is no
model based on a frame of cardinality but there is a model based on sofef
cardinalityx. Put® := Th§. Thislogic is obviously complete; and it has Kuznetsov-
Index < u™, since any consistent formula can be satisfie@oBy the fact that® ©

A andy ¢ ©, no®-Kripke-model forg has less thap worlds. Henc&Kz*(©) = ut.
Conversely, assume thatis such that a formula exists which isu-satisfiable but
not y-satisfiablé. Take a Kripke-frame¥ such that (= —¢. Put® := Thg. Then

© has Kuznetsov-Indexu ™. O

Lemma3.4 Let u bealimit cardinal. There exists a logic with Kuznetsov-1ndex*
wifand only if there existsa completelogic ® and an ascending sequence (1 : i € w)
of cardinals with limit . and a sequence (g; : i € w) of formulas such that for each
i € w, g isAi-satisfiable in ® but not A;-satisfiable*.

The proof is immediate.

In [B], de Rijke has introduced thifference operator. He use®D to denote this
operator, but we follow our general practice and writd for the box-like analogon
and(#) for its dual. The intended semantics for this operator is that of the difference,
thatis, we wantto havB([#]) = {(X, ¥) : X # y}. For well-known reasons this is im-
possible, soitis required to hold only for rooted frames. Itis not possible to define the
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logic of the difference operator in such a way that the intended Kripke-frames are the
only Kripke-frames of the logic. There is a way, however, to achieve this [[SBe [
Namely, instead of the difference operator take a pair of modal operators, which are
tense duals of each other and look in both directions of the well-order. In general,
the construction is as follows. Lét be ax-modal logic. LetwO be the tense logic
in two operatorsiH (:= Cg) and83 (:= 1), which satisfy the following postulates.
(The axiomatization is not independent. Some of the axioms can be dropped from the
list.)

WO = Ko
p—H-H-p
p—HB-H-p
Hp— HHEp
Hp—HBH8p
HHEHp— p)—>Hp
—-HHBHp—>—-pv—-Hpv-Hp
—-HHEp——-pv-Hpv-Hp

CDODDDD DD

Lemma35 WO isthetenselogicof well-orderswhere R(H) = < and R(B) = >.

The proof is straightforwardwoO is clearly a tense logic and $(H) = R(H) ™.
R(B) is transitive and satisfigs, whence the Kripke-structures may not contain any
infinite downgoing chains. BotR(5) andR(fH) are linear. By a result of Wolteli fj
this logic is complete with respect to the well-orders. V80 is the desired logic of
well-orders.

Definition 3.6  Let A be ax-modal logic. Ther + 2-modal logicA™° is defined by

A" :=AQWOB{pABpABp. — .Ojp:j<«}.

Lemma3.7 The Kripke-frames of A*° aretheframes (F, (< : j <« + 2)) such
that (F, (< : j < «)) isa A-frame, and < is a well-order on F, whose symmetric
and reflexive closure contains all <1j, j < «, and <1 = <, . In particular, A¥° is
conservative over A if A iscomplete.

By a general result on complete subframe logics (8&R,[if a subframe logic is com-
plete it is actually complete with respect to countable frames. H&EENO) = R4,

since the logic of well-orders fails to have the finite model property. (To see that, no-
tice that the formul&B(EHp — p) — Hpis not valid inwO, since well-orders may
possess infinite ascending chains. However, no finite frame refutes this formula.)

Lemma3.8 Let A and® bea-modal and 8-modal languages, respectively, and let
a < B. upposethat ® isconservativeover A. ThenKz*(®) > KZ*(A) andKz(®) >
Kz(A).

Lemma3.9 Supposethat u = KzZ'(A) > Rg. Then KZ* (A*°) > . Moreover, let
O bethelogic of all Kripke-frames of A*° of cardinality < u. Then ® is complete
and KZ*(®) = u.
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Proof: Let A := KzZ*(A™°). We show that, > . The reader may reflect on the
fact that we can assume without loss of generality thag complete. Them\*?° is
conservative oven and so by Lemm&.8A > . For the second claim, lat :=
KZ'(®). By definition of®, k < ©. But © is also conservative ovey and soc > .

O

This lemma will be quite useful later on. The difference operator is now easily defin-
able:

[#] = Be A He.

Itis to be borne in mind thaR([#]) = {{X, ¥) : X # y} only if § is rooted.
Let us define the following sets:

K, = ({Kz(®): 0 ana-modallogig

K = {Kz(®) : ® ana-modal logig

Kof, = {Kz(®) : © afinitely axiomatizablex-modal logig
K:' = (Kz(®): @ afinitely axiomatizablex-modal logig.

We call these sets the-Kuznetsov-Spectrum and thex-Kuznetsov-Spectrum* and the
finitary o-Kuznetsov-Spectrum andfinitary «-Kuznetsov-Spectrunm*, respectively. Fi-
nally, define the following.

|
@
©
7~
g

Pa = SUPKy Pa ;
Py = SWpK; il = SpK;

We shall call p, the Lowenheim-number and ,oof, thefinitary Lowenheim number of
a-modal logic. It will be established that, = p}, and,o; = ,o(;f so that no name
needs to be given to the other numbe)ar§.(pofl) isthe least cardinality such that for
any (finitely axiomatizable¢-modal logic® and any consistent formulg, if ¢ has
aKripke-model in®, then it has a Kripke-model of size p, (< po';) (similarly for
o and,o;f). The following is easy to establish.

Proposition 3.10 Assume0 < «, 8 < 3.
1. Kf cK,.
Kof, isaset of cardinality = Ry.
K, isa set of cardinality < 2%,
K, containsall finite cardinal numbersand K.
f
Ky, = {0}.
KO'; contains all finite cardinal numbers and &g for finite «.
7. Ifa < pthen K, € Kg and p, < pg.

o AW

Itissimilar for K27 and p2(".

Notice that ifx is infinite, then a finitely axiomatizable extensiorkgfis necessarily
inconsistent. Thuﬁgi0 = {0}. The last claim is shown as follows. L&t be ana-
modal logic with Kuznetsov-Index. Then let® be a modal logic based on one point
and with operator8];, « <i < 8. ThenA ® ® has the same Kuznetsov-Index/as
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4 Afirst exkample Our first example is the logic of the line of real numbers in the
language of tense logic and the difference operator. To motivate the example and to
show the validity of our claims, we will build up this example starting with the modal
logic of the real line. Therefore, consider first the real ke <) as a Kripke-frame

for a monomodal logic. This logic iB4.3 @ H2p — Hp. This is the same as the
modal theory of{Q, <). Hence, its Kuznetsov-Index is Xg. Now adjoin a tense
dual,&B. ThenR(H) = R(H)>, and therefore we can regafl, <) and(Q, <) ina
natural way as Kripke-frames for this language. Now we can distinguish the theory of
the reals from the theory of the rational numbers. Cathain a linearly ordered set

(A, <) apair of open interval8 andC such thaBNC = g andBU C = A. It has

been observed by Wolter iR{J that the property of not possessing a gap can be ex-
pressed axiomatically in tense logic. It amounts to the property of not containing the
linear reflexive frame with two points. So, the tense logic of the real line is a splitting
of the theory of dense linear orders without endpoints by a two point frame. However,
as has been shown by Bull ifiJ[ the tense logic of the real line has the finite model
property. The problem is that this logic admits frames in wHR¢H) is not irreflex-

ive. If it were, no countable orders can exist. For then a Kripke-fr&ti&) would

be an irreflexive, dense linear order without endpoints, which is complete. Now we
add two more operators. These two operators serve to define the difference operator.
The structures over which we now talk are triplés <, ), where(A, <) isa dense
linear order without endpoints and gaps and a well-order orA. Itis now easy to

see that this logic has no countable frames. To that effect notice the following. The
formula [#] p — Hp is an axiom of the logic. Therefore, the relation correspond-
ing toH is irreflexive. We conclude that with this axiom, the logic has no countable
frames. Hence, the Kuznetsov-Index of this logic is exacibysthce any consistent
formula is satisfiable ifR.

Theorem 4.1 Let ®© bethe logic of structures (R, <, ) in the language of tense
logic for both orders, where (R, <) isthereal lineand (R, =) a well-order. Then ®
has no countable models. In particular, Kz(®©) = 2%,

The resulting logic is a 4-modal logic. To geta monomodal logic with these properties
we invoke the simulation theorem frofaZ]. This theorem states that for every finite
numberk there is an isomorphis® — ©S from the lattice ofk-modal logics onto

an interval in the lattice of monomodal logics such that the property of completeness
is left invariant. It is easy to see thidz(©®°%) = k- Kz(®) + k — 1.

Theorem 4.2  There exists a normal monomodal logic with Kuznetsov-Index 2%,

Now what happens if we require th@tis canonical? We have no answer to the ques-
tion. Butthere is one on condition thatis A-elementary. To define that notion prop-
erly, let £, be the first-order language based on binary relation synRols< «, no
constants, and no function symbols. A cl&s®f Kripke-frames is calledlementary

if there is a sentencg € £, such thatf € X if and only if § = y. Anintersection

of elementary classes is callddelementary. Ae-modal logic® is elementary (A-
elementary) if its class of Kripke-frames is elementari{elementary).

Proposition 4.3 Let ® be a A-elementary logic based on a countable language.
Then it has Kuznetsov-Index < K.
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There are two proofs, one using elementary expansions and the other using modal ex-
pansions. We will present both. @ is elementary, its class of frames is characterized

by some countable sa@t C £,. Now adjoin to £, aunary relational consta; for

eachi < w. Call the expansior; . Following [L8], define a translation af by

p! = Ci(X)

)" = =T

@A)t = Tyl

Ot = (YVyRO)y— ¢Ty/xD).

In the last clausg is a variable not already occurringfi. The following is clear.

Lemmad4.4 For every a-modal Kripke-frame§: § i~ ¢ if and onlyif for some L -

expansion §: § b o,

Now, © = ¢ if and only if there exists a Kripke-frangfor © such thaf (~ ¢ if and

only if there exists an,-structure§ such thaty &= T and for someL;-expansion
3T &t = Tandg ' i ¢ if and only if there exists a countablg -structure®

such tha®t = T and®™ b« ¢! if and only if for some countabl®-Kripke-frame
B: & [ o.

The second proofis intrinsic (and actually more general). We eliminate the vari-
ables ing by introducing a new modal operatgr. We substitute inp the variablep;
uniformly by

xi = R-(&HLA-K 1),
for alli < w. Denote the result of this substitution Y.

Lemma45 ¢eOifandonlyify’ec® ®@K.

Proof: If ¢ € ® theng € ® @ K and sog* € ® ® K. So the other direction needs
proof. Suppose that ¢ ®. Then there exists a modé§, 8, u) = —¢ based on a
generalized framéF, R, IF). We construct a® ® K-frameg*, avaluationg* and a
pointut such tha{F*, g1, ut) = —¢*. PutF* := F x ({*x} Uw) and for each basic
modality[J; of ®:

RY(D) = ({6 ), (¥, ) 1 xR@) Y, j € (4} Vo).
Next, for the additional modality put

{06 ), (% 1)) 2 (8. 8. %) = i)

+ -
RT™(X) = { U (X ]+D, (X)) jew

And finally, letF+ consist of all unions of sets of the foranx {i}, i € {x} U, where
ac F. Itis draightforward to check that this is a generalized frame. Furthermore, if
3t is restricted to the modalities @, it is aunion of copies off, andsog" = ©.
This shows tha§ "™ = © @ K. Next, (T, (x, %)) = xj if and only if (§, 8, X) = p;.
It follows by an easy induction thd§ ™, (x, x)) = ¢* if and only if (F, B, X) E ¢.
This establishes the claim. O

Now, if x is constanty! is actually an,-sentence. So, if the class®fis character-
ized byT, the class oB-frames refuting* is characterized by U {—(¢*)'}. Hence
the proof is completed by the following observation, which is easy to prove (or see

[L3] for a proof).
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Lemma4.6 Supposethat ® isacanonical modal logic. Then ® ® K isalso canon-
ical. Moreover, if ® iselementary, sois® ® K.

We will draw from the proof two simple consequences.

Lemmad4.7 Let u beinfinite. Suppose that there exists alogic ® with Kz*(®) =
wT. Thenthereexistsalogic ®°® withKz*(®*) = u and a constant formula x which
is u-satisfiable but not p.-satisfiable*.

Proof: By Lemma there is a formulap which is u-satisfiable but not
u-satisfiabléin ©. Now let®® := ® ® K andy := ¢*, defined above. By Lemnfa2]

this logic is complete andz* (®1) = u*. x has amodel of size in ©®* but no model

of size< u. O

Lemma4.8 Let u beinfinite. Suppose that there exists alogic ® with Kz*(®) =
wT. Then there exists a complete logic ®* with Kz*(©*) = ™ which has no frames
of cardinality < u.

Proof: Bythe Lemm&. Zthere exists a logi® with Kz* (®) = u* and a constant
which is not satisfiable in frames of cardinality.. By Lemmd3.9]we may without
loss of generality also assume that the difference operator is in the language of
OY =0 ® xV (#)x. Inthis logic, T is u-satisfiable but not-satisfiablé. Let ©*

be the logic of the®“-frames of cardinality.. Then®¢ has Kuznetsov-Indexu*.
Moreover, T is u-satisfiable but nof-satisfiablé. This means that there exists no
O°-frame of cardinality< . O

5 Binary branching trees In this and the next section we shall construct modal
logics with countably many operators whose Kuznetsov-Index is exagtlyhere

A is a countable ordinal. Let us take five modal operatgrs. gganqgg such that the
following holds.

1. If Xx R() Yo, Y1 thenyy = yi.

2. If X R1) Yo, Y1 thenyg = y1.

RO = (R YU RG)) ™.

Rgg contains the transitive closure 8fp) U R(z).

Rm =R@"~.

Rgg is locally linear and has no infinite ascending chains.

If X Rgg V. X Rfp) 2, andx R(z1) z;, then eitherzg Reg y does not obtain or
z; Rg y does not obtain.

8. If x Rg Yo, y1 then either

(@) Yo Reg ya, or

(b) y1 R@g Yo, or

(€) Yo=Yy, 0r

(d) there exists a’ such thatx = x’ or x Rgg X" and for noRg-successor
w of X', bothw Reg yo andw Rgg y1 obtain.

No ok~ w
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(ArelationRislocallylinear if x Ryp, y1 impliesyp = y1, Yo Ry1 0r y1 RYyp.) With

the exception of the last two conditions it is not difficult to see that these conditions

can be captured by modal axioms. However, (7) and (8) are quite problematic. For
them we must actually introduce the difference operaté},(jvhich we will there-

after eliminate by two tense duals using a well-order, as above). Note the following

fact, which is easy to prove.

Lemmab.l Put n(p) := pA[#]—p. Let § be a rooted Kripke-frame. Then
(S, B,x) = n(p) ifand only if B(p) = {x}.

Lemmab.2 LetJ beaKripke-framesatisfying (1)—(6). Then§ = (7) if and only
if
S =4(P) = (e P Vo p)-

Proof: Assume that3 satisfies the modal formula. Suppose thatRg v,
X Rfo) 2o andx R@) z;. PutB(p) := {y}. Then (F, B, X) E=¢(p). Now X |=
- P Vo P, from which eitherx =g~ p or X =g~p. Assume the first. Then
Zo =g p and sozy RO y does not hold. Assume the second. Then=g-p and
soz; Reg ydoes not hold. S§ satisfies (7). Now assume conversely thattisfies
(7). Assume thatg, B, X) =41(p). Theng(p) = {y} for somey such thaix Rgg v.
Pick zg andz; such thatx Rp) zp andx R3) z. Then eitherzy Rgg y does not
hold and sazy =g p, or zz Rgg y does not hold and sp, =g p. It follows that
X =qmr P v<g~ p. But from (1) and (2) we deduce also that=yg~p Vo p. SOS
satisfies the modal formula above.

Likewise there is a modal counterpart of the last postulate. For the purpose of its def-
inition lety™ly = ¢ vgp.

Lemmab.3 LetF beakKripke-framesatisfying (1) —(6). Then § &= (8) if and only

if

T E(D) A, — §PAGDV
U1 gP) VYDA D) Ve i D Vra)

Proof: Call the modal formulaz. Assume thaty = (8). Let 8 be such that
(S, B, X) E=4(p):¢(q). Then we haved(p) = {yo} andB(q) = {y,} for someyp
andy; with X Rgg Yo, y1. Now, § = ¢ and so either (a =¢(p A¢D), in which case
Yo R Y1 0r (b) X =¢(q A¢p), inwhich casey; Rgg Yo or (¢) X =¢(p A Q), inwhich
caseyp = Y, or (d)X =¢ pv@ra). If (d) obtains, there is axi such tha = x’

or x Rg X andx' =ggg-~p vg-d). This means that for anjRgg-successow of x/,
eitherw Reg Yo does not obtain ow Rgg y; does not obtain. This is as claimed. The
converse is as straightforward. O

Call IT the logic of all frames satisfiying (1) —(8). It is now important to note that
the rooted Kripke-frames fdrf are binary branching trees. Moreover, suppose that
p=(X:i < w)isapath, thatisg R(p) Xi+10rx RG) x41foralli < wand suppose
that there exists a supremuyy of this path inRgg. This supremum does not need
to exist, but it exists as soon as the path has an upper cover with resfiygt tib is
unique, by the last postulate. For any two incompar&tggesuccessors must at some
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point of the path lead up to distinct successors. Now take anotheqsnting at

Xo. Suppose that it too has a supremuiq, Then there is an< » such that the point
Xi+1is notin the patty. Wethen have thay, is not aRgg-successor of; 1 or in fact

of anyxj, j > i. Hence, any two paths starting at the same point define a different set
of suprema. The same fact can be shown for ascending chaifgjorTherefore,
theIl-frames really are binary branching trees.

Lemmab5.4 Let § be a Kripke-frame for I1. Then § is a binary branching tree
whose paths are well-ordered.

Finally, we will arrange it that the models for the logic are not only binary branching
trees but binary branching trees in which every path has the same well-ordering type.
Todo this we introduce a new modal operatet, [t shall satisfyS5 and the intention

is thatx R([o]) y wheneverx andy are of the same level in the tree. We wixte y

if and only if x R([c]) y. This can be achieved by the following postulates.

Lemmab5.5 Suppose § isa rooted IT-Kripke-frame. Suppose further that R([o])
isarelation on F such that § = v, where

vi=n(p) A (#) (@) — ((0)q <—>molyd AmoD))-

Then x o y if and only if x and y have the same depth in the binary branching tree
(F, R@).

Proof: By order induction. Assume that for evesy< y the claim holds. We aim
to show that it holds fop. The cases = 0 is ttled by assumption thtis rooted.
If y > 0, letx be of depthy. Thenx hasRg-successors. Assume that y buty has
depthy’ # y. Without loss of generality we may assume that y. Putg(p) := {x}
and(q) := {y}. Then the antecedent ofis true, sincep andq hold at exactly one
point. Assumexo y. Thenx |= (o), andsox =goy(q Agfoyp). S0 pick X' such that
X R X'. Then there is &' such tha’ o y’ andy’ =¢(q Agfo)yp). Hencey' Rg V.
Furthermorey =g[clyp, which means that for aly; Rgg y there exists am; o y;
such thax; Rgg x. Now takey; Rgg y. Letit be of depths;. We can choosé; such
thaty < §;. Now there exists ar; Rgg x such thaty; o X;. Now, o is symmetric. By
inductive hypothesis, thereforg, andx; have the same depth. Byt has deptt$;
andx; has depth< y. Contradiction. Now assume conversely thandy have the
same depth. Pick anyt Rgg X. It has deptl$ < y, say. Then there existsya Rg y
of depthé. By inductive hypothesisx; o y;. Analogously we can find; for any
giveny;. Sinceg§ & v, therefore, puttingg(p) := {x} andB(q) := {y}, wefind that
XoYy. This ends the proof. O

Now observe the following. Lek be a transitive order oR. Call a nonempty set

C € Raninductive cone through zif ze Cand forally > z if xe Cforall x < y

then alsoy € C. Cis aninductive coneif there is az such thaC in an inductive cone
throughz. An example of inductive cones are paths. Moreover, every inductive cone
contains a path.

Lemmab5.6 Putcf(p) = p ggh — p). Let § be a Kripke-frame for I1. Then
(3, B, x) = cf(p) if and only if 8(p) is an inductive cone through Xx.

At last we add the following axiom.
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Lemmab.7 Let§beall-Kripke-frameand§ = v. Then§ = rifandonlyif every
branch of § has the same order type. Here

T:=cf(p) Acf(q). > gp— (0)0).

Proof: Suppose that every branch has the same order type and suppose that
(3, B, x) = cf(p); cf(g). ThenB(p) andB(q) are inductive cones through Sup-
pose thatx; is such thatx Rgg x; andx; € B(p). Then, asf(q) contains at least
one path and it has the same order type as any path thsqugle see that there is a
y1 € B(q) of the same depth ag. Hencex; o y;. It follows thatx; = (o) p and so

X =g p— (0)q). HenceF = . Assume now thaf = 7. Letx be the root off. Take
two branched andb’ starting atx. These are inductive cones throughLet them
have well-order typer andy’, respectively. Without loss of generality we may as-
sume thayy > y’. y = 1is atrivial case. Soley > 1. PutB(p) :=bandg(q) :=b'.
Now, X = cf(p); cf(q). Hence x =gf p — (0)q). Takey of depthi,0 < A < yinb.
Thenx R y and soy = p, from whichy = (o) p. Hence there exists @ such that
yoy andy = q. Soy is of depthi andy’ € 8(q) = b’. Hencey = y'. O

Definition 5.8 Let[l¢ =TT vP .

Theorem 5.9 Let § be a Kripke-frame for IT¢. Then Rgg defines a homogeneous
binary branching treeon F.

The formulai =gl is satisfiable exactly at the points whose depth is a limit ordinal.
Now take the formula

V=
A frame which satisfieg has the property that branches have depth at ieasy is

clearly consistent. Henda‘ has Kuznetsov-Index at ledst = 2%°. Now define®,
to be the logic of all frames dfl* whose branches have countable depth.

Theorem 510 Kz(®) = 2%,

So far we have not improved on our earlier example. Now we take a fogite first
add an additional pair of operatagg,andyy, that define a well-order with endpoints
on the frames. The construction is as follows.

Definition 511  Let A% := A™° Gy L.

Lemma5.12 Let A beax-modal logic. Then for arooted § = (F, (< : j <« +
2)): §isaAv°c-frameifand onlyif (F, (Qj: j < «)) isa A-frameand <, isawell-
order with endpoints.

This follows from Lemmd8.Zlusing the fact thagyew L is true in a frame exactly
when the well-order has an end point. That means that the well-ordering type is a
successor ordinal. We note in passing that any set can be ordered using a well-order
of such a type, so that if is complete A“°¢ is actually conservative ovex.

Assume that the framgx}, R) with R(CJ) = & (the one-pointirreflexive frame)
is a A-frame. Denote its logic by the letté¥°. Form the logicA™* by adding the
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modal operators for the binary trees, adding the postulatét @fnd some axioms
connecting the relations.

AT = @ Avee
© P —wp
© pA()N(p) »w—PpPAW—P
® n(PAwT vowT) — [o](=p —wl AwL).

Informally, the first postulate says thRtw) C Rgg, the second that no two points
of equal depth can be related MRty), and the third that there exists at most one
branch along which the relatioR¢yy) is nontrivial. HenceR(yy) is a disjoint sum
of connected components, each of which is contained in a brangjgof

Lemmab5.13 Let 1« be an infinite cardinal number. Suppose that A is complete,
A C ©°. Then A isconservative over A.

Proof: Clearly, the reduct of & *-frame is aA-frame. So it is enough if we show
that eachA-Kripke-frame is the reduct of som&™-Kripke-frame. Consider a-
frameg = (F, R). We construct aA*-frame as follows. First, we choose a well-
ordering that make§ into a A¥°-frame. This is possible. Assume therefore that
§ already has this well-ordering and that its typeridNow take a binary branching
tree® = (G, S) in which every branch has order type Select in® a branchb.
There is a unique bijectiof: b — F such that[Sg N b%] = Rfw), since alsoF
has order typer underR(w). Now defineS as follows. For an operatan of IT¢
put S(O) := S(O). Else putS(0) := £~ R)]. Let H := (G, S). We claim that
$ is aAt-frame. To that end, observe that the reductdb the language of1¢ is
isomorphic to® and the reduct to the language/ois isomorphic to a disjoint union
of § and some one-point irreflexive frames. Herfge= I ® A. Now, S(w) €
S@. sncex Stw) yonlyif x,y € bandx Rgg y. Furthermore, ix Sty) y then

x S([0]) ycannot hold, since thenandy have the same depth. Sp}= A™. Finally,
the relation is nontrivial along at most one branch. O

By Lemmd3.8] we deduce that ifA is complete theiz(AT) > Kz(A) and similarly
for the modified Kuznetsov-Index. However, far better bounds can be obtained.

Lemmab5.14 Let § bea AT-Kripke-frameand §~ arooted subframe of its reduct
to A. If §~ hascardinality u > Rq then § has cardinality 2~.
Proof: This follows from Propositio®.1] O

Lemma5.15 Let A be a complete modal logic with Kuznetsov-Index™ i. Then
®° N A is complete and has Kuznetsov-Index™ .

This allows us to show that the Kuznetsov-spectra are (almost) closed under expo-
nentiation.

Lemmab.16 Let i be an infinite cardinal number. Suppose that there exists a
modal logic with Kuznetsov-Index .. Then there existsamodal logic with Kuznetsov-
Index 2+,
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Proof: Let A be a logic withKz(A) = n. We may assume that is complete and
A C ®°. By Lemmd5.13 AT is conservative oveh. Let E be the logic of allA -
Kripke-frames of cardinality 2#. By assumption om\, there is a formulg which is
u-satisfiable but nat-satisfiable for any. < u. By Lemmab.14] ¢ is 2*-satisfiable,
but it is notk-satisfiable for anyx < 2*. HenceKz(g) > 2*. By definition of g,
Kz(E) < 2* and the claim is shown. O

Lemmab.17 Let u be an infinite cardinal number. Suppose that there exists a
modal logic with Kuznetsov-Index* u. If © = AT, there exists a modal logic with
Kuznetsov-Index* (2*)*. Elsg, if cf(1) = w, then there exists a modal logic with
Kuznetsov-Index* 2<# = sup{2* : A < u}.

The proof is similar to the previous one. Notice thap{2* : A < u} = sup{(2*)* :

A < u}. (Weremark thatw < 2<#* < 2*. This is about the only restriction orr2.

The size of Z* otherwise depends very much on the universe.) We note the following
consequences.

Corollary 5.18 cf(p(i) = cf(,o;f) =w. w < Cf(py) = cf(p}) < 2“. In particular,
all Lowenheim numbers are singular.

Corollary 5.19  p, = p},. pof( = p;f.

Proof: Wealready know thap, < p;. Now letu € K*. Then if u ¢ K, we have
w = AT with A € K,. Now, 28 € K,, by Lemma&Idandu < 2*. Sinceu was
arbitrary, we have}, < p,. The second claim is shown analogously. O

6 Thecountablelimit Wehave shown inthe previous section how to create a logic
with Kuznetsov-Index2* from a logic with Kuznetsov-Indexu, on certain assump-
tions onu. Here we will deal with the countable limit of cardinal numbers. We will
show a theorem both for and wherep is a countable limit.

Lemma6.l Supposethat u isa cardinal number of cofinality w. Suppose for a
countable sequence (y; : i € w) with limit u there are complete logics ®; such that
Kz*(®;) = y; and the one-point irreflexive frameis a ®;-frame. Then thereisalogic
A suchthat Kz(A) = KZ*(A) = .

Proof: All ®; are modal logics based on countable set®f operators. We shall
assume that th&; are pairwise disjoint. LeO := | J;., Oi. Define f : O — w by
f(O) :=iifand only if J € O;. Then form the logic

A= ®@i @ (-0L—DOL: f(O) £ f(O)).
lew

This is the fusion of all th&; such that if there is a transition frorito somey in a
frame using @;-modality then no transition from to any point exists using @j-
modality, wherej # i. Now let§ be a®;-frame. Extends to the frameg®, in which
R@D):=RO)if f(O) =i,andR°(D) ;=@ if f(O) #i. Theng® is aA-frame.
We all it asimple extension. It iseasily established that-frames are disjoint unions
of simple extensions of some frames. Hercés complete with respect to simple
extensions. It follows thaz*(A) < u* since any formula has a model based on a
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simple extension of a frame and we can choose it to be lesg/tharsize. Now for
eachd < u thereis an such tha$ < y;. Furthermore, there is a formufaconsistent
with ®; such that the least frame fpihasy; points. Now the simple extension for that
model is aA-model forg. Moreover, anyA-model forg must have at least-many
points, since it must contain a simple extension 6fanodel forg. This shows that
A has Kuznetsov-Indéx> 1. Similarly it follows that the Kuznetsov-Index af is

— . 0

We note that ifg is a formula, one can actually construct a formpla \/;_, ¥
such thaty is constanty; is in the language o®;, i < n,andA F ¢ «— \/,_, ¥i.
Namely, choose large enough so that no modality@bccurs in any of th®;. Now
choose modalitie8];, i < n, with f(J;) =1i.

QOZ(p./\./\DiJ_\/\/OiT
i<n i<n
Now ¢ A A\;_,-L can be reduced to a nonmodal formulaArand¢ A ¢; T can be
reduced to a formula containing only modalities fr@n This shows in detail why
Kz (A) < .

Lemma6.2 Supposethat p isa cardinal number of cofinality w. Suppose for a
countable sequence (y; : i € w) with limit u there are complete logics ®; such that
(a) a difference operator [#] is definablein @; for all i < w, (b) KZ*(©;) = ¥, (¢)
the one-point irreflexive frame is a frame for ®;. Then thereisalogic A* such that
Kz(A*) = . KZ(A*) = ™.

Proof: Proceed as in the previous example and define the lagidow extendA
by two operatorsiH andH, which are tense duals; moreovit satisfiesG.3, while
H satisfies

HlLABHL v.B-HL

There are formulag; such thaip; can be satisfied in &;-frame of size at least;,
i < w. By Lemmd4.7lwe may assume that they are without variables. Finally, for
eachi < w add the postulates

OT. » BT LA-H 1, f(O) =i
—H1l - [#A]BL

Gir1 — ~[Fir] B—oi

@i = —[#] 5 iy

Here E£4i] isthe difference operator @;. This defines the logia\*. Frames for A*

are made as follows. For eachtake a simple extensiog of a ©;-frameg;. Let

® = (G, R) be the disjoint union of these frame8.is a frame for the reduct of* to

the fragment withoul and=. R(HB) andR(B) still need to be defined. We pick from
eachF, i < w, apointx. Now put R(H) = {(xj, %) :i < j} andR(B) := R(H)".
This completes the definition G, R). We claim that(G, R) &= A*. This is obvious
for the fragment withouf® and&. (Note that we need condition (c) here to ensure
that the disjoint union is a frame f@;.) R(H) is a disjoint union of well-order of
type 1 orw. Furthermore, there exists exactly one well-order of typand in it the

ith pointis fromg?. Finally, the last two series of postulates say that if aith@oint
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of the well-ordery; holds, then at thie+ 1st the formulap;, 1 holds. And ifi > Othen
also at the — 1st point the formulg;_1 holds. Now consider the formula. It has a
®o-model of sizeyy. By construction, the only way to fulfilpg is to create a disjoint
sum of®;-models(F, Bi, Xi) = ¢i, | < w, anddefineR(H) := {(x;, xj) 11 > j}.1 The
resulting frame has cardinalitgp{y; : i < w} = u. Moreover, by choice of the;, no
frame forgg can have size: i For then its size would be y; for somej. However,
@0 Fa» = H —¢j and no model fop; exists which has size y;: acontradiction. So
the Kuznetsov-Index oA * is at leastw and the Kuznetsov-Indé&xat leastu ™. Now
if A* has Kuznetsov-Index u*, we may actually take the logic of the frame just
presented and we easily obtain a logic with Kuznetsov-Ingdéex It is readily seen
that this logic has Kuznetsov-Index O

Theorem 6.3 Let y be a countable ordinal number. Then there exist logics A and
A* suchthat Kz(A) =3, and Kz* (A*) = 3,,.

Proof: We will show the result for the modified Kuznetsov-Index. We have seen
that the result is true fop = 0. In all examples presented, a difference operator is
definable. The claim is true for each successor ordintie claim holds foy + 1 if

it holds fory, by Theorenfc.17] Moreover, if there is a logia.,, in which a difference
operator is definable, then there is a logig, 1 such that a difference operator is de-
finable in it. (Namely, proceed from to A™“° if necessary. This does not change the
modified Kuznetsov-Index, by Lemni&a9)) The cases whergis a countable limit

or a successor of a countable limit are covered by the previous results. O

Corollary 6.4 (GCH) Lety beacountableordinal number. Thenthereexist logics
A and A* suchthat Kz(A) = 8, and Kz (A*) = R,,.

Corollary 6.5 If a > R, then cf(py) > w1.

7 Simulating countably many operators  In [L2]it was described how modal logics
with finitely many operators can be simulated by a single operator. This establishes
already that for each there is a monomodal logic with Kuznetsov-Index How-
ever, if we want to reach higher, we need to simulate also countably many operators.
This however is not as easy as in the finite case.

LetF = (F, R) be a Kripke-frame based oty many operators,Ji, i < w. Then
define a monomodal franf¥® := (FS, <), where

FS = (FU) xw
{(,0), (x, ) ri=]+1)
< = U {1, (X j):i# ] xeF}
U {{(x1),(y, 1)) 1 x, y, € F,x R(Oj) y}.

(We assume that¢ F.) We call a monomodal frant8t asimulation frameif it is of
the formgFS for somew-modal Kripke-frameg. Given a complete-modal logicA
we putAs :=Th (Krp A)S. In other words, we take the logic of the frames simulating
the Kripke-frames ofz. The logic of all simulation frame&, is dso calledSim(w).
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The following are theorems of this logic. (In contrast to the case of finitely many
operators this set is not a complete set of axioms.)

wi = Ol A-0OL
ai = Qwi. A.mwii1

(A) wiAOp.— .Op,

(B) aj — Quj, i £ ],
©C) ainO(ajap) = U@ —>p), i#]
(D) aiAnp—O@j—= Ol@iAp), i#],
(E) aiAO(wiAp)— O(wi — p),

(F) ai = =Qwj, i # ],
(G) 0=3(wi A p) = O=}(wi — p),
(H) oj— Quwi, j >

Let the logic axiomatized by these postulatesibeClearly, ¥ C Sim(w). Now let
M be aw-frame. Suppose that a poirsatisfying somey; is a root oft. We will
show that althought need not be a simulation frame, it does contain a subframe
which is. DefineA; ;= {X: X = «;} andQ;j := {X: X &= wj}. By (C), each poini
in Aj sees exactly one pointin Aj, if i # j, and then by (D) we havg < x. This
establishes bijectiongj; : Ay — A; such that foix e A andy € Aj we havex <y
if and only if y = ¥(x). Now, putF := Ag. Then a bijectiorv from F x w to |_J; A
is defined by ((X, i)) := ¥qi (X). Put nowR(0j) := v-1[<N AZ]. From (A) we see
that each point iif2;, 1 has at most one successofin By (G) we see thatin a rooted
frame Q; contains exactly one point. Calld. Extendv by puttingv((x,i)) := 0;.
By (H) and the definition of the;, 0j < o; if and only if j > i. By definition of the
«j, for everyx € A; we havex <1 o;, and by (F) we have # o for j #i. Wewish to
claim thatv is a bijection. However, this is not generally the case. Therefore, define
SON) = Ui, A U Qi. Thent induces onS(M) a frame which is isomorphic
to a simulation frame. We p®ts := (Ao, R) with R defined above and call it the
unsimulation of 9t.

We define for a formula ino-many operators a simulation as follows.

p° = agAPp

(—g)® = —(aoA¢°)

(pAY)® = @ AYS

Oip)® = O = O(aj = O(ag — ¢%))).

Lemma7.1l Let9 bea W-Kripke-frame. Supposethat (M, B, X) = ag A ¢°. Then
there exists a valuation y and a world y such that (15, y, V) = ¢.

Proof: DefineF := Ay, R(j) as above, ang/(p) ;= B(p) N Ag. Puty = x.

It is shown by induction orp that (3, y, y) &= ¢°. Namely, for variables we have
M, B, x) = pifand only if p € B(p) N Ag if and only if p € y(p) if and only if

(&, ¥, X) = p. The steps for- andA are clear. The step for the modal operators is a
straightforward calculation. O
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Lemma7.2 Let 3 bea Ky,-Kripke-frame. Suppose that (3, v, y) = ¢. Let g be
a valuation on §° such that 8(p) N F x {0} = y(p) x {0}. Then (F5, B, (y.0)) =
oo N\ gos.

The proof is a straightforward induction gnwhich will be omitted. Now assume
that A is a complete&kg-modal logic with Kuznetsov-Indéxu, u infinite. Look at
the logic AS. It is complete, by definition. Furthermore, it is complete with respect
to Kripke-frames of size< 4 x w = u. SOA® is u-completé. Let A < w. Then
there exists a formula, such that naA-Kripke-frame forg; has size< A. From
LemmdZ_Tlwe see that ifg A ¢; has aA>-Kripke-model based ofit, then there is a
model forg; on its unsimulatio®is. By assumption, this frame has size.. Hence

M has size> A. So the Kuznetsov-Indexof ASis > u.

Theorem 7.3 For every Rg-modal logic ©,Kz(®) = Kz(®%) and Kz*(®) =
Kz* (©9).

Corollary 7.4  Suppose that y is a countable ordinal number. Then there exist
monomodal logics A* and A such that Kz(A*) = 3, and Kz(A) = 3,.

Corollary 7.5 (GCH) Suppose that y is a countable ordinal number. Then there
exist monomodal logics A* and A such that Kz*(A*) =R, and Kz(A) = R,,.

We notice in passing the following. IA is a logic in which a universal modality is
present them\ S is 3-transitive, that is, any point reachable from a gixes actually
reachable in 3 stepsk4, by contrast, is 1-transitive.) So, we conclude that in the
above theorem we can strengthen the assertignaad A* being 3-transitive.

As a result of these simulation theorems we note the following.

Theorem7.6 Let0 < «, 8 < Rq1. Then
1 K, = K’B and Poa = PB-
2. K, =K} and oy, = pj.
In the light of this result we will now drop the indexand speak oK, p, K*, andp*.
However, notice that the spectra of finitely axiomatizable logics behave slightly

differently. For if« is infinite, then]Kg(f = {0}. Hence we only have the following,
which is a consequence of the simulation resultéa] &nd the results of Sectidfl

Theorem 7.7 Let0 < «, B < Rg. Then

1. Ky =K and p, = py.

* f * f * *

2. K, = Kﬂ and p} = Pk
We can draw from these results an interesting corollary.
Lemma7.8 pf, p*f e KNK*.
Proof: Let®;,i < w, be an enumeration of all monomodal logics which are finitely
axiomatizable. By Lemml&Tlthere exists a logid whose Kuznetsov-Index is the
limit of all Kuznetsov-Indices of thé;. By CorollarylZ.4]there exists a monomodal

logic with this property. Hence® e K. By Corollary[5.19 p = p*. Finally, it is
easily seen that " € K* as well. O
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Sincep € K andK has no maximal element we conclude the following.
Theorem 7.9  p; < p.

Furthermore, dfp) > w1.

8 Reaching higher The methods established so far can be improved rather dras-
tically. Before we show how, we need to introduce some more tools. Recall from
[12] the following characterization of modally definable first-order conditions. Let
0j, j < «, be our basic operators. Define for a finite sequedice «* the operator

[° by induction.

Te =
O = O0O%

Heree is the empty sequence. Furthermore, for a fieite «* put
% = /\D‘?w

oes

We may regard1° and(S actually as primitive operators, and it turns out that we
have for any framéF, R)

R(*) = {{(X,x):xeF}
RO = R%)o F{(Di)
R(DS) = U&es R(O)

A variable in a first-order formula is calleédherently universal if it is quantified by
auniversal quantifier not in the scope of some existential quantifier. The following is
shown in [[Z], Theorem 5.6.1.

Theorem 8.1 (VX)a(X) isdefinable by means of a Sahlgvist formula if and only if
it iseguivalent to a formula that can be produced from constant formulas and formu-
las of the form x R(C1%) y (called ground clauses) using A and v, and the restricted
quantifiers (3y) (x R(CI®) y A B) and (Vy)(x R((CJ°) y — B) such that any ground
clause contains at least one inherently universal variable.

Now, in order to make use of this theorem, we observe the following. We know that
with the introduction of a difference operator we also have the relatiorhis allows
us to define theniversal modality, [u], by

[Ulg =g A[#]e.

We have thatR([u]) = F x F for any rooted Kripke-frame (the rootedness is neces-

sary, of course). If we assume this, then we can actually define the unrestricted quanti-

fiers; for if § is rooted therF = (Ay) (X R([u]) YA B(y)) ifand only if § = (3X) B(Y).
Moreover, in B] the so-called inaccessibility relation was introduced and ax-

iomatized. Informally, ifCJ is any modal operator, thell is the correspondingn-

accessibility operator or simply thecomplement of OJ if x R(H) y if and only if not:

x R(O) y. This can be put down with a simple axiom. Put

cm = (Wn(p) — (Op <— —4p).
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Lemma8.2 Arooted Kripke-frame (F, R) satisfiescmif and only if R(l) = F2 —
R(O).

This allows us to lift the restrictions of the Sahlqvist theorem drastically.

Theorem 8.3 Let o be a sentence in R(LJ)), j < «k—possibly using restricted
quantifiers—such that every prime formula contains at least oneinherently universal
variable. Then the modal language can be enriched conservatively by some finitely
many operators (and some axioms) such that « is definable by means of a Sahlqvist
formula on all rooted Kripke-frames.

Proof: First, we adjoin the difference operator by means of two relations. Next, for
every negative ground claus€x R((1°) y) we introduce the complement operator

of 0%. Then, by appeal to Theord@l] the theorem is proved: any negative ground
formula can be replaced by a positive ground formula, and the unrestricted quantifiers
are in fact restricted quantifiers (on rooted frames). O

Remark 8.4 The definition of cm is, of course, not Sahlqvist (otherwise the result
would trivially follow from the earlier ones). We use this result to encode the axioms
of set theory into modal logic. Even with the help of this theorem this turns out be a
nontrivial exercise. For it is simply not guaranteed that all axioms of set theory are
of the form required by the above theorem. Doing matters this way would also miss
the point: there is a first-order axiomatization of set-theory, and if it were translated
to modal logic the resulting logic admits small models, namely, countable models.
Hence, the trick is to use a mixture of first-order and second-order axioms.

Let us start with the language in one operatat, [We adjoin on the way some op-
erators, always finitely many, in order to express our postulates. We illustrate the
technique with some examples. For ease of readability also we @vijte x)p and

Ay € X)p in place of (Vy) (y € X — ¢) and(y) (Y € X A @), respectively.

Foundation There are no infinite descendirgchains.

Introduce the relatios and its transitive closure™. Add the axiom
G for ot.

[3*1(>"1p— p) = [>7]p.
This ensures that no set contains an infinite descenaicigain.

Extensionality (VXY)(X=y «— (V2)(ze X «<— Z€Y)).
This has the form required by the theorem. (For this formula is equiv-
alentto
VXY)(X=YA (V2))(ZeEX<«— ZEY))V
XAEYA(FD)(ZEXAZLY.VZEXANZEY)))
In the first disjunct all variables are universally quantified, in the sec-

ondzis existentially quantified. However, every prime formula con-
tains eitherx or y, which are inherently universal.)
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Set Union YX)@Y)(V2)(ze y «— (Fu e xX)(ze u)).
Introduce the relation symbef together with the axiom

(VXy)(X €%y «— (FZ)(XE ZA ZEY)).

This satisfies the conditions of Theorgndland we may rewrite the
first formula into

(VX)AY)(V2)(ze y «—> z€2X).

However, it still is not in the right form since the prime formuala y
contains no inherently universal variable. Therefore we adjoin a new
relationU and some postulates such tkdd yif and only if y = [ x.

Since there is a unique union, the above postulate canin fact be rewrit-
ten into the required form. Namely, add the following axioms

1. (")@y)(xUy),

2. (Yxyzy(xU yAaxU z— y=2),

3. (VXY) (XU y «— (V2)(z€2 X <> z€Y)).
Now the postulates are in the required form. The axiom is a conse-
quence of these postulates.

Sngleton Sets vVX)@Ay)(Y2)(ze Yy «— 2= X).

Adjoin a relatione,, with the intention thak €, yif and only if y =
{x}. Now add the postulates

1. (v@y)(xery),

2. (VXY2)(XELYAXELZ—> Y=12),

3. (VXy)(X€1Ly —> X€EY),

4. (VXYy2)(YELXAZEX—> Z2=Y),

5 (Wxy)(ye XA (VZze X)(z=Y) > Y€1 X).
These postulates have the required form.

Power set VX)) 3AY)(V2)(ze y «— ZC X).
First, we defineC. Wehavex C yifand only if (V2)(ze x — ze y).
Now, adjoin a relatiorc (and an operatord]) and the postulates
1. (VXy2)(XC YAZEX— ZEY),
2. (VxXy)A)(XLy > zeXAZLY).

After the introduction of the subset relation we introduce a relafion
such thatx P yif and only if y is the powerset ok. The following
postulates are added.

1. ("™)@Ey)(xPy),
2. VxXy2)(XPyAxPz— y=2),
3. (VXY)XPY<«— (Y2)(ze Yy «<— 2 X)).

These postulates have the required form.
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It already emerges that we can surround some problems by defining new relations,
corresponding to set theoretic functions. This will become especially useful when
talking about replacement. Furtherffis a relation corresponding tb(e.g.,Pis the
relation corresponding to the powerset function we may also introduce the func-

tion f into our language. Locutions such as= f(y)’ are equivalent ty F x, and

so the syntactic description of Sahlqvist formulas remains intact even with functions.
Moreover, one can also adjoin new unary predicates which correspond to Boolean
constants. Here is a definition of@, the property of having exactly two elements.

It is mirrored by a Boolean constant 2 with the following postulates:

1. 2= (Aizz@)pi = Vicj<3(2) (P A P));

2. 2— [Bl]J_.
The first axiom says that if we have a node with property 2 then it has at most two
successors while the second says that no node is a singleton. Kigngex) = 2 if
and only ifx has two elements if and only if(). Incidentally, we also have(X),
which is nothing but3y)(y €1 X). Ingeneral, we have the following theorem, which
is easily derived from the Theordgn3]

Theorem 85 Supposethat chisa Boolean constant symbol and P isa unary pred-
icate symbol. Let Q(x) be a condition satisfying the conditions of Theorem[8.3]
Then the condition (VX)(P(X) «— Q(X)) also has this property and there exists a
Sahlgvist formula ¢ in some suitably enriched language in which cn may occur, such
that for any rooted Kripke-frame §, § = (VX) (P(X) «— Q(x)) ifand onlyif § = ¢.

It is analogous for modal operatdrs and binary predicate® where the intended
postulate ix R(O) y «— Q(X, y). For replacement, we will have to define the no-
tion of arelation from x to y and afunction from x to y. First, we define the notion of
apair p with componentx andy. Recall that the paitx, y) is defined asgx, {x, y}}.

Replacement pis a pair if and only if
1. pis atwo element sgb = {x, q} such tha € q,
2. g={x}orgis atwo element sat = {x, y}. Inthe first caser,(p) := X,
mo(p) := X and in the second casg (p) := xandmo(p) ;=Y.
So, define

1. (¥x)(pair (x) <— 2(x) A Ay)(Y € XA Y €2 XA (YZ# Y)(Z € XA
1(2)))),

2. (Vx)(pairy(X) <— 2(X) A Ay)(Yy € XA Y €2 x A (Vz # ¥Y)(ZE XA
2(2)))),

3. (YX)(pair(x) <— pair,(X) Vv pair,(X)),

4. (VXY)(X 71 Y <—> pair(X) Ay € XA Y €2 X),

5. (VXy)(Xma y <— (pair (X) AXm1Y) V (paif,(X) AY e2XA=(yeX))).

We introduce relationg, andn, together with the axioms

1. (Vy2)(y m z <— mi(y) = m1(2)),
2. (VYD) (Y n2 Z «—> m2(y) = 72(2)).
Next, we introduce unary predicates rel and fun with the following definitions:
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1. (YX)(rel(x) «<— (YY) (Y € X — pair(y))),
2. (VX)(fun(x) <— rel(x) A (YY)(YZn1 Y)(Zn2Y)).

Finally, we introduce the relations dom and rng. They are partial functions de-
noted by the same symbols. We abbreviatefloy) | the fact thatf is not de-
fined onx and by f (x) 1 the fact thatf is defined orx. (These are equivalent

to the formulas-(3y)(y = f(x)) and@y)(y = f (X)), respectively.)

1. (Yxyz)(xdomy A xdomz— y = 2),

2. (Yxy)(y e dom(x) «<— (F2)(ze XA Y =m1(2))) vdom(X) |,
3. (YXy2)(Xrngy AXrngz— y = 2),

4. (Vxy)(y e dom(x) «— (F2)(ze XA Yy =m1(2))) v dom(x) {.

The axiom of replacement becomes
(Vxy) (fun(x) A y = dom(x) — (32)(z=rng(x))) .

Finally, we turn to the axiom of comprehension. Unlike in first-order theories we do
not require that from a given set we single out those elements that satisfy a given prop-
erty. Rather, our axiom says something like thisx I§ a set (that is, a point in the
Kripke-frame) and we have a collectidhof points then there is a sgtthat contains
exactly those sets which arexrand inY. By replacingY by Y N x we can derive the
(equivalent) condition:

MY)(YX)(Y S Xx— @AY)(V2)(zey<«— z€Y)).

Hence, we are playing with the sets of the metatheory (called “collections” or
“classes”) and the sets of the model itself. The axiom is the following. (Heig,
the complement o#.)

Comprehension (un@) Aful(p— [€]la) — (W ([2]pA[E]—p).

A Kripke-frame satisfies this formula if and only if for all collectioWis= 8(p) and
Z = B(q): if Zis a set (!) and every member ¥fis e-related toZ (in other words,
if Y C Z), then there is a setsuch that all members afare inY and no member is
notinY. Inother wordspy = Y and soY is a set. This means that every subcollection
of a set is a set.

Now, several auxiliary notions can be definedas the same cardinality gs—
in symbolsx ~ y—if and only if there exists a bijective function fromto y. For
simplicity, we make use of the Cantor-Bernstein Theorem. We first defimse of
lesser cardinality thag', x < y, and then definex~ ybyx<yAy<x.

1. (YX)(Inj(x) <— fun(x) A (YY)(YZn2 Y)(Y 11 2)),
2. (VXY)(X <y «<— (32)(inj(2) Adom(z) = XA INY(2) = Y))),
3. (VXY)(X~ Yy <«—> X< YAY=ZX).

Readers may have noted that unary predicates sometimes occur but the variable is not
inherently universal. Since unary predicates correspond to Boolean constants and the
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occurrences of constants are not restricted by the Sahlqvist TheorefZpei {ol-

lows that there is no restriction on occurrences of prime formulas using unary predi-

cates. A quick way to see this is as follows.Hiis a unary predicate, introduce a bi-

nary predicate& with the axiom(vYxy) (Q(X, y) «<— P(y)). This is Sahlqvist. Now

let « be a formula with occurrences &. Replace occurrences &f(y) by Q(X, y),

wherex is inherently universal. Call the reswl®. Then if all binary relation symbols

of « satisfy the conditions, so doe&. If this is done for all unary predicates, we end

up with a formula that is Sahlqvist. So, there are no conditions on unary predicates.
An ordinal is a set which is transitively and linearly orderedédithat it is also

well-ordered bye follows from the foundation axiom). To define this property we

introduce the relatiof® defined by

(VXY)(XQY «— X YAXAYAYEX).
(xQyifand only if xandy are (different andg-incomparable.) Therewith we define
a prgperty ord x) by
(Yx)(ord(x). «— .(YY)(y €’ X — yeX)A (VY e X)(VZQy)(z & X)).

This can be defined in modal terms by Theol@hd Using the ordinals we can installl
the axiom of infinity in the following way: we define “limit ordinal” by

(Vx)(lord(x) <— Ay)(y € X) A (YY)(Y € X = Y €2 X)).

Infinity @x)lord(x).

A cardinal number is an ordinglsuch that for every ordinad: if X < ythenx~y
does not hold. Again, using Theorghtlhis can be rendered into modal terms.
Choice The axiom of choice is equivalent to the axiom of well-ordering.

Hence we take as axiom the statement

(V) @y) (ord(y) A X~ y).
This has the required form.

In this way, all axioms of set theory ZFC are converted into modal axioms involving
some expansion of the original signature by some finite set of operators. Call the re-
sulting logicX. Let X~ be the logic without the axiom of replacement. We do not
know whetherz~ or X are complete.

Lemma8.6 Supposethat § isa rooted Kripke-frame for X. Then (F, €) satisfies
the axioms of ZFC. Moreover, every class contained in a set is a set.

Likewise for ¥~. We define the restricted univers®s, A an ordinal, in the usual
way.

Vo = (@)
Vier = o)
A = U< Vi A limitordinal

Hereg is the uniques-minimal member oV.



MODAL LOGICS 167

Lemma8.7 LetF bearootedKripke-framefor X~. Then|V; 1| =221, Itfollows
that |Vw+k| = j)»-

Proof: It is enough to observe thaf, . ; is in one to one correspondence with the
classes oW,. Hence its cardinality is”2wherey is the cardinality o;. O

Theorem 8.8 A rooted Kripke-frame of £~ has cardinality 3;, A a limit ordinal.

A cardinalu is inaccessibleif it is > Rg, regular, and a strong limifu is regular if
it is not the supremum of . many cardinals, andsirong limit if 2 < u for every

v < 1 (see JecHI0)).

Theorem 89 The Kuznetsov-Index of X iseither 0 or someinaccessible cardinal.
ItisOif and only if there exists no inaccessible cardinal.

Proof: Let(F, R) be a Kripke-frame fo&. Then(F, R([€])) is a model of ZFC set
theory. It follows thaf F| must be an inaccessible cardinal. If inaccessible cardinals
do not exist, therF = @ and so the Kuznetsov-Index &f is 0. Otherwise, letr

be inaccessible. Thef\/,, €) is a model of ZFC. It can be turned into a frame for
ZFC by interpretinge as the relatiorR([€]) and suitably definindk(CJ) for the other
operators. O

It is not hard to see that the logic of the smallest model of ZFC in the signature of
3 is such that its Kuznetsov-Index is O if no inaccessible cardinal exists and that it
is the smallest inaccessible cardinal otherwise. Notice that the consisteatisof
independent of the existence of inaccessible cardinals, since itis only a finitary notion.
It follows that if X is consistent but no inaccessible cardinals exist, hdras no
Kripke-frames and is therefore incomplete. Hence, the completenassiepends

on the structure of the universe.

9 Some factsabout p Let us recall the facts so fak,, does not depend amand
S0 p, is independent ok as well. Furthermorep, = p;;. K is a set of cardinality
< 2%, and it is closed under countable limits apd— 2*. Now, what is the size of
0? We will establish here a characterization in terms of definability. The results ob-
tained here make heavy use of certain set theoretic constructions which are explained
in detail in [G].

To approach this question, we will compare the expressive strength of modal
logic with that of monadic second-order logi€. is a language of monadic second-
order logic (MSO) if it contains

1. acountable set of individual variables and a countable set of class variables,
enough Boolean connectives (EgA und—),

the first-order quantifieré and3,

the second-order quantifiersandd,

at most countably many first-order constants, functions and relations,

6. at most countably many class constants.

arwDN

Pure MSO is that particular language that has no first-order constants, functions, or re-
lations, except equality, and has a single class constant, denolt_edAo!]Ii-formula
is a formula of MSO in which the class variables are only universally quantified. A



168 MARCUS KRACHT

x1-formula is a formula in MSO in which the class variables are only existentially
guantified over.

The standard translatiopf, defined in Sectioft] defines a translation of modal
logic into first-order logic. We lep? be defined by

Py = R(X,
(—p) = =g,
(@AY = ¢ Ayl
Op)® = (YY)XRO) y— ¢[y/x]).
Now, let (YP)¢® be the universal closure @f. So, P = P, ..., P,_1, where all

occurring variables ap are of the formp;, i < n. Then we have
FEe iff FE VP

Consequently, a modal logic defines a set of structures that is definable by a set of
Mi-sentences.

If we readP; (x) simply byx € B, (Vv I3)¢5 is al‘I%—sentence in the language of
set theory. We wish to show now that conversely for Bijysentencey there exists a
modal formulay* such tha = v if and only if § = ¥*, given that we may actually
enrich the signhature somewhat. This will be enough to show that the nysrdzer
be equated with an analogously defined number for a sﬁﬁe‘brmulas. There are
two ways to proceed. The firstis interesting in its own right but will not lead to a full
result. Only the second method succeeds.

Here is the first method. Recall TheorBnil Bni] Using the methods Ofi[]] one can
actually lift this theorem thIl-sentences of the forigty P) (VX)a( P, X) where ground
clauses are of the forr~)y R(DJ) y orye P ory¢ B. There is no condition on
the variabley in the last two cases. In particular, it need not be inherently universal.
Going through the same arguments of the previous section one can then show that
any sentenceVP) (Vx)a(P X) is modally definable on rooted Kripke-frames in an
enriched signature if only any ground clause of the forR(CJj) y' or its negation
contains at least one inherently universal variable.

We will now show that the last condition can almost be eliminated if we are
working in the language of set-theory. First, we can reduce the second-order prefix to
asingle variable using the typical coding of sequences by sets. Further, assume that
the formula is not second-order but first-order. We then introduce Skolem-functions
to eliminate all existentially quantified variables. For exampt) (3y)o(X, y) be-
comes

(¥X)e(X, (X))

and the additional postulates ensuring thas a function are clearly special. How-
ever, Skolem-functions are not necessarily unary. So, we replanegnSkolem-
function f by the functionf®, defined om-tuples of sets. If" denotes the projection
of ann-tuple to itsith coordinate, we require, therefore, that

f2(y) = f(g(y). 71 (Y). ... 7p_1(Y) -
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Weintroduce into the formulavx) (3y)e(X, y) the functionf® rather thanf. Hence
we have to transform the formula into

VR (YY) (\ 7(Y) = X = 9(%, T9(R))).

i<n

It is readily checked that the formula expressing thatis defined only om-tuples
is special. So we have replaced the existential quantifier by a universal quantifier at
the price of introducing only a binary function.

If the formula is, however, not first-order but truly second-order, matters are not
so easy. Forthenthe Skolem-function, in addition to depending on the first-order vari-
ables may also depend on the second-order variable(s). Let us therefore try another
method. Consider any signature of MSO. Recall that we may have countably many
first-order relation and function symbols (and constants). We can, however, recode
the relation and function symbols by means of a single ¢dlasfich describes them.

(To see how, note that we may write countably many relationg as a single subset

of V® which again can be recoded inth All these codings are elementarily defin-
able.) Therefore, we add some constdrib denote this class and translate a formula

¢ into ¢*® which is a formula of pure MSO with one constabt, and one relation
symbol, €, in addition to equality. So, anl]I}-sentenceo of the original language

is satisfiable in a second-order model expanding the uni&se) by relations and
functions if and only if there exists soniesuch thatV, €, U) satisfiesy®. Further-

more, ifp is 11, so isg®. Since we can use Boolean constants to denote clag®es,

is by the results established above a sentence that is modally definable in a suitable
signature!

Definition 9.1  « is theindex of some countable s&tof ITi-formulas if the smallest
model forT has cardinality. If T is finite, « is called dinitary index. LetP be the set
ofindices and®' the set of finitary indices. Finally, put:= supP andr " := supP".

Theorem 9.2  Suppose that © = 3, for some « whichis0 or alimit ordinal. Then
weKifandonlyif u e Pand u € Kf ifandonly if i € PF.

Proof (Sketch):  Observe that for the reduction bif}-formulas into modal logic we

do not need full set-theory but rather enough so that we can code countable sequence
of sets by sets. So the reduction works actually in ZFC minus Replacement. Models
for this theory can be built oW/, for any limit ordinala. Soa = w + S for someg

such thatg = 0 or 8 alimit ordinal. Now notice thatV, | = 3. O

Corollary9.3 p=mandpf ==,

This shows that as far as the numheds concerned we may actually work in MSO
instead.

We will close our investigations with some remarks concerning the omission of
certain cardinals. Recall the notion of imdescribable cardinal. A cardinale is I1}-
indescribable if for every H%-sentencew of pure MSO, if(Vy, €,U) = ¢ then for
somep < a: (Vg, €, UN Vpg) = ¢. The first to note is that this notion of indescriba-
bility can be extended to countable sets of sentences.
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Lemma9.4 Supposethat « is IT1-indescribable. Let @ be a countable collection
of sentences in pure MSO. Then if (V,, €, U) = @, there exists a 8 < « such that
(Vg, e,UNVg) = ®.

Proof: We can code formulas in set-theory by meansGifdel-sets. These are
hereditarily finite sets, hence memberd/f In particular, note that (1) the predicate
G(x), defining the set of @del sets, is elementary, (2) eachdgl-set is elementarily
definable. Now, there exists a formutax) in which only x occurs free and which
is universal forf1}. This means that for alll}-sentences, all limit ordinalse > o
and allu C V,:

(Va, €,U) E@ «<— X(ugo)

whereu, is the Gdel-set corresponding ta Now consider the séB(P) := {u, :
¢ € ®}. This is a subset 0¥,,. Furthermore,

(Mo, €, U) E DIiff (V, €,U) = (VX)(Xxe G(D) = x(X)).

Now add a constarR to the language which may be interpreted by any class. Then
there is aP C V, such that

(Va, €, U, P) = (VX)) (G(X) A P(X) — x(X))

if and only if (V,, €, U) = ®. We may recoddJ and P into a single class and call
it U again. For example, we may do this in such a way that the finite séisané
exactly the @del-sets ofb. After this recoding we have

{(Va, €,U) = (V) (G(X) AUX) = x(X)).
Now if « is [13-indescribable there existsfa< « such that
(Vg €, UNVp) = (V) (G(X) AUX) = x(X)).

Now Vg NV, =V, NV, (remember we have at least ZF-set theory, so the levels are
identical andx andg are limit ordinals and- w). It follows by the universality ofy
that

<V13’ e, uUn Vﬂ) '= o.

This shows the claim. O

Now, we may also speak ofraodally indescribable cardinal which is a cardinal such
that whenever for a modal logi® containingX and(V,, €, R) = © there exists a

B < a such that{Vg, €, R [ V2) E ©. (Here,R | V2 is the function returning for
eachj the setR(Jj) N V2 ) Itis clear that a modally indescribable cardinal does not
belong toK. Further, by the Lemmia.4land the reduction o to a countable set of
1‘[ -sentences and vice versa we establish the following theorem.

Theorem 9.5 A cardinal is modally indescribable if and only if it is IT3-
indescribable.

Itis easy to see that, in particularis H%-indescribable which means that it cannot be
defined without parameters by a singlé-formula nor, as we have seen, by a count-
able set of such formulas.
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10 Conclusion Some implications of the previous results shall be mentioned. Sup-
pose that we have a Kripke-frar§dor X inside some univers€. Then, by the fact
that we have second-order set comprehension, one can show teatF, R(e)) is
isomorphic to{V,, €) for some ordinak. We shall now identify objects ofV mod-
ulo this isomorphism with objects of,. Then we get the following facts. Given
two objectsx andy of V,,, we haveW = “|x| = |y|"ifand only if V = “|x] = |y|".
In other words, the notion of cardinality does not depend on whether we look at it
from inside the model or from outside. This is meant when one saydakiatg the
same cardinality is absolutein W. Similarly for the notion of a cardinal. So we have
W E “xis a cardinal” if and only ifV = “X is a cardinal’. We also say thatis a
cardinal" to say that inW [= “x is a cardinal”. Notice that the notion of an ordinal
is elementarily definable inside a ZFC-model and so also absolute. (The notion of a
well-order isl‘[%—definable.) Just a little reflection on the comprehension axiom shows
that the notions of powerset, of a product of two sets, a relation between two sets,
and so on, are the same in the model as in the uniwérseo explicit set-theoretic
constructions do not depend on whether we perform them outside or Msides a
consequence we get theis inaccessibl¥ if and only if it is inaccessiblé. In sequel
we shall takeV to be the total universe and we shall drop the supers¥ript

Now, a cardinal number iseakly compact if and only if it is inaccessible and
has the tree property: a cardinahas theree property if and only if

for every treeT on p of order i such that for each < u fewer thanu
elements have orderthenT has a branch of order.

(Seell].) Here a tree is a paifT, <) such that< satisfies certain axioms and such
that for all y the set{x : x < y} is well-ordered by<. The well-order type of this
set is called therder of y. The order of the tree is the supremum of all orders of its
elements. Now we claim the following.

Lemmal0.l W E“u has the tree propertyf and only if i hasthe tree property.

Proof: Suppose thatV (= “ 1 has the tree property”. Then thereis atfge <) (in
W) such that for each < u there are fewé¥ thanu elements of ordex but (., <)
does not have an element of orderSincex has fewe¥ elements thawy if and only
if x has fewer elements than . fails to have the tree property. Conversely,ldil
to have the tree property. Then there is a ffee (1, <) exemplifying this. Now<
is a subset oft x u and so, byl‘[i—comprehensiok is a set inW. Likewise, it can
be shown thaT is a set inW and soW [~ “« has the tree property”. O

Hence, consider the first-order axiarfx) stating thaix has the tree properfyand
inacax) thatx is inaccessibl¥. Then we have seen th#{ = 3x.7(X) A inacax)

if and only if W contains a weakly compact cardinal. In a similar vein we can
write down a first-order statement 3 such that m&x) is true if and only ifx is
measurabl¥. It can be proved thatis measurablé if and only if it is measurable,

and this will demonstrate that if measurable cardinals expstsgreater than the least
measurable cardinal! This shows that thiaMenheim number of modal logic, even
though it can be shown to exist, in general exceeds any large cardinal that can be de-
fined by means of a higher order sentence (if that cardinal exists), since higher or-
der quantification is reducible to first-order quantification in presence of full compre-
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hension, as long as we quantify over classes that are bounded by some definable set
theoretical function of the occurring (first-order) set-variables. This is the case with
guantifying over trees over a cardinal or over ultrafilters on a cardinahich are
subsets of" (k) for some suitable.

Let us briefly mention that although we have succeeded in charactepizihg
identity of o remains unclear. For the logics we have defined above are finitely ax-
iomatizable, but we have not shown them to be complete. Since there always is a
completion, this was enough for establishing a lower boung fétowever, it is not
in general the case that the completion of a finitely axiomatizable logic is finitely ax-
iomatizable again. So we lack an essential link here to establish lower bounds for
Notice by the way that the completenes&iay well depend on the size of the uni-
verse, though its consistency is independent of it. Finally, thwdnheim numbers
of K4 logics are also not known.
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NOTE

1. We remark that thg; are actually not needed, since the formulas are without variables.
Moreover, notice that the framgs need actually not be disjoint; the cardinality of the
disjoint union is identical to the limit in either case.
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