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Modal Logics That Need
Very Large Frames

MARCUS KRACHT

Abstract The Kuznetsov-Index of a modal logic is the least cardinalµ such
that any consistent formula has a Kripke-model of size≤ µ if it has a Kripke-
model at all. The Kuznetsov-Spectrum is the set of all Kuznetsov-Indices of
modal logics with countably many operators. It has been shown by Thomason
that there are tense logics with Kuznetsov-Index�ω+ω. Futhermore, Chagrov
has constructed an extension ofK4 with Kuznetsov-Index�ω. We will show
here that for each countable ordinalλ there are logics with Kuznetsov-Index�λ.
Furthermore, we show that the Kuznetsov-Spectrum is identical to the spectrum
of indices for�1

1-theories which is likewise defined. A particular consequence
is the following. If inaccessible (weakly compact, measurable) cardinals ex-
ist, then the least inaccessible (weakly compact, measurable) cardinal is also a
Kuznetsov-Index.

1 Introduction Supposeϕ is an elementary formula and thatϕ is consistent with
an elementary theoryT in a countable language. Then there exists a countableT-
model forϕ. Furthermore, in any infinite cardinalityµ there exists aT-model forϕ.
For other languages this does not need to hold, for example, for second-order logic.
Modal logic also has first-order structures, namely, Kripke-frames, but the language
is a fragment of monadic second-order predicate logic. Moreover, modal logics nei-
ther necessarily define first-order classes of frames nor is every first-order definable
class of frames modally definable (see [18]). The same is true for intermediate logics.
Therefore, Hosoi and Ono [8] raised the following question:

Do there exist intermediate logics� such that� is complete but not complete
with respect to countable Kripke-frames?

Shehtman gave a positive answer (see [15]). After showing his solution to Kuznetsov,
Kuznetsov then asked the following natural question:

What is the least cardinal numberµ such that any intermediate logic complete
with respect to Kripke-frames is also complete with respect to frames of cardi-
nality ≤ µ?
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This question remains unsolved. However, the same questions naturally arise also for
modal logics. A first example of a logic that is complete but not complete with respect
to countable frames was given by Thomason [17] in tense logic. Thomason also es-
tablished that there are logics�λ for λ < ω + ω such that�λ is complete, but all its
rooted frames have size�λ. One might suspect that the availability of such logics
depends on the number of modal operators. Yet, as Thomason has also shown, any
example involving a finite number of operators can be transformed into an example
with a single operator. We will improve this in Section7 showing that any example
with countably many operators can be transformed into one using a single modal op-
erator. Since we are dealing only with countable languages, this is the best possible
result. We define theKuznetsov-Index of a logic� to be the leastµ such that any
formula which is refutable on a�-Kripke-frame is already refutable on a�-Kripke-
frame of size≤ µ.

The examples constructed using Thomason’s method are not transitive. There-
fore, to construct logics containingK4 or evenGrz of the requested kind is not solved
by appealing to polymodal logics. In the intermediate case, an answer was provided
by Shehtman [15]. For transitive logics Chagrov has shown in [3] that there exists a
logic � containingK4 whose Kuznetsov-Index is�ω.

Both Thomason and Chagrov have indicated that their methods can be extended
to higher cardinals. Yet, they did not establish an upper bound on the Kuznetsov-
Indices for modal logics. The main result of this paper is that any�1

1-definable car-
dinal number is the Kuznetsov-Index of some monomodal logic. It follows that the
set of possible Kuznetsov-Indices depends on the set-theoretic assumptions. For ex-
ample, if inaccessible (weakly compact, measurable) cardinals exist, then the least
inaccessible (weakly compact, measurable) cardinal is the Kuznetsov-Index of some
monomodal logic. Moreover, we will show that the set of Kuznetsov-Indices is a set
of size at most 2ℵ0 which is closed under countable limits, the functionµ �→ 2µ, and
under the�-function. It has to be said though that we have not been able to determine
whether the logics defined in this paper are complete. This is a handicap when dis-
cussing the Kuznetsov-Indices of finitely axiomatizable logics. It is easy to see that
if � has Kuznetsov-Indexκ, the completion of� also has Kuznetsov-Indexκ. But
even if� is finitely axiomatizable, its completion need not be.

2 The Kuznetsov-index Before we give examples, it will be worthwhile discussing
the question somewhat. First of all, since the languages we are dealing with are count-
able, any consistent formula for a logic can be satisfied in a countable algebra. So the
question is not whether for any consistent formulaϕ there exists a countable model
(this is always so) but if there always exists a countable Kripke-model, if a Kripke-
model forϕ exists at all. The last condition is needed, for there are also incomplete
logics. As Chagrov and Zakharyaschev show in [2], there also always exists a gen-
eral frame with underlying countable Kripke-frame. However, it is easy to see that
the question of Hosoi and Ono (for modal logic) is equivalent to the following:

Does there exist a complete logic� and a�-consistent formulaϕ which has no
countable Kripke-model?

For if � is a logic of the first kind andϕ has a Kripke-model but has no countable
Kripke-model, let�c be the logic of the Kripke-frames of�. This logic is complete
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andϕ is consistent with it. Clearly,�c has the same Kripke-frames as� and soϕ has
no countable Kripke-model. We call�c thecompletion of �.

Wedefine theKuznetsov-Index Kz(�) of a modal logic� as follows.

Definition 2.1 Let � be a modal logic,µ a cardinal number. ϕ is called µ-
satisfiable in � if it has a�-Kripke-model of size≤ µ. � is calledµ-complete if
every consistent formula isµ-satisfiable. TheKuznetsov-Index of � is the leastµ
such that�c is µ-complete.

Notice that we have used the completion of� in the definition. This has for con-
sequence that the Kuznetsov-Index is always defined even if the logic is incomplete
or has no Kripke-frames at all (in which case its Kuznetsov-Index is 0). However,
Kuznetsov’s original problem concerned the question of finitely axiomatizable log-
ics, and we remark here that�c need not be finitely axiomatizable even if� is.

Proposition 2.2

Kz(�) := supϕ �∈�c inf{|F| : F �|= ϕ,F |= �,F Kripke-frame}.
For example, if� is tabular, its Kuznetsov-Index is finite. The converse also holds,
on condition of completeness. If a logic has the finite model property, its Kuznetsov-
Index is countable. Here, the converse may be false even if the logic is complete.
This suggests that we define the modified Kuznetsov-Index:

Kz�(�) := inf {λ : for all ϕ �∈ �c existsF such that|F| < λ,F |= �c,F �|= ϕ}.
Wemay therefore modify the previous definition as follows.

Definition 2.3 Let � be a modal logic,µ a cardinal number. ϕ is called µ-
satisfiable� if there is a�-Kripke-model forϕ which has size< µ. � is calledµ-
complete� if every consistent formula isµ-satisfiable�. TheKuznetsov-Index� of �

is the leastµ such that�c is µ-complete�.

For the modified Kuznetsov-Index we have

Kz(�) ≤ Kz�(�) ≤ Kz(�)+.

A logic � has the finite model property if and only if it is complete andKz�(�) ≤
ℵ0. If � is a transitive logic of finite width without the finite model property, then
Kz�(�) = ℵ1, Kz(�) = ℵ0 by a result of Fine that all logics of finite width are com-
plete with respect to countable frames (see [7]); similarly, if � is a subframe logic
(not necessarily containingK4). (This result is shown in [21], Corollary 3.8.) For the
purpose of the next theorem,sf (ϕ) is the set of subformulas ofϕ.

Proposition 2.4 Kz(�) = Kz�(�) only if Kz(�) has cofinality ω. Hence, Kz�(�)

is either finite or a successor cardinal or has cofinality ω.

Proof: Let µ := Kz(�) = Kz�(�). Consider the functions

f (ϕ) := inf {|F| : F �|= ϕ,F |= �,F Kripke-frame};
g(n) := sup{ f (ϕ) : ϕ �∈ �c, |sf (ϕ)| ≤ n}.

Then〈g(n) : n ∈ ω〉 is an ascending sequence of cardinal numbers< µ. However,
the supremum of this sequence isµ, by assumption onµ. Hence,µ has cofinalityω.

�
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In this proof we have defined the functiong. This is the (generalization of the) com-
plexity function of [2]. It measures the size of models required to refute formulas of
agiven length. For logics with the finite model property, this is a function from natu-
ral numbers to natural numbers but in general it is a function from natural numbers to
cardinal numbers. We just mention that one can also study for compact logics the size
of models for infinite sets of formulas. We have not done so here since it is outside
the scope of this paper.

Kuznetsov’s initial question gives rise to the following two questions:

What is the set of cardinal numbers that are the Kuznetsov-Indices of
monomodal logics and what is its least upper bound?

The least upper bound is called theLöwenheim number of modal logic. The above-
mentioned example by Chagrov is a logic with Kuznetsov-Index�ω and Kuznetsov-
Index� �+

ω .
There is an interesting connection between the Kuznetsov-Index for canonical

logics and a longstanding conjecture concerning the elementarity of canonical logics.

Conjecture 2.5 Let � be a normal modal logic. If � is canonical, then it is com-
plete with respect to some 	-elementary class of frames.

The reader is referred to [16] for the background of this conjecture and some attempts
to prove it. Suppose now that� is canonical. First of all, we note the following.

Proposition 2.6 Let � be canonical. Then Kz(�) ≤ 2ℵ0.

For proof, note that the countably generated free�-algebra is countable, and its un-
derlying frame has cardinality≤ 2ℵ0. (So, assuming GCH, the Kuznetsov-Index of a
canonical logic can be at mostℵ1.) If Conjecture2.5is correct then it will follow from
Proposition4.3that the Kuznetsov-Index of a canonical logic is≤ ℵ0. It is, however,
clear that if a canonical logic has Kuznetsov-Index≤ ℵ0 it is not necessarily com-
plete with respect to a	-elementary class of frames. So, the following is therefore a
weaker conjecture than Conjecture2.5.

Conjecture 2.7 Assume that � is canonical. Then Kz(�) ≤ ℵ0.

3 Basic notions and terminology Before we begin, let us briefly fix some notation
and terminology. We assume some knowledge of set theory, such as cardinal and or-
dinal numbers and basic arithmetic thereof. Everything needed for our purposes can
be found in [6]. As usual, a cardinal is an ordinal number such that no predecessors
have the same cardinality. Ifµ is a cardinal number,µ+ denotes the successor cardi-
nal and 2µ the cardinality of the powerset. cf(µ), thecofinality of µ is the least ordi-
nalλ such that there exists an ascending sequence〈γλ′ : λ′ < λ〉 whose limit isµ. µ

is calledsingular if cf (µ) < µ andregular otherwise. The Generalized Continuum
Hypothesis (GCH), which is known to be independent of ZFC, is the postulate that
µ+ = 2µ. To make the results independent of GCH we make use of the�-function,
which is defined as follows. For an ordinalγ, �γ is the cardinal number obtained by
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iterating exponentiationγ-times, starting atℵ0.

�0 := ℵ0

�γ+1 := 2�γ

�γ := sup{�δ : δ < γ} , γ a limit ordinal.

Suppose that〈T,<〉 is a transitive, irreflexive order with unique least element, such
that any branch is well-ordered, every element has no or exactly 2 immediate succes-
sors, and all branches have the same well-ordering type. Then we say that〈T,<〉 is a
homogeneously binary branching tree. It is uniquely determined up to isomorphism
by the ordering type of one of its branches. The following is well known.

Proposition 3.1 Let γ be an infinite successor ordinal and 〈Tγ,<〉 be a homoge-
neously binary branching tree of depth γ. Then |Tγ | = 2|γ|.

Proof: First, it is clear that ifγ ≤ δ are ordinals then|Tγ | ≤ |Tδ|. We may identify
the nodes of the binary branching tree〈Tγ,<〉 with well-ordered sequences of 0s and
1s of length< γ. Let bγ denote the set of sequences〈xδ : δ < γ〉, wherexδ ∈ {0,1}
for eachδ < γ. Obviously,|bγ | = 2|γ|, since each sequence is the (unique) code of a
subset ofγ. Now, two cases arise. (1)γ is a limit ordinal. Then|Tγ | = |⋃δ<γ bδ| =∑

δ<γ |bδ|. (2) γ = γ ′ + 1, γ infinite. Then|Tγ | = |⋃δ≤γ ′ bδ| ≥ |bγ ′ | = 2|γ ′|. The
other inequality is established as follows. By (1) and (2) we get|bγ | ≤ 2|γ| for all
infinite γ. Hence|Tγ | ≤ |γ| · 2|γ ′| ≤ 2|γ ′|, by elementary cardinal arithmetic. So,
|Tγ | = 2|γ ′|. Since|γ| = |γ ′| the claim follows. �
The cardinalities forγ a limit ordinal are much harder to establish but not needed in
sequel. For example, if the branches have well-order typeω, the tree is countable,
but if the well-order typeγ is at leastω + 1 and countable, then|Tγ | = 2ℵ0.

The present paper assumes a fair amount of knowledge in modal logic. For back-
ground in modal logic we refer to [12], in which all notions relevant to this paper are
explained. We assume that the reader knows the systemsS5 andG and has some
understanding of tense logic. We will consider not only modal logics of a single op-
erator but in fact logics with arbitrarily many operators; we only require that the set
O of basic operators is countable. This ensures that the language (the set of well-
formed formulas) is a countable set. Amodal logic over O is a normal polymodal
logic using the setO of modal operators. If|O| = κ, we also say that� is aκ-modal
logic. If κ = 1 we call� a monomodal logic. A Kripke-frame for � is a pair〈F, R〉
whereF is a set (possibly empty) andR : O → F × F a function assigning to each
� ∈ O its accessibility relation,R(�). Alternatively, whenO = κ, acardinal num-
ber, a frame is a pair〈F, 〈� j : j ∈ κ〉〉, where� j ⊆ F × F for each j ∈ κ. (Often,
we will use ordinal numbers rather than cardinals to index the modal operators. This
makes life easier. We also writej < κ in place of j ∈ κ.) A (generalized) frame is a
triple 〈F, R,F〉 such that〈F, R〉 is a Kripke-frame andF ⊆ ℘(F) a set closed under
relative complement, intersection, union, and

A �→ {x : for all y such thatx R(�) y : y ∈ A}
where� is a modal operator of the language. The notions of valuation and satisfac-
tion in a (Kripke-)frame are defined as usual. The operator♦ defined by♦ϕ := ¬�¬ϕ
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is the usual dual operator. We call an operator�′ a tense dual of � (with respect to
a logic �) if p → �♦′ p, p → �′♦p ∈ �. If �′ is a tense dual of� with respect to
�, then in any�-Kripke-frameF we haveR(�) = R(�′)�, where for a relationR
we denote byR� the converse ofR. Given a logic� and a setX of modal formu-
las,� ⊕ X denotes the least normal modal logic containing� andX. Furthermore,
given two modal logics� and� with disjoint sets of operators,� ⊗ � is the least
logic in the union of the languages which contains both� and�. (If � and� share
some modal operators, they are suitably renamed to make the sets of operators dis-
joint.) We note that as a consequence of the theorem of [13] weobtain the following
lemma.

Lemma 3.2 Let µ and ν be infinite. Suppose that � and � are µ-complete�. Then
� ⊗ � is µ-complete� as well. So, if Kz�(�) = µ and Kz�(�) = ν, then Kz�(� ⊗
�) = max{µ, ν}.

Proof: The construction of [13] is as follows. Given a frameF0 for �, we let grow
a�-frame at each world ofF0 and obtain a frameF1. Next we let grow a�-frame at
each node ofF1, and so on. We need to iterate this finitely often. Each of the frames
can be chosen< ξ, whereξ := max{µ, ν}. Hence, at each stage the frame has size
< ξ. Since we iterate finitely often, the entire frame has size< ξ. �
We remark that ifµ andν are finite, thenmax{µ, ν} ≤ Kz�(� ⊗ �) ≤ ℵ0. In both
cases, the inequality may be strict. To ease the manufacturing of logics with special
Kuznetsov-Index we note the following useful fact.

Lemma 3.3 There exists a logic with Kuznetsov-Index� µ+ if and only if there
exists a complete logic � and a formula which is µ-satisfiable in � but not µ-
satisfiable�.

Proof: Let � have Kuznetsov-Index� µ+. Then there is aϕ such that there is no
model based on a frame of cardinality< µ but there is a model based on someF of
cardinalityµ. Put� := ThF. This logic is obviously complete; and it has Kuznetsov-
Index� ≤ µ+, since any consistent formula can be satisfied onF. By the fact that� ⊇
� andϕ �∈ �, no�-Kripke-model forϕ has less thanµ worlds. HenceKz�(�) = µ+.
Conversely, assume that� is such that a formulaϕ exists which isµ-satisfiable but
not µ-satisfiable�. Take a Kripke-frameF such thatF �|= ¬ϕ. Put� := ThF. Then
� has Kuznetsov-Index� µ+. �

Lemma 3.4 Let µ be a limit cardinal. There exists a logic with Kuznetsov-Index�

µ if and only if there exists a complete logic � and an ascending sequence 〈λi : i ∈ ω〉
of cardinals with limit µ and a sequence 〈ϕi : i ∈ ω〉 of formulas such that for each
i ∈ ω, ϕi is λi-satisfiable in � but not λi-satisfiable�.

The proof is immediate.
In [5], de Rijke has introduced thedifference operator. He usesD to denote this

operator, but we follow our general practice and write [�=] for the box-like analogon
and〈�=〉 for its dual. The intended semantics for this operator is that of the difference,
that is, we want to haveR([ �=]) = {〈x, y〉 : x �= y}. For well-known reasons this is im-
possible, so it is required to hold only for rooted frames. It is not possible to define the
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logic of the difference operator in such a way that the intended Kripke-frames are the
only Kripke-frames of the logic. There is a way, however, to achieve this (see [14]).
Namely, instead of the difference operator take a pair of modal operators, which are
tense duals of each other and look in both directions of the well-order. In general,
the construction is as follows. Let� be aκ-modal logic. LetWO be the tense logic
in two operators,� (:= �0) and� (:= �1), which satisfy the following postulates.
(The axiomatization is not independent. Some of the axioms can be dropped from the
list.)

WO := K2

⊕ p → �¬ � ¬p
⊕ p → �¬ � ¬p
⊕ �p → � � p
⊕ �p → � � p
⊕ �(�p → p) → �p
⊕ ¬ � �p → ¬p ∨ ¬ � p ∨ ¬ � p
⊕ ¬ � �p → ¬p ∨ ¬ � p ∨ ¬ � p

Lemma 3.5 WO is the tense logic of well-orders where R(�) = < and R(�) = >.

The proof is straightforward.WO is clearly a tense logic and soR(�) = R(�)�.
R(�) is transitive and satisfiesG, whence the Kripke-structures may not contain any
infinite downgoing chains. BothR(�) andR(�) are linear. By a result of Wolter [19]
this logic is complete with respect to the well-orders. SoWO is the desired logic of
well-orders.

Definition 3.6 Let � be aκ-modal logic. Theκ + 2-modal logic�wo is defined by

�wo := � ⊗ WO ⊕ {p ∧ �p ∧ �p. → .� j p : j < κ}.

Lemma 3.7 The Kripke-frames of �wo are the frames 〈F, 〈� j : j < κ + 2〉〉 such
that 〈F, 〈� j : j < κ〉〉 is a �-frame, and �κ is a well-order on F, whose symmetric
and reflexive closure contains all � j, j < κ, and �k+1 = �

�
κ . In particular, �wo is

conservative over � if � is complete.

By a general result on complete subframe logics (see [21]), if a subframe logic is com-
plete it is actually complete with respect to countable frames. Hence,Kz�(WO) = ℵ1,
since the logic of well-orders fails to have the finite model property. (To see that, no-
tice that the formula�(�p → p) → �p is not valid inWO, since well-orders may
possess infinite ascending chains. However, no finite frame refutes this formula.)

Lemma 3.8 Let � and � be α-modal and β-modal languages, respectively, and let
α ≤ β. Suppose that � is conservative over �. Then Kz�(�) ≥ Kz�(�) and Kz(�) ≥
Kz(�).

Lemma 3.9 Suppose that µ = Kz�(�) > ℵ0. Then Kz�(�wo) ≥ µ. Moreover, let
� be the logic of all Kripke-frames of �wo of cardinality < µ. Then � is complete
and Kz�(�) = µ.
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Proof: Let λ := Kz�(�wo). We show thatλ ≥ µ. The reader may reflect on the
fact that we can assume without loss of generality that� is complete. Then�wo is
conservative over� and so by Lemma3.8 λ ≥ µ. For the second claim, letκ :=
Kz�(�). By definition of�, κ ≤ µ. But � is also conservative over� and soκ ≥ µ.

�
This lemma will be quite useful later on. The difference operator is now easily defin-
able:

[ �=]ϕ := �ϕ ∧ �ϕ.

It is to be borne in mind thatR([ �=]) = {〈x, y〉 : x �= y} only if F is rooted.
Let us define the following sets:

Kα := {Kz(�) : � anα-modal logic}
K�

α := {Kz�(�) : � anα-modal logic}
K f

α := {Kz(�) : � afinitely axiomatizableα-modal logic}
K� f

α := {Kz�(�) : � afinitely axiomatizableα-modal logic}.

Wecall these sets theα-Kuznetsov-Spectrum and theα-Kuznetsov-Spectrum� and the
finitary α-Kuznetsov-Spectrum andfinitary α-Kuznetsov-Spectrum�, respectively. Fi-
nally, define the following.

ρα := sup Kα ρ
f
α := sup K f

α

ρ�
α := sup K�

α ρ
� f
α := sup K� f

α

We shall callρα theLöwenheim-number andρ
f
α thefinitary Löwenheim number of

α-modal logic. It will be established thatρα = ρ�
α andρ

f
α = ρ

� f
α so that no name

needs to be given to the other numbers.ρα (ρ f
α ) is the least cardinality such that for

any (finitely axiomatizable)α-modal logic� and any consistent formulaϕ, if ϕ has
a Kripke-model in�, then it has a Kripke-model of size≤ ρα (≤ ρ

f
α ) (similarly for

ρ�
α andρ

� f
α ). The following is easy to establish.

Proposition 3.10 Assume 0 < α,β < ℵ1.

1. K f
α ⊆ Kα.

2. K f
α is a set of cardinality = ℵ0.

3. Kα is a set of cardinality ≤ 2ℵ0.

4. Kα contains all finite cardinal numbers and ℵ0.

5. K f
ℵ0

= {0}.
6. K f

α contains all finite cardinal numbers and ℵ0 for finite α.

7. If α < β then Kα ⊆ Kβ and ρα ≤ ρβ.

It is similar for K�( f )
α and ρ

�( f )
α .

Notice that ifα is infinite, then a finitely axiomatizable extension ofKα is necessarily
inconsistent. ThusK f

ℵ0
= {0}. The last claim is shown as follows. Let� be anα-

modal logic with Kuznetsov-Indexµ. Then let� be a modal logic based on one point
and with operators�i, α ≤ i < β. Then� ⊗ � has the same Kuznetsov-Index as�.
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4 A first example Our first example is the logic of the line of real numbers in the
language of tense logic and the difference operator. To motivate the example and to
show the validity of our claims, we will build up this example starting with the modal
logic of the real line. Therefore, consider first the real line〈R,<〉 as a Kripke-frame
for a monomodal logic. This logic isD4.3 ⊕ �2 p → �p. This is the same as the
modal theory of〈Q,<〉. Hence, its Kuznetsov-Index is≤ ℵ0. Now adjoin a tense
dual,�. ThenR(�) = R(�)�, and therefore we can regard〈R,<〉 and〈Q,<〉 in a
natural way as Kripke-frames for this language. Now we can distinguish the theory of
the reals from the theory of the rational numbers. Call agap in a linearly ordered set
〈A,<〉 apair of open intervalsB andC such thatB ∩ C = ∅ andB ∪ C = A. It has
been observed by Wolter in [20] that the property of not possessing a gap can be ex-
pressed axiomatically in tense logic. It amounts to the property of not containing the
linear reflexive frame with two points. So, the tense logic of the real line is a splitting
of the theory of dense linear orders without endpoints by a two point frame. However,
as has been shown by Bull in [1], the tense logic of the real line has the finite model
property. The problem is that this logic admits frames in whichR(�) is not irreflex-
ive. If it were, no countable orders can exist. For then a Kripke-frameR(�) would
be an irreflexive, dense linear order without endpoints, which is complete. Now we
add two more operators. These two operators serve to define the difference operator.
The structures over which we now talk are triples〈A,<,�〉, where〈A,<〉 is a dense
linear order without endpoints and gaps and� is a well-order onA. It is now easy to
see that this logic has no countable frames. To that effect notice the following. The
formula [�=] p → �p is an axiom of the logic. Therefore, the relation correspond-
ing to� is irreflexive. We conclude that with this axiom, the logic has no countable
frames. Hence, the Kuznetsov-Index of this logic is exactly 2ℵ0 since any consistent
formula is satisfiable inR.

Theorem 4.1 Let � be the logic of structures 〈R,<,�〉 in the language of tense
logic for both orders, where 〈R,<〉 is the real line and 〈R,�〉 a well-order. Then �

has no countable models. In particular, Kz(�) = 2ℵ0.

The resulting logic is a 4-modal logic. To get a monomodal logic with these properties
we invoke the simulation theorem from [12]. This theorem states that for every finite
numberk there is an isomorphism� �→ �s from the lattice ofk-modal logics onto
an interval in the lattice of monomodal logics such that the property of completeness
is left invariant. It is easy to see thatKz(�s) = k · Kz(�) + k − 1.

Theorem 4.2 There exists a normal monomodal logic with Kuznetsov-Index 2ℵ0.

Now what happens if we require that� is canonical? We have no answer to the ques-
tion. But there is one on condition that� is	-elementary. To define that notion prop-
erly, letLα be the first-order language based on binary relation symbolsRi, i < α, no
constants, and no function symbols. A classK of Kripke-frames is calledelementary
if there is a sentenceγ ∈ Lα such thatF ∈ K if and only if F |= γ. An intersection
of elementary classes is called	-elementary. Anα-modal logic� is elementary (	-
elementary) if its class of Kripke-frames is elementary (	-elementary).

Proposition 4.3 Let � be a 	-elementary logic based on a countable language.
Then it has Kuznetsov-Index ≤ ℵ0.
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There are two proofs, one using elementary expansions and the other using modal ex-
pansions. We will present both. If� is elementary, its class of frames is characterized
by some countable setT ⊆ Lα. Now adjoin toLα a unary relational constantCi for
eachi < ω. Call the expansionL+

α . Following [18], define a translation ofϕ by

p†
i := Ci(x)

(¬ϕ)† := ¬ϕ†

(ϕ ∧ ψ)† := ϕ† ∧ ψ†

(�ϕ)† := (∀y)(x R(�) y → ϕ†[y/x]).

In the last clausey is a variable not already occurring inϕ†. The following is clear.

Lemma 4.4 For every α-modal Kripke-frame F: F �|= ϕ if and only if for some L+
α -

expansion F+: F+ �|= ϕ†.

Now,� �|= ϕ if and only if there exists a Kripke-frameF for � such thatF �|= ϕ if and
only if there exists anLα-structureF such thatF |= T and for someL+

α -expansion
F+: F+ |= T andF+ �|= ϕ† if and only if there exists a countableL+

α -structureG+

such thatG+ |= T andG+ �|= ϕ† if and only if for some countable�-Kripke-frame
G: G �|= ϕ.

The second proof is intrinsic (and actually more general). We eliminate the vari-
ables inϕ by introducing a new modal operator�. Wesubstitute inϕ the variablepi

uniformly by
χi := ¬ � ¬(�i+1⊥ ∧ ¬ �i ⊥) ,

for all i < ω. Denote the result of this substitution byϕ‡.

Lemma 4.5 ϕ ∈ � if and only if ϕ‡ ∈ � ⊗ K.

Proof: If ϕ ∈ � thenϕ ∈ � ⊗ K and soϕ‡ ∈ � ⊗ K. So the other direction needs
proof. Suppose thatϕ �∈ �. Then there exists a model〈F, β, u〉 |= ¬ϕ based on a
generalized frame〈F, R,F〉. We construct a� ⊗ K-frameF+, avaluationβ+ and a
pointu+ such that〈F+, β+, u+〉 |= ¬ϕ‡. PutF+ := F × ({�} ∪ ω) and for each basic
modality�i of �:

R+(�i) := {〈〈x, j〉, 〈y, j〉〉 : x R(�i) y, j ∈ {�} ∪ ω}.
Next, for the additional modality put

R+(�) :=
{ {〈〈x, �〉, 〈x, j〉〉 : 〈F, β, x〉 |= p j}

∪ {〈〈x, j + 1〉, 〈x, j〉〉 : j ∈ ω} .

And finally, letF+ consist of all unions of sets of the forma × {i}, i ∈ {�} ∪ ω, where
a ∈ F. It is straightforward to check that this is a generalized frame. Furthermore, if
F+ is restricted to the modalities of�, it is aunion of copies ofF, andsoF+ |= �.
This shows thatF+ |= � ⊗ K. Next, 〈F+, 〈x, �〉〉 |= χ j if and only if 〈F, β, x〉 |= p j.
It follows by an easy induction that〈F+, 〈x, �〉〉 |= ϕ‡ if and only if 〈F, β, x〉 |= ϕ.
This establishes the claim. �
Now, if χ is constant,χ† is actually anLα-sentence. So, if the class of� is character-
ized byT , the class of�-frames refutingϕ‡ is characterized byT ∪ {¬(ϕ‡)†}. Hence
the proof is completed by the following observation, which is easy to prove (or see
[13] for a proof).
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Lemma 4.6 Suppose that � is a canonical modal logic. Then �⊗ K is also canon-
ical. Moreover, if � is elementary, so is � ⊗ K.

Wewill draw from the proof two simple consequences.

Lemma 4.7 Let µ be infinite. Suppose that there exists a logic � with Kz�(�) =
µ+. Then there exists a logic �• with Kz�(�•) = µ+ and a constant formula χ which
is µ-satisfiable but not µ-satisfiable�.

Proof: By Lemma 3.3 there is a formulaϕ which is µ-satisfiable but not
µ-satisfiable� in �. Now let�• := �⊗K andχ := ϕ‡, defined above. By Lemma3.2
this logic is complete andKz�(�1) = µ+. χ has a model of sizeµ in �• but no model
of size< µ. �

Lemma 4.8 Let µ be infinite. Suppose that there exists a logic � with Kz�(�) =
µ+. Then there exists a complete logic �• with Kz�(�•) = µ+ which has no frames
of cardinality < µ.

Proof: By the Lemma4.7there exists a logic� with Kz�(�) = µ+ and a constantχ
which is not satisfiable in frames of cardinality< µ. By Lemma3.9, wemay without
loss of generality also assume that the difference operator is in the language of�. Put
�♥ := � ⊕ χ ∨ 〈�=〉χ. In this logic,� is µ-satisfiable but notµ-satisfiable�. Let �•

be the logic of the�♥-frames of cardinalityµ. Then�• has Kuznetsov-Index� µ+.
Moreover,� is µ-satisfiable but notµ-satisfiable�. This means that there exists no
�•-frame of cardinality< µ. �

5 Binary branching trees In this and the next section we shall construct modal
logics with countably many operators whose Kuznetsov-Index is exactly�λ where
λ is a countable ordinal. Let us take five modal operators,�0,�1,�,�and�, such that the
following holds.

1. If x R(�0) y0, y1 theny0 = y1.

2. If x R(�1) y0, y1 theny0 = y1.

3. R(�) = (R(�0) ∪ R(�1))
�.

4. R(�) contains the transitive closure ofR(�0) ∪ R(�1).

5. R(�) = R(�)�.

6. R(�) is locally linear and has no infinite ascending chains.

7. If x R(�) y, x R(�0) z0, andx R(�1) z1, then eitherz0 R(�) y does not obtain or
z1 R(�) y does not obtain.

8. If x R(�) y0, y1 then either

(a) y0 R(�) y1, or

(b) y1 R(�) y0, or

(c) y0 = y1, or

(d) there exists anx′ such thatx = x′ or x R(�) x′ and for noR(�)-successor
w of x′, bothw R(�) y0 andw R(�) y1 obtain.
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(A relationR is locally linear if x R y0, y1 impliesy0 = y1, y0 R y1 or y1 R y0.) With
the exception of the last two conditions it is not difficult to see that these conditions
can be captured by modal axioms. However, (7) and (8) are quite problematic. For
them we must actually introduce the difference operator, [�=] (which we will there-
after eliminate by two tense duals using a well-order, as above). Note the following
fact, which is easy to prove.

Lemma 5.1 Put n(p) := p ∧ [ �=]¬p. Let F be a rooted Kripke-frame. Then
〈F, β, x〉 |= n(p) if and only if β(p) = {x}.
Lemma 5.2 Let F be a Kripke-frame satisfying (1) – (6). Then F |= (7) if and only
if

F |=�n(p) → (�0�¬p ∨�1�¬p).

Proof: Assume thatF satisfies the modal formula. Suppose thatx R(�) y,
x R(�0) z0 and x R(�1) z1. Put β(p) := {y}. Then 〈F, β, x〉 |=�n(p). Now x |=

�0�¬p ∨�1�¬p, from which eitherx |=�0�¬p or x |=�1�¬p. Assume the first. Then
z0 |=�¬p and soz0 R(�) y does not hold. Assume the second. Thenz1 |=�¬p and
soz1 R(�) y does not hold. SoF satisfies (7). Now assume conversely thatF satisfies
(7). Assume that〈F, β, x〉 |=�n(p). Thenβ(p) = {y} for somey such thatx R(�) y.
Pick z0 and z1 such thatx R(�0) z0 and x R(�1) z1. Then eitherz0 R(�) y does not
hold and soz0 |=�¬p, or z1 R(�) y does not hold and soz1 |=�¬p. It follows that
x |=�0�¬p ∨�1�¬p. But from (1) and (2) we deduce also thatx |=�1�¬p ∨�1�¬p. SoF

satisfies the modal formula above. �
Likewise there is a modal counterpart of the last postulate. For the purpose of its def-
inition let�≤1ϕ := ϕ ∨�ϕ.

Lemma 5.3 Let F be a Kripke-frame satisfying (1) – (6). Then F |= (8) if and only
if

F |=�n(p) ∧�n(q). → .�(p ∧�q)∨
�(q ∧�p) ∨�(p ∧ q) ∨�≤1�(�¬p ∨�¬q)

Proof: Call the modal formulaζ. Assume thatF |= (8). Let β be such that
〈F, β, x〉 |=�n(p);�n(q). Then we haveβ(p) = {y0} andβ(q) = {y1} for somey0

andy1 with x R(�) y0, y1. Now, F |= ζ and so either (a)x |=�(p ∧�q), in which case
y0 R(�) y1 or (b) x |=�(q ∧�p), in which casey1 R(�) y0 or (c) x |=�(p ∧ q), in which
casey0 = y1, or (d)x |=�≤1�(�¬p ∨�¬q). If (d) obtains, there is anx′ such thatx = x′

or x R(�) x′ andx′ |=�(�¬p ∨�¬q). This means that for anyR(�)-successorw of x′,
eitherw R(�) y0 does not obtain orw R(�) y1 does not obtain. This is as claimed. The
converse is as straightforward. �
Call � the logic of all frames satisfiying (1) – (8). It is now important to note that
the rooted Kripke-frames for� are binary branching trees. Moreover, suppose that
p = 〈xi : i < ω〉 is a path, that is,xi R(�0) xi+1 or xi R(�1) xi+1 for all i < ω and suppose
that there exists a supremumyp of this path inR(�). This supremum does not need
to exist, but it exists as soon as the path has an upper cover with respect toR(�). It is
unique, by the last postulate. For any two incomparableR(�)-successors must at some
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point of the path lead up to distinct successors. Now take another pathq starting at
x0. Suppose that it too has a supremum,yq. Then there is ani < ω such that the point
xi+1 is not in the pathq. Wethen have thatyq is not aR(�)-successor ofxi+1 or in fact
of anyx j, j > i. Hence, any two paths starting at the same point define a different set
of suprema. The same fact can be shown for ascending chains forR(�). Therefore,
the�-frames really are binary branching trees.

Lemma 5.4 Let F be a Kripke-frame for �. Then F is a binary branching tree
whose paths are well-ordered.

Finally, we will arrange it that the models for the logic are not only binary branching
trees but binary branching trees in which every path has the same well-ordering type.
Todo this we introduce a new modal operator, [◦]. It shall satisfyS5 and the intention
is thatx R([◦]) y wheneverx andy are of the same level in the tree. We writex ◦ y
if and only if x R([◦]) y. This can be achieved by the following postulates.

Lemma 5.5 Suppose F is a rooted �-Kripke-frame. Suppose further that R([◦])
is a relation on F such that F |= ν, where

ν := n(p) ∧ 〈�=〉n(q) → (〈◦〉q ←→�〈◦〉�(q ∧�〈◦〉�p)).

Then x ◦ y if and only if x and y have the same depth in the binary branching tree
〈F, R(�)〉.
Proof: By order induction. Assume that for everyδ < γ the claim holds. We aim
to show that it holds forγ. The caseγ = 0 is settled by assumption thatF is rooted.
If γ > 0, letx be of depthγ. Thenx hasR(�)-successors. Assume thatx ◦ y but y has
depthγ ′ �= γ. Without loss of generality we may assume thatγ ′ > γ. Putβ(p) := {x}
andβ(q) := {y}. Then the antecedent ofν is true, sincep andq hold at exactly one
point. Assumex ◦ y. Thenx |= 〈◦〉q, andsox |=�〈◦〉�(q ∧�〈◦〉�p). So pick x′ such that
x R(�) x′. Then there is ay′ such thatx′ ◦ y′ andy′ |=�(q ∧�〈◦〉�p). Hencey′ R(�) y.
Furthermore,y |=�¬[◦]�p, which means that for ally1 R(�) y there exists anx1 ◦ y1

such thatx1 R(�) x. Now takey1 R(�) y. Let it be of depthδ1. Wecan chooseδ1 such
thatγ ≤ δ1. Now there exists anx1 R(�) x such thaty1 ◦ x1. Now,◦ is symmetric. By
inductive hypothesis, therefore,y1 andx1 have the same depth. Buty1 has depthδ1

andx1 has depth< γ. Contradiction. Now assume conversely thatx andy have the
same depth. Pick anyx1 R(�) x. It has depthδ < γ, say. Then there exists ay1 R(�) y
of depthδ. By inductive hypothesis,x1 ◦ y1. Analogously we can findx1 for any
given y1. SinceF |= ν, therefore, puttingβ(p) := {x} andβ(q) := {y}, we find that
x ◦ y. This ends the proof. �
Now observe the following. Let< be a transitive order onR. Call a nonempty set
C ⊆ R an inductive cone through z if z ∈ C and for ally > z: if x ∈ C for all x < y
then alsoy ∈ C. C is aninductive cone if there is az such thatC in an inductive cone
throughz. An example of inductive cones are paths. Moreover, every inductive cone
contains a path.

Lemma 5.6 Put cf(p) := p ∧�(�p → p). Let F be a Kripke-frame for �. Then
〈F, β, x〉 |= cf(p) if and only if β(p) is an inductive cone through x.

At last we add the following axiom.
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Lemma 5.7 Let F be a �-Kripke-frame and F |= ν. Then F |= τ if and only if every
branch of F has the same order type. Here

τ := cf(p) ∧ cf(q). → .�(p → 〈◦〉q).

Proof: Suppose that every branch has the same order type and suppose that
〈F, β, x〉 |= cf(p);cf(q). Thenβ(p) andβ(q) are inductive cones throughx. Sup-
pose thatx1 is such thatx R(�) x1 and x1 ∈ β(p). Then, asβ(q) contains at least
one path and it has the same order type as any path throughx1, wesee that there is a
y1 ∈ β(q) of the same depth asx1. Hencex1 ◦ y1. It follows thatx1 |= 〈◦〉p and so
x |=�(p → 〈◦〉q). HenceF |= τ. Assume now thatF |= τ. Let x be the root ofF. Take
two branchesb andb′ starting atx. These are inductive cones throughx. Let them
have well-order typeγ andγ ′, respectively. Without loss of generality we may as-
sume thatγ ≥ γ ′. γ = 1 is atrivial case. So letγ > 1. Putβ(p) := b andβ(q) := b′.
Now, x |= cf(p);cf(q). Hence,x |=�(p → 〈◦〉q). Takey of depthλ, 0 < λ < γ in b.
Thenx R(�) y and soy |= p, from whichy |= 〈◦〉p. Hence there exists ay′ such that
y ◦ y′ andy′ |= q. Soy′ is of depthλ andy′ ∈ β(q) = b′. Henceγ = γ ′. �

Definition 5.8 Let �� := � ⊕ ν ⊕ τ.

Theorem 5.9 Let F be a Kripke-frame for ��. Then R(�) defines a homogeneous
binary branching tree on F.

The formulaλ :=�⊥ is satisfiable exactly at the points whose depth is a limit ordinal.
Now take the formula

ψ :=��λ.

A frame which satisfiesψ has the property that branches have depth at leastω2. ψ is
clearly consistent. Hence�� has Kuznetsov-Index at least�1 = 2ℵ0. Now define�1

to be the logic of all frames of�� whose branches have countable depth.

Theorem 5.10 Kz(�1) = 2ℵ0.

So far we have not improved on our earlier example. Now we take a logic�. We first
add an additional pair of operators,�W and�W , that define a well-order with endpoints
on the frames. The construction is as follows.

Definition 5.11 Let �woe := �wo ⊕�W�W�W⊥.

Lemma 5.12 Let � be a κ-modal logic. Then for a rooted F = 〈F, 〈� j : j < κ +
2〉〉: F is a �woe-frame if and only if 〈F, 〈� j : j < κ〉〉 is a �-frame and �κ is a well-
order with endpoints.

This follows from Lemma3.7 using the fact that�W�W�W⊥ is true in a frame exactly
when the well-order has an end point. That means that the well-ordering type is a
successor ordinal. We note in passing that any set can be ordered using a well-order
of such a type, so that if� is complete,�woe is actually conservative over�.

Assume that the frame〈{x}, R〉 with R(�) = ∅ (the one-point irreflexive frame)
is a�-frame. Denote its logic by the letter�◦. Form the logic�+ by adding the
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modal operators for the binary trees, adding the postulates of�� and some axioms
connecting the relations.

�+ := �� ⊗ �woe

⊕ �p →�W p
⊕ p ∧ 〈◦〉n(p) →�W¬p ∧�W¬p
⊕ n(p) ∧ (�W� ∨ -�W�) → [◦](¬p →�W⊥ ∧�W⊥).

Informally, the first postulate says thatR(�W ) ⊆ R(�), the second that no two points
of equal depth can be related viaR(�W ), and the third that there exists at most one
branch along which the relationR(�W ) is nontrivial. Hence,R(�W ) is a disjoint sum
of connected components, each of which is contained in a branch ofR(�).

Lemma 5.13 Let µ be an infinite cardinal number. Suppose that � is complete,
� ⊆ �◦. Then �+ is conservative over �.

Proof: Clearly, the reduct of a�+-frame is a�-frame. So it is enough if we show
that each�-Kripke-frame is the reduct of some�+-Kripke-frame. Consider a�-
frameF = 〈F, R〉. We construct a�+-frame as follows. First, we choose a well-
ordering that makesF into a�woe-frame. This is possible. Assume therefore that
F already has this well-ordering and that its type isγ. Now take a binary branching
treeG = 〈G, S〉 in which every branch has order typeγ. Select inG a branch b.
There is a unique bijectionξ : b → F such thatξ[S(�) ∩ b2] = R(�W ), since alsoF
has order typeγ underR(�W ). Now defineS′ as follows. For an operator� of ��

put S′(�) := S(�). Else putS′(�) := ξ−1[ R(�)]. Let H := 〈G, S′〉. We claim that
H is a�+-frame. To that end, observe that the reduct ofH to the language of�� is
isomorphic toG and the reduct to the language of� is isomorphic to a disjoint union
of F and some one-point irreflexive frames. HenceH |= �� ⊗ �. Now, S′(�W ) ⊆
S′(�), since x S′(�W ) y only if x, y ∈ b andx R(�) y. Furthermore, ifx S′(�W ) y then
x S′([◦]) y cannot hold, since thenx andy have the same depth. So,H |= �+. Finally,
the relation is nontrivial along at most one branch. �

By Lemma3.8, wededuce that if� is complete thenKz(�+) ≥ Kz(�) and similarly
for the modified Kuznetsov-Index. However, far better bounds can be obtained.

Lemma 5.14 Let F be a �+-Kripke-frame and F− a rooted subframe of its reduct
to �. If F− has cardinality µ ≥ ℵ0 then F has cardinality 2µ.

Proof: This follows from Proposition3.1. �

Lemma 5.15 Let � be a complete modal logic with Kuznetsov-Index(�)µ. Then
�◦ ∩ � is complete and has Kuznetsov-Index(�)µ.

This allows us to show that the Kuznetsov-spectra are (almost) closed under expo-
nentiation.

Lemma 5.16 Let µ be an infinite cardinal number. Suppose that there exists a
modal logic with Kuznetsov-Index µ. Then there exists a modal logic with Kuznetsov-
Index 2µ.
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Proof: Let � be a logic withKz(�) = µ. We may assume that� is complete and
� ⊆ �◦. By Lemma5.13, �+ is conservative over�. Let � be the logic of all�+-
Kripke-frames of cardinality≤ 2µ. By assumption on�, there is a formulaϕ which is
µ-satisfiable but notλ-satisfiable for anyλ < µ. By Lemma5.14, ϕ is 2µ-satisfiable,
but it is notκ-satisfiable for anyκ < 2µ. HenceKz(�) ≥ 2µ. By definition of�,
Kz(�) ≤ 2µ and the claim is shown. �

Lemma 5.17 Let µ be an infinite cardinal number. Suppose that there exists a
modal logic with Kuznetsov-Index� µ. If µ = λ+, there exists a modal logic with
Kuznetsov-Index� (2λ)+. Else, if cf(µ) = ω, then there exists a modal logic with
Kuznetsov-Index� 2<µ := sup{2λ : λ < µ}.
The proof is similar to the previous one. Notice thatsup{2λ : λ < µ} = sup{(2λ)+ :
λ < µ}. (We remark thatµ ≤ 2<µ < 2µ. This is about the only restriction on 2<µ.
The size of 2<µ otherwise depends very much on the universe.) We note the following
consequences.

Corollary 5.18 cf(ρ f
α ) = cf(ρ� f

α ) = ω. ω ≤ cf(ρα) = cf(ρ�
α) ≤ 2ω. In particular,

all Löwenheim numbers are singular.

Corollary 5.19 ρα = ρ�
α. ρ

f
α = ρ

� f
α .

Proof: We already know thatρα ≤ ρ�
α. Now let µ ∈ K�

α. Then if µ �∈ Kα we have
µ = λ+ with λ ∈ Kα. Now, 2λ ∈ Kα, by Lemma5.16andµ ≤ 2λ. Sinceµ was
arbitrary, we haveρ�

α ≤ ρα. The second claim is shown analogously. �

6 The countable limit Wehave shown in the previous section how to create a logic
with Kuznetsov-Index� 2µ from a logic with Kuznetsov-Index� µ, on certain assump-
tions onµ. Here we will deal with the countable limit of cardinal numbers. We will
show a theorem both forµ andµ+ whereµ is a countable limit.

Lemma 6.1 Suppose that µ is a cardinal number of cofinality ω. Suppose for a
countable sequence 〈γi : i ∈ ω〉 with limit µ there are complete logics �i such that
Kz�(�i) = γi and the one-point irreflexive frame is a �i-frame. Then there is a logic
� such that Kz(�) = Kz�(�) = µ.

Proof: All �i are modal logics based on countable setsOi of operators. We shall
assume that theOi are pairwise disjoint. LetO := ⋃

i∈ω Oi. Define f : O → ω by
f (�) := i if and only if � ∈ Oi. Then form the logic

� :=
⊗
i∈ω

�i ⊕ {¬�⊥ → �′⊥ : f (�) �= f (�′)}.

This is the fusion of all the�i such that if there is a transition fromx to somey in a
frame using a�i-modality then no transition fromx to any point exists using a� j-
modality, wherej �= i. Now letF be a�i-frame. ExtendF to the frameF◦, in which
R◦(�) := R(�) if f (�) = i, and R◦(�) := ∅ if f (�) �= i. ThenF◦ is a�-frame.
We call it a simple extension. It iseasily established that�-frames are disjoint unions
of simple extensions of some frames. Hence� is complete with respect to simple
extensions. It follows thatKz�(�) < µ+ since any formula has a model based on a
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simple extension of a frame and we can choose it to be less thanγi in size. Now for
eachδ < µ there is ani such thatδ < γi. Furthermore, there is a formulaϕ consistent
with �i such that the least frame forϕ hasγi points. Now the simple extension for that
model is a�-model forϕ. Moreover, any�-model forϕ must have at leastγi-many
points, since it must contain a simple extension of a�i-model forϕ. This shows that
� has Kuznetsov-Index� ≥ µ. Similarly it follows that the Kuznetsov-Index of� is
= µ. �
We note that ifϕ is a formula, one can actually construct a formulaχ ∨ ∨

i<n ψi

such thatχ is constant,ψi is in the language of�i, i < n, and� � ϕ ←→ ∨
i<n ψi.

Namely, choosen large enough so that no modality ofϕ occurs in any of the�i. Now
choose modalities�i, i < n, with f (�i) = i.

ϕ = ϕ. ∧ .
∧
i<n

�i⊥ ∨
∨
i<n

♦i�

Now ϕ ∧ ∧
i<n ⊥ can be reduced to a nonmodal formula in� andϕ ∧ ♦i� can be

reduced to a formula containing only modalities from�i. This shows in detail why
Kz�(�) ≤ µ.

Lemma 6.2 Suppose that µ is a cardinal number of cofinality ω. Suppose for a
countable sequence 〈γi : i ∈ ω〉 with limit µ there are complete logics �i such that
(a) a difference operator [ �=i] is definable in �i for all i < ω, (b) Kz�(�i) = γi, (c)
the one-point irreflexive frame is a frame for �i. Then there is a logic �� such that
Kz(��) = µ. Kz�(��) = µ+.

Proof: Proceed as in the previous example and define the logic�. Now extend�
by two operators,� and�, which are tense duals; moreover,� satisfiesG.3, while
� satisfies

�⊥ ∧ �⊥. ∨ . � ¬ � ⊥ .

There are formulasϕi such thatϕi can be satisfied in a�i-frame of size at leastγi,
i < ω. By Lemma4.7 we may assume that they are without variables. Finally, for
eachi < ω add the postulates

♦�. → . �i+1 ⊥ ∧ ¬ �i ⊥, f (♦) = i
¬ � ⊥ → [ �=i] � ⊥
ϕi+1 → ¬[ �=i+1] � ¬ϕi

ϕi → ¬[ �=i] � ¬ϕi+1.

Here [�=i] is the difference operator of�i. This defines the logic��. Frames for ��

are made as follows. For eachi, take a simple extensionF◦
i of a �i-frameFi. Let

G = 〈G, R〉 be the disjoint union of these frames.G is a frame for the reduct of�� to
the fragment without� and�. R(�) andR(�) still need to be defined. We pick from
eachFi, i < ω, apoint xi. Now put R(�) := {〈x j, xi〉 : i < j} andR(�) := R(�)�.
This completes the definition of〈G, R〉. Weclaim that〈G, R〉 |= ��. This is obvious
for the fragment without� and�. (Note that we need condition (c) here to ensure
that the disjoint union is a frame for�i.) R(�) is a disjoint union of well-order of
type 1 orω. Furthermore, there exists exactly one well-order of typeω and in it the
ith point is fromF◦

i . Finally, the last two series of postulates say that if at theith point
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of the well-orderϕi holds, then at thei + 1st the formulaϕi+1 holds. And ifi > 0 then
also at thei − 1st point the formulaϕi−1 holds. Now consider the formulaϕ0. It has a
�0-model of sizeγ0. By construction, the only way to fulfillϕ0 is to create a disjoint
sum of�i-models〈F, βi, xi〉 |= ϕi, i < ω, anddefineR(�) := {〈xi, x j〉 : i > j}.1 The
resulting frame has cardinalitysup{γi : i < ω} = µ. Moreover, by choice of theϕi, no
frame forϕ0 can have size< µ. For then its size would be< γ j for somej. However,
ϕ0 ��� ¬ � ¬ϕ j and no model forϕ j exists which has size< γ j: acontradiction. So
the Kuznetsov-Index of�� is at leastµ and the Kuznetsov-Index� at leastµ+. Now
if �� has Kuznetsov-Index> µ+, we may actually take the logic of the frame just
presented and we easily obtain a logic with Kuznetsov-Indexµ+. It is readily seen
that this logic has Kuznetsov-Indexµ. �

Theorem 6.3 Let γ be a countable ordinal number. Then there exist logics � and
�� such that Kz(�) = �γ and Kz�(��) = �γ .

Proof: We will show the result for the modified Kuznetsov-Index. We have seen
that the result is true forγ = 0. In all examples presented, a difference operator is
definable. The claim is true for each successor ordinalγ, the claim holds forγ + 1 if
it holds forγ, by Theorem5.17. Moreover, if there is a logic�γ in which a difference
operator is definable, then there is a logic�γ+1 such that a difference operator is de-
finable in it. (Namely, proceed from� to �wo if necessary. This does not change the
modified Kuznetsov-Index, by Lemma3.9.) The cases whereγ is a countable limit
or a successor of a countable limit are covered by the previous results. �

Corollary 6.4 (GCH) Let γ be a countable ordinal number. Then there exist logics
� and �� such that Kz(�) = ℵγ and Kz�(��) = ℵγ .

Corollary 6.5 If α ≥ ℵ0, then cf(ρα) ≥ ω1.

7 Simulating countably many operators In [12] i t was described how modal logics
with finitely many operators can be simulated by a single operator. This establishes
already that for eachn there is a monomodal logic with Kuznetsov-Indexℵn. How-
ever, if we want to reach higher, we need to simulate also countably many operators.
This however is not as easy as in the finite case.

Let F = 〈F, R〉 be a Kripke-frame based onℵ0 many operators,�i, i < ω. Then
define a monomodal frameFs := 〈Fs,�〉, where

Fs := (F ∪ {�}) × ω

� :=



{〈〈�, i〉, 〈�, j〉〉 : i = j + 1}
∪ {〈〈x, i〉, 〈x, j〉〉 : i �= j, x ∈ F}
∪ {〈〈x, i〉, 〈y, i〉〉 : x, y,∈ F, x R(�i) y}.

(We assume that� �∈ F.) We call a monomodal frameM asimulation frame if it is of
the formFs for someω-modal Kripke-frameF. Given a completeω-modal logic�
we put�s := Th (Krp�)s. In other words, we take the logic of the frames simulating
the Kripke-frames of�. The logic of all simulation frames,Ks

ω, is also calledSim(ω).
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The following are theorems of this logic. (In contrast to the case of finitely many
operators this set is not a complete set of axioms.)

ωi := �i+1⊥. ∧ .¬�i⊥
αi := ♦ωi. ∧ .¬ωi+1

(A) ωi ∧ ♦p. → .�p,

(B) αi → ♦α j, i �= j,
(C) αi ∧ ♦(α j ∧ p) → �(α j → p), i �= j,
(D) αi ∧ p → �(α j → ♦(αi ∧ p)), i �= j,
(E) αi ∧ ♦(ωi ∧ p) → �(ωi → p),

(F) αi → ¬♦ω j, i �= j,
(G) ♦≤3(ωi ∧ p) → �≤3(ωi → p),

(H) ω j → ♦ωi, j > i.

Let the logic axiomatized by these postulates be�. Clearly,� ⊆ Sim(ω). Now let
M be a�-frame. Suppose that a pointx satisfying someαi is a root ofM. We will
show that althoughM need not be a simulation frame, it does contain a subframe
which is. DefineAi := {x : x |= αi} and�i := {x : x |= ωi}. By (C), each pointx
in Ai sees exactly one pointy in A j, if i �= j, and then by (D) we havey � x. This
establishes bijectionsψi j : Ai → A j such that forx ∈ Ai andy ∈ A j we havex � y
if and only if y = ψ(x). Now, putF := A0. Then a bijectionν from F × ω to

⋃
i Ai

is defined byν(〈x, i〉) := ψ0i(x). Put nowR(�i) := ν−1[� ∩ A2
i ]. From (A) we see

that each point in�i+1 has at most one successor in�i. By (G) we see that in a rooted
frame�i contains exactly one point. Call itoi. Extendν by puttingν(〈�, i〉) := oi.
By (H) and the definition of theωi, o j � oi if and only if j > i. By definition of the
αi, for everyx ∈ Ai we havex � oi, and by (F) we havex � o j for j �= i. Wewish to
claim thatν is a bijection. However, this is not generally the case. Therefore, define
S(M) := ⋃

i<ω Ai ∪ �i. ThenM induces onS(M) a frame which is isomorphic
to a simulation frame. We putMs := 〈A0, R〉 with R defined above and call it the
unsimulation of M.

Wedefine for a formula inω-many operators a simulation as follows.

ps := α0 ∧ p
(¬ϕ)s := ¬(α0 ∧ ϕs)

(ϕ ∧ ψ)s := ϕs ∧ ψs

(�iϕ)s := �(αi → �(αi → �(α0 → ϕs))).

Lemma 7.1 Let N be a �-Kripke-frame. Suppose that 〈N, β, x〉 |= α0 ∧ ϕs. Then
there exists a valuation γ and a world y such that 〈Ns, γ, y〉 |= ϕ.

Proof: Define F := A0, R(�i) as above, andγ(p) := β(p) ∩ A0. Put y := x.
It is shown by induction onϕ that 〈F, γ, y〉 |= ϕs. Namely, for variables we have
〈N, β, x〉 |= ps if and only if p ∈ β(p) ∩ A0 if and only if p ∈ γ(p) if and only if
〈F, γ, x〉 |= p. The steps for¬ and∧ are clear. The step for the modal operators is a
straightforward calculation. �
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Lemma 7.2 Let F be a Kℵ0-Kripke-frame. Suppose that 〈F, γ, y〉 |= ϕ. Let β be
a valuation on Fs such that β(p) ∩ F × {0} = γ(p) × {0}. Then 〈Fs, β, 〈y,0〉〉 |=
α0 ∧ ϕs.

The proof is a straightforward induction onϕ which will be omitted. Now assume
that� is a completeℵ0-modal logic with Kuznetsov-Index� µ, µ infinite. Look at
the logic�s. It is complete, by definition. Furthermore, it is complete with respect
to Kripke-frames of size< µ × ω = µ. So�s is µ-complete�. Let λ < µ. Then
there exists a formulaϕλ such that no�-Kripke-frame forϕλ has size< λ. From
Lemma7.1we see that ifα0 ∧ ϕs

λ has a�s-Kripke-model based onN, then there is a
model forϕλ on its unsimulationNs. By assumption, this frame has size≥ λ. Hence
N has size≥ λ. So the Kuznetsov-Index� of �s is ≥ µ.

Theorem 7.3 For every ℵ0-modal logic �,Kz(�) = Kz(�s) and Kz�(�) =
Kz�(�s).

Corollary 7.4 Suppose that γ is a countable ordinal number. Then there exist
monomodal logics �� and � such that Kz�(��) = �γ and Kz(�) = �γ .

Corollary 7.5 (GCH) Suppose that γ is a countable ordinal number. Then there
exist monomodal logics �� and � such that Kz�(��) = ℵγ and Kz(�) = ℵγ .

We notice in passing the following. If� is a logic in which a universal modality is
present then�s is 3-transitive, that is, any point reachable from a givenx is actually
reachable in 3 steps. (K4, by contrast, is 1-transitive.) So, we conclude that in the
above theorem we can strengthen the assertion to� and�� being 3-transitive.

As a result of these simulation theorems we note the following.

Theorem 7.6 Let 0 < α,β < ℵ1. Then

1. Kα = Kβ and ρα = ρβ.

2. K�
α = K�

β and ρ�
α = ρ�

β.

In the light of this result we will now drop the indexα and speak ofK, ρ, K�, andρ�.
However, notice that the spectra of finitely axiomatizable logics behave slightly

differently. For ifα is infinite, thenK� f
α = {0}. Hence we only have the following,

which is a consequence of the simulation results of [12] and the results of Section4.

Theorem 7.7 Let 0 < α,β < ℵ0. Then

1. K f
α = K f

β
and ρα = ρβ.

2. K� f
α = K� f

β
and ρ�

α = ρ�
β.

Wecan draw from these results an interesting corollary.

Lemma 7.8 ρ f , ρ� f ∈ K ∩ K�.

Proof: Let�i, i < ω, be an enumeration of all monomodal logics which are finitely
axiomatizable. By Lemma6.1 there exists a logic� whose Kuznetsov-Index is the
limit of all Kuznetsov-Indices of the�i. By Corollary7.4, there exists a monomodal
logic with this property. Henceρ f ∈ K. By Corollary 5.19, ρ f = ρ� f . Finally, it is
easily seen thatρ f ∈ K� as well. �
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Sinceρ f ∈ K andK has no maximal element we conclude the following.

Theorem 7.9 ρ f < ρ.

Furthermore, cf(ρ) ≥ ω1.

8 Reaching higher The methods established so far can be improved rather dras-
tically. Before we show how, we need to introduce some more tools. Recall from
[12] the following characterization of modally definable first-order conditions. Let
� j, j < κ, be our basic operators. Define for a finite sequence�σ ∈ κ∗ the operator
��σ by induction.

�εϕ := ϕ

�i�σϕ := �i��σϕ

Hereε is the empty sequence. Furthermore, for a finites ⊂ κ∗ put

�sϕ :=
∧
�σ∈s

��σϕ .

We may regard��σ and�s actually as primitive operators, and it turns out that we
have for any frame〈F, R〉

R(�ε) = {〈x, x〉 : x ∈ F}
R(�i�σ ) = R(��σ ) ◦ R(�i)

R(�s) = ⋃
�σ∈s R(��σ )

A variable in a first-order formula is calledinherently universal if it is quantified by
auniversal quantifier not in the scope of some existential quantifier. The following is
shown in [12], Theorem 5.6.1.

Theorem 8.1 (∀x)α(x) is definable by means of a Sahlqvist formula if and only if
it is equivalent to a formula that can be produced from constant formulas and formu-
las of the form x R(�s) y (called ground clauses) using ∧ and ∨, and the restricted
quantifiers (∃y)(x R(�s) y ∧ β) and (∀y)(x R(�s) y → β) such that any ground
clause contains at least one inherently universal variable.

Now, in order to make use of this theorem, we observe the following. We know that
with the introduction of a difference operator we also have the relation�=. This allows
us to define theuniversal modality, [u], by

[u]ϕ := ϕ ∧ [ �=]ϕ.

Wehave thatR([u]) = F × F for any rooted Kripke-frame (the rootedness is neces-
sary, of course). If we assume this, then we can actually define the unrestricted quanti-
fiers; for ifF is rooted thenF |= (∃y)(x R([u]) y ∧β(y)) if and only ifF |= (∃x)β(y).

Moreover, in [9] the so-called inaccessibility relation was introduced and ax-
iomatized. Informally, if� is any modal operator, then� is the correspondingin-
accessibility operator or simply thecomplement of � if x R(�) y if and only if not:
x R(�) y. This can be put down with a simple axiom. Put

cm := 〈u〉n(p) → (♦p ←→ ¬�p).
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Lemma 8.2 A rooted Kripke-frame 〈F, R〉 satisfies cm if and only if R(�) = F2 −
R(�).

This allows us to lift the restrictions of the Sahlqvist theorem drastically.

Theorem 8.3 Let α be a sentence in R(� j), j < κ—possibly using restricted
quantifiers—such that every prime formula contains at least one inherently universal
variable. Then the modal language can be enriched conservatively by some finitely
many operators (and some axioms) such that α is definable by means of a Sahlqvist
formula on all rooted Kripke-frames.

Proof: First, we adjoin the difference operator by means of two relations. Next, for
every negative ground clause¬(x R(�s) y) we introduce the complement operator
of �s. Then, by appeal to Theorem8.1, the theorem is proved: any negative ground
formula can be replaced by a positive ground formula, and the unrestricted quantifiers
are in fact restricted quantifiers (on rooted frames). �

Remark 8.4 The definition of cm is, of course, not Sahlqvist (otherwise the result
would trivially follow from the earlier ones). We use this result to encode the axioms
of set theory into modal logic. Even with the help of this theorem this turns out be a
nontrivial exercise. For it is simply not guaranteed that all axioms of set theory are
of the form required by the above theorem. Doing matters this way would also miss
the point: there is a first-order axiomatization of set-theory, and if it were translated
to modal logic the resulting logic admits small models, namely, countable models.
Hence, the trick is to use a mixture of first-order and second-order axioms.

Let us start with the language in one operator, [∈]. We adjoin on the way some op-
erators, always finitely many, in order to express our postulates. We illustrate the
technique with some examples. For ease of readability also we write(∀y ∈ x)ϕ and
(∃y ∈ x)ϕ in place of(∀y)(y ∈ x → ϕ) and(∃y)(y ∈ x ∧ ϕ), respectively.

Foundation There are no infinite descending∈-chains.

Introduce the relation� and its transitive closure�+. Add the axiom
G for �+.

[�+]([�+] p → p) → [�+] p.

This ensures that no set contains an infinite descending∈-chain.

Extensionality (∀xy)(x
.= y ←→ (∀z)(z ∈ x ←→ z ∈ y)).

This has the form required by the theorem. (For this formula is equiv-
alent to

(∀xy)((x
.= y ∧ (∀z)(z ∈ x ←→ z ∈ y))∨
(x � .= y ∧ (∃z)(z ∈ x ∧ z �∈ y. ∨ z �∈ x ∧ z ∈ y)))

In the first disjunct all variables are universally quantified, in the sec-
ondz is existentially quantified. However, every prime formula con-
tains eitherx or y, which are inherently universal.)
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Set Union (∀x)(∃y)(∀z)(z ∈ y ←→ (∃u ∈ x)(z ∈ u)).

Introduce the relation symbol∈2 together with the axiom

(∀xy)(x ∈2 y ←→ (∃z)(x ∈ z ∧ z ∈ y)).

This satisfies the conditions of Theorem8.3and we may rewrite the
first formula into

(∀x)(∃y)(∀z)(z ∈ y ←→ z ∈2 x) .

However, it still is not in the right form since the prime formulaz ∈ y
contains no inherently universal variable. Therefore we adjoin a new
relationU and some postulates such thatx U y if and only if y = ⋃

x.
Since there is a unique union, the above postulate can in fact be rewrit-
ten into the required form. Namely, add the following axioms

1. (∀x)(∃y)(x U y),
2. (∀xyz)(x U y ∧ x U z → y

.= z),
3. (∀xy)(x U y ←→ (∀z)(z ∈2 x ←→ z ∈ y)).

Now the postulates are in the required form. The axiom is a conse-
quence of these postulates.

Singleton Sets (∀x)(∃y)(∀z)(z ∈ y ←→ z
.= x).

Adjoin a relation∈1, with the intention thatx ∈1 y if and only if y =
{x}. Now add the postulates

1. (∀x)(∃y)(x ∈1 y),
2. (∀xyz)(x ∈1 y ∧ x ∈1 z → y

.= z),
3. (∀xy)(x ∈1 y → x ∈ y),
4. (∀xyz)(y ∈1 x ∧ z ∈ x → z

.= y),
5. (∀xy)(y ∈ x ∧ (∀z ∈ x)(z

.= y) → y ∈1 x).

These postulates have the required form.

Powerset (∀x)(∃y)(∀z)(z ∈ y ←→ z ⊆ x).

First, we define⊆. Wehavex ⊆ y if and only if (∀z)(z ∈ x → z ∈ y).
Now, adjoin a relation⊆ (and an operator [⊆]) and the postulates

1. (∀xyz)(x ⊆ y ∧ z ∈ x → z ∈ y),
2. (∀xy)(∃z)(x � y → z ∈ x ∧ z �∈ y).

After the introduction of the subset relation we introduce a relationP
such thatx P y if and only if y is the powerset ofx. The following
postulates are added.

1. (∀x)(∃y)(x P y),
2. (∀xyz)(x P y ∧ x P z → y

.= z),
3. (∀xy)(x P y ←→ (∀z)(z ∈ y ←→ z ⊆ x)).

These postulates have the required form.
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It already emerges that we can surround some problems by defining new relations,
corresponding to set theoretic functions. This will become especially useful when
talking about replacement. Further, ifF is a relation corresponding tof (e.g.,P is the
relation corresponding to the powerset function℘), we may also introduce the func-
tion f into our language. Locutions such as ‘x = f (y)’ are equivalent toy F x, and
so the syntactic description of Sahlqvist formulas remains intact even with functions.
Moreover, one can also adjoin new unary predicates which correspond to Boolean
constants. Here is a definition of 2(x), the property of having exactly two elements.
It is mirrored by a Boolean constant 2 with the following postulates:

1. 2→ (
∧

i<3〈�〉pi → ∨
i< j<3〈�〉(pi ∧ p j));

2. 2→ [�1]⊥.

The first axiom says that if we have a node with property 2 then it has at most two
successors while the second says that no node is a singleton. Hence,〈F, β, x〉 |= 2 if
and only if x has two elements if and only if 2(x). Incidentally, we also have 1(x),
which is nothing but(∃y)(y ∈1 x). In general, we have the following theorem, which
is easily derived from the Theorem8.3.

Theorem 8.5 Suppose that cn is a Boolean constant symbol and P is a unary pred-
icate symbol. Let Q(x) be a condition satisfying the conditions of Theorem 8.3.
Then the condition (∀x)(P(x) ←→ Q(x)) also has this property and there exists a
Sahlqvist formula ϕ in some suitably enriched language in which cnmay occur, such
that for any rooted Kripke-frame F, F |= (∀x)(P(x) ←→ Q(x)) if and only if F |= ϕ.

It is analogous for modal operators� and binary predicatesQ where the intended
postulate isx R(�) y ←→ Q(x, y). For replacement, we will have to define the no-
tion of arelation from x to y and afunction from x to y. First, we define the notion of
apair p with componentsx andy. Recall that the pair〈x, y〉 is defined as{x, {x, y}}.

Replacement p is a pair if and only if

1. p is a two element setp = {x, q} such thatx ∈ q,

2. q = {x} or q is a two element setq = {x, y}. In the first caseπ1(p) := x,
π2(p) := x and in the second caseπ1(p) := x andπ2(p) := y.

So, define

1. (∀x)(pair1(x) ←→ 2(x) ∧ (∃y)(y ∈ x ∧ y ∈2 x ∧ (∀z �= y)(z ∈ x ∧
1(z)))),

2. (∀x)(pair2(x) ←→ 2(x) ∧ (∃y)(y ∈ x ∧ y ∈2 x ∧ (∀z �= y)(z ∈ x ∧
2(z)))),

3. (∀x)(pair(x) ←→ pair1(x) ∨ pair2(x)),

4. (∀xy)(x π1 y ←→ pair(x) ∧ y ∈ x ∧ y ∈2 x),

5. (∀xy)(x π2 y ←→ (pair1(x)∧ x π1 y)∨ (pair2(x)∧ y ∈2 x ∧¬(y ∈ x))).

We introduce relationsη1 andη2 together with the axioms

1. (∀yz)(y η1 z ←→ π1(y) = π1(z)),

2. (∀yz)(y η2 z ←→ π2(y) = π2(z)).

Next, we introduce unary predicates rel and fun with the following definitions:
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1. (∀x)(rel(x) ←→ (∀y)(y ∈ x → pair(y))),

2. (∀x)(fun(x) ←→ rel(x) ∧ (∀y)(∀z η1 y)(z η2 y)).

Finally, we introduce the relations dom and rng. They are partial functions de-
noted by the same symbols. We abbreviate byf (x) ↓ the fact thatf is not de-
fined onx and by f (x) ↑ the fact thatf is defined onx. (These are equivalent
to the formulas¬(∃y)(y

.= f (x)) and(∃y)(y
.= f (x)), respectively.)

1. (∀xyz)(x dom y ∧ x domz → y
.= z),

2. (∀xy)(y ∈ dom(x) ←→ (∃z)(z ∈ x ∧ y
.= π1(z))) ∨ dom(x) ↓,

3. (∀xyz)(x rng y ∧ x rng z → y
.= z),

4. (∀xy)(y ∈ dom(x) ←→ (∃z)(z ∈ x ∧ y
.= π1(z))) ∨ dom(x) ↓.

The axiom of replacement becomes

(∀xy)(fun(x) ∧ y
.= dom(x) → (∃z)(z

.= rng(x))) .

Finally, we turn to the axiom of comprehension. Unlike in first-order theories we do
not require that from a given set we single out those elements that satisfy a given prop-
erty. Rather, our axiom says something like this. Ifx is a set (that is, a point in the
Kripke-frame) and we have a collectionY of points then there is a sety that contains
exactly those sets which are inx and inY . By replacingY by Y ∩ x we can derive the
(equivalent) condition:

(∀Y )(∀x)(Y ⊆ x → (∃y)(∀z)(z ∈ y ←→ z ∈ Y )) .

Hence, we are playing with the sets of the metatheory (called “collections” or
“classes”) and the sets of the model itself. The axiom is the following. (Here,� is
the complement of�.)

Comprehension 〈u〉n(q) ∧ [u](p → [∈]q) → 〈u〉([�] p ∧ [�]¬p).

A Kripke-frame satisfies this formula if and only if for all collectionsY = β(p) and
Z = β(q): if Z is a set (!) and every member ofY is ∈-related toZ (in other words,
if Y ⊆ Z), then there is a setv such that all members ofu are inY and no member is
not inY . In other words,v = Y and soY is a set. This means that every subcollection
of a set is a set.

Now, several auxiliary notions can be defined.x has the same cardinality asy—
in symbolsx ∼ y—if and only if there exists a bijective function fromx to y. For
simplicity, we make use of the Cantor-Bernstein Theorem. We first define ‘x is of
lesser cardinality thany’, x ≤ y, and then definex ∼ y by x ≤ y ∧ y ≤ x.

1. (∀x)(inj(x) ←→ fun(x) ∧ (∀y)(∀z η2 y)(y η1 z)),

2. (∀xy)(x ≤ y ←→ (∃z)(inj(z) ∧ dom(z)
.= x ∧ rng(z)

.= y))),

3. (∀xy)(x ∼ y ←→ x ≤ y ∧ y ≤ x).

Readers may have noted that unary predicates sometimes occur but the variable is not
inherently universal. Since unary predicates correspond to Boolean constants and the
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occurrences of constants are not restricted by the Sahlqvist Theorem (see [12]), it fol-
lows that there is no restriction on occurrences of prime formulas using unary predi-
cates. A quick way to see this is as follows. IfP is a unary predicate, introduce a bi-
nary predicateQ with the axiom(∀xy)(Q(x, y) ←→ P(y)). This is Sahlqvist. Now
let α be a formula with occurrences ofP. Replace occurrences ofP(y) by Q(x, y),
wherex is inherently universal. Call the resultαQ. Then if all binary relation symbols
of α satisfy the conditions, so doesαQ. If this is done for all unary predicates, we end
up with a formula that is Sahlqvist. So, there are no conditions on unary predicates.

An ordinal is a set which is transitively and linearly ordered by∈ (that it is also
well-ordered by∈ follows from the foundation axiom). To define this property we
introduce the relation♥ defined by

(∀xy)(x ♥ y ←→ x �∈ y ∧ x �= y ∧ y �∈ x).

(x ♥ y if and only if x andy are (different and)∈-incomparable.) Therewith we define
a property ord(x) by

(∀x)(ord(x). ←→ .(∀y)(y ∈2 x → y ∈ x) ∧ (∀y ∈ x)(∀z ♥ y)(z �∈ x)).

This can be defined in modal terms by Theorem8.5. Using the ordinals we can install
the axiom of infinity in the following way: we define “limit ordinal” by

(∀x)(lord(x) ←→ (∃y)(y ∈ x) ∧ (∀y)(y ∈ x → y ∈2 x)).

Infinity (∃x)lord(x).

A cardinal number is an ordinaly such that for every ordinalx: if x < y thenx ∼ y
does not hold. Again, using Theorem8.5this can be rendered into modal terms.

Choice The axiom of choice is equivalent to the axiom of well-ordering.

Hence we take as axiom the statement

(∀x)(∃y)(ord(y) ∧ x ∼ y).

This has the required form.

In this way, all axioms of set theory ZFC are converted into modal axioms involving
some expansion of the original signature by some finite set of operators. Call the re-
sulting logic�. Let �− be the logic without the axiom of replacement. We do not
know whether�− or � are complete.

Lemma 8.6 Suppose that F is a rooted Kripke-frame for �. Then 〈F,∈〉 satisfies
the axioms of ZFC. Moreover, every class contained in a set is a set.

Likewise for�−. We define the restricted universesVλ, λ an ordinal, in the usual
way.

V0 := {∅}
Vλ+1 := ℘(Vλ)

Vλ := ⋃
µ<λ Vµ λ limit ordinal

Here∅ is the unique∈-minimal member ofV .
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Lemma 8.7 Let F be a rooted Kripke-frame for �−. Then |Vλ+1| = 2|Vλ|. It follows
that |Vω+λ| = �λ.

Proof: It is enough to observe thatVλ+1 is in one to one correspondence with the
classes ofVλ. Hence its cardinality is 2µ whereµ is the cardinality ofVλ. �

Theorem 8.8 A rooted Kripke-frame of �− has cardinality �λ, λ a limit ordinal.

A cardinalµ is inaccessible if it is > ℵ0, regular, and a strong limit.µ is regular if
it is not the supremum of< µ many cardinals, and astrong limit if 2ν < µ for every
ν < µ (see Jech [10]).

Theorem 8.9 The Kuznetsov-Index of � is either 0 or some inaccessible cardinal.
It is 0 if and only if there exists no inaccessible cardinal.

Proof: Let 〈F, R〉 be a Kripke-frame for�. Then〈F, R([∈])〉 is a model of ZFC set
theory. It follows that|F| must be an inaccessible cardinal. If inaccessible cardinals
do not exist, thenF = ∅ and so the Kuznetsov-Index of� is 0. Otherwise, letα
be inaccessible. Then〈Vα,∈〉 is a model of ZFC. It can be turned into a frame for
ZFC by interpreting∈ as the relationR([∈]) and suitably definingR(�) for the other
operators. �
It is not hard to see that the logic of the smallest model of ZFC in the signature of
� is such that its Kuznetsov-Index is 0 if no inaccessible cardinal exists and that it
is the smallest inaccessible cardinal otherwise. Notice that the consistency of� is
independent of the existence of inaccessible cardinals, since it is only a finitary notion.
It follows that if � is consistent but no inaccessible cardinals exist, then� has no
Kripke-frames and is therefore incomplete. Hence, the completeness of� depends
on the structure of the universe.

9 Some facts about ρ Let us recall the facts so far.Kα does not depend onα and
soρα is independent ofα as well. Furthermore,ρα = ρ�

α. K is a set of cardinality
≤ 2ℵ0, and it is closed under countable limits andµ �→ 2µ. Now, what is the size of
ρ? We will establish here a characterization in terms of definability. The results ob-
tained here make heavy use of certain set theoretic constructions which are explained
in detail in [6].

To approach this question, we will compare the expressive strength of modal
logic with that of monadic second-order logic.L is a language of monadic second-
order logic (MSO) if it contains

1. a countable set of individual variables and a countable set of class variables,
2. enough Boolean connectives (eg�, ∧ und¬),
3. the first-order quantifiers∀ and∃,
4. the second-order quantifiers∀ and∃,
5. at most countably many first-order constants, functions and relations,
6. at most countably many class constants.

Pure MSO is that particular language that has no first-order constants, functions, or re-
lations, except equality, and has a single class constant, denoted byU. A �1

1-formula
is a formula of MSO in which the class variables are only universally quantified. A
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�1
1-formula is a formula in MSO in which the class variables are only existentially

quantified over.
The standard translationϕ†, defined in Section4, defines a translation of modal

logic into first-order logic. We letϕδ be defined by

pδ
i := Pi(x),

(¬ϕ)δ := ¬ϕδ,

(ϕ ∧ ψ)δ := ϕδ ∧ ψδ,

(�ϕ)δ := (∀y)(x R(�) y → ϕδ[y/x]).

Now, let (∀ �P)ϕδ be the universal closure ofϕδ. So, �P = P0, . . . , Pn−1, where all
occurring variables ofϕ are of the formpi, i < n. Then we have

F |= ϕ iff F |= (∀ �P)ϕδ.

Consequently, a modal logic defines a set of structures that is definable by a set of
�1

1-sentences.

If we readPi(x) simply by x ∈ Pi, (∀ �P)ϕδ is a�1
1-sentence in the language of

set theory. We wish to show now that conversely for any�1
1-sentenceψ there exists a

modal formulaψ‡ such thatF |= ψ if and only if F |= ψ‡, given that we may actually
enrich the signature somewhat. This will be enough to show that the numberρ can
be equated with an analogously defined number for a set of�1

1-formulas. There are
two ways to proceed. The first is interesting in its own right but will not lead to a full
result. Only the second method succeeds.

Here is the first method. Recall Theorem8.1. Using the methods of [11] one can
actually lift this theorem to�1

1-sentences of the form(∀ �P)(∀x)α( �P, x) where ground
clauses are of the form(¬)y R(� j) y′ or y ∈ Pi or y �∈ Pi. There is no condition on
the variabley in the last two cases. In particular, it need not be inherently universal.
Going through the same arguments of the previous section one can then show that
any sentence(∀ �P)(∀x)α( �P, x) is modally definable on rooted Kripke-frames in an
enriched signature if only any ground clause of the formy R(� j) y′ or its negation
contains at least one inherently universal variable.

We will now show that the last condition can almost be eliminated if we are
working in the language of set-theory. First, we can reduce the second-order prefix to
a single variable using the typical coding of sequences by sets. Further, assume that
the formula is not second-order but first-order. We then introduce Skolem-functions
to eliminate all existentially quantified variables. For example,(∀�x)(∃y)ϕ(�x, y) be-
comes

(∀�x)ϕ(�x, f (�x))

and the additional postulates ensuring thatf is a function are clearly special. How-
ever, Skolem-functions are not necessarily unary. So, we replace ann-ary Skolem-
function f by the functionf ♥, defined onn-tuples of sets. Ifπn

i denotes the projection
of ann-tuple to itsith coordinate, we require, therefore, that

f ♥(y) = f (πn
0(y), πn

1(y), . . . , πn
n−1(y)) .
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Weintroduce into the formula(∀�x)(∃y)ϕ(�x, y) the function f ♥ rather thanf . Hence
we have to transform the formula into

(∀�x)(∀y)(
∧
i<n

πn
i (y)

.= xi → ϕ(�x, f ♥(�x))).

It is readily checked that the formula expressing thatf ♥ is defined only onn-tuples
is special. So we have replaced the existential quantifier by a universal quantifier at
the price of introducing only a binary function.

If the formula is, however, not first-order but truly second-order, matters are not
so easy. For then the Skolem-function, in addition to depending on the first-order vari-
ables may also depend on the second-order variable(s). Let us therefore try another
method. Consider any signature of MSO. Recall that we may have countably many
first-order relation and function symbols (and constants). We can, however, recode
the relation and function symbols by means of a single classU which describes them.
(To see how, note that we may write countably many relations onV as a single subset
of Vω which again can be recoded intoV . All these codings are elementarily defin-
able.) Therefore, we add some constantU to denote this class and translate a formula
ϕ into ϕ♠ which is a formula of pure MSO with one constant,U, and one relation
symbol,∈, in addition to equality. So, any�1

1-sentenceϕ of the original language
is satisfiable in a second-order model expanding the universe〈V,∈〉 by relations and
functions if and only if there exists someU such that〈V,∈,U〉 satisfiesϕ♠. Further-
more, ifϕ is �1

1, so isϕ♠. Since we can use Boolean constants to denote classes,ϕ♠

is by the results established above a sentence that is modally definable in a suitable
signature!

Definition 9.1 κ is theindex of some countable setT of �1
1-formulas if the smallest

model forT has cardinalityκ. If T is finite,κ is called afinitary index. LetP be the set
of indices andP f the set of finitary indices. Finally, putπ := sup P andπ f := sup P f .

Theorem 9.2 Suppose that µ = �α for some α which is 0 or a limit ordinal. Then
µ ∈ K if and only if µ ∈ P and µ ∈ K f if and only if µ ∈ P f .

Proof (Sketch): Observe that for the reduction of�1
1-formulas into modal logic we

do not need full set-theory but rather enough so that we can code countable sequence
of sets by sets. So the reduction works actually in ZFC minus Replacement. Models
for this theory can be built onVα for any limit ordinalα. Soα = ω + β for someβ

such thatβ = 0 orβ a limit ordinal. Now notice that|Vα| = �β. �

Corollary 9.3 ρ = π and ρ f = π f .

This shows that as far as the numberρ is concerned we may actually work in MSO
instead.

Wewill close our investigations with some remarks concerning the omission of
certain cardinals. Recall the notion of anindescribable cardinal. A cardinalα is �1

1-
indescribable if for every �1

1-sentenceϕ of pure MSO, if〈Vα,∈,U〉 |= ϕ then for
someβ < α: 〈Vβ,∈,U ∩ Vβ〉 |= ϕ. The first to note is that this notion of indescriba-
bility can be extended to countable sets of sentences.



170 MARCUS KRACHT

Lemma 9.4 Suppose that α is �1
1-indescribable. Let � be a countable collection

of sentences in pure MSO. Then if 〈Vα,∈,U〉 |= �, there exists a β < α such that
〈Vβ,∈,U ∩ Vβ〉 |= �.

Proof: We can code formulas in set-theory by means ofGödel-sets. These are
hereditarily finite sets, hence members ofVω. In particular, note that (1) the predicate
G(x), defining the set of G̈odel sets, is elementary, (2) each Gödel-set is elementarily
definable. Now, there exists a formulaχ(x) in which only x occurs free and which
is universal for�1

1. This means that for all�1
1-sentencesϕ, all limit ordinalsα > ω

and allU ⊆ Vα:
〈Vα,∈,U〉 |= ϕ ←→ χ(uϕ)

whereuϕ is the G̈odel-set corresponding toϕ. Now consider the setG(�) := {uϕ :
ϕ ∈ �}. This is a subset ofVω. Furthermore,

〈Vα,∈,U〉 |= � iff 〈Vα,∈,U〉 |= (∀x)(x ∈ G(�) → χ(x)).

Now add a constantP to the language which may be interpreted by any class. Then
there is aP ⊆ Vα such that

〈Vα,∈,U, P〉 |= (∀x)(G(x) ∧ P(x) → χ(x))

if and only if 〈Vα,∈,U〉 |= �. We may recodeU and P into a single class and call
it U again. For example, we may do this in such a way that the finite sets ofU are
exactly the G̈odel-sets of�. After this recoding we have

〈Vα,∈,U〉 |= (∀x)(G(x) ∧ U(x) → χ(x)).

Now if α is �1
1-indescribable there exists aβ < α such that

〈Vβ,∈,U ∩ Vβ〉 |= (∀x)(G(x) ∧ U(x) → χ(x)).

Now Vβ ∩ Vω = Vα ∩ Vω (remember we have at least ZF-set theory, so the levels are
identical andα andβ are limit ordinals and> ω). It follows by the universality ofχ
that

〈Vβ,∈,U ∩ Vβ〉 |= �.

This shows the claim. �
Now, we may also speak of amodally indescribable cardinal which is a cardinal such
that whenever for a modal logic� containing� and〈Vα,∈, R〉 |= � there exists a
β < α such that〈Vβ,∈, R � V2

β 〉 |= �. (Here, R � V2
β is the function returning for

eachj the setR(� j) ∩ V2
β .) It is clear that a modally indescribable cardinal does not

belong toK. Further, by the Lemma9.4and the reduction of� to a countable set of
�1

1-sentences and vice versa we establish the following theorem.

Theorem 9.5 A cardinal is modally indescribable if and only if it is �1
1-

indescribable.

It is easy to see that, in particular,ρ is�1
1-indescribable which means that it cannot be

defined without parameters by a single�1
1-formula nor, as we have seen, by a count-

able set of such formulas.
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10 Conclusion Some implications of the previous results shall be mentioned. Sup-
pose that we have a Kripke-frameF for � inside some universeV . Then, by the fact
that we have second-order set comprehension, one can show thatW := 〈F, R(∈)〉 is
isomorphic to〈Vα,∈〉 for some ordinalα. We shall now identify objects ofW mod-
ulo this isomorphism with objects ofVα. Then we get the following facts. Given
two objects,x andy of Vα, we haveW |= “ |x| = |y|” i f and only if V |= “ |x| = |y|”.
In other words, the notion of cardinality does not depend on whether we look at it
from inside the model or from outside. This is meant when one says thathaving the
same cardinality is absolute in W. Similarly for the notion of a cardinal. So we have
W |= “ x is a cardinal” if and only ifV |= “ x is a cardinal”. We also say thatx is a
cardinalW to say that inW |= “ x is a cardinal”. Notice that the notion of an ordinal
is elementarily definable inside a ZFC-model and so also absolute. (The notion of a
well-order is�1

1-definable.) Just a little reflection on the comprehension axiom shows
that the notions of powerset, of a product of two sets, a relation between two sets,
and so on, are the same in the model as in the universeV . So explicit set-theoretic
constructions do not depend on whether we perform them outside or insideW. As a
consequence we get thatx is inaccessibleW if and only if it is inaccessibleV . In sequel
we shall takeV to be the total universe and we shall drop the superscriptV .

Now, a cardinal number isweakly compact if and only if it is inaccessible and
has the tree property: a cardinalµ has thetree property if and only if

for every treeT on µ of orderµ such that for eachλ < µ fewer thanµ

elements have orderλ thenT has a branch of orderµ.

(See [4].) Here a tree is a pair〈T,<〉 such that< satisfies certain axioms and such
that for all y the set{x : x < y} is well-ordered by<. The well-order type of this
set is called theorder of y. The order of the tree is the supremum of all orders of its
elements. Now we claim the following.

Lemma 10.1 W |= “µ has the tree property”if and only if µ has the tree property.

Proof: Suppose thatW �|= “µ has the tree property”. Then there is a tree〈µ,<〉 (in
W) such that for eachλ < µ there are fewerW thanµ elements of orderλ but 〈µ,<〉
does not have an element of orderµ. Sincex has fewerW elements thany if and only
if x has fewer elements thany, µ fails to have the tree property. Conversely, letµ fail
to have the tree property. Then there is a treeT = 〈µ,<〉 exemplifying this. Now,<
is a subset ofµ × µ and so, by�1

1-comprehension,< is a set inW. Likewise, it can
be shown thatT is a set inW and soW �|= “µ has the tree property”. �
Hence, consider the first-order axiomτ(x) stating thatx has the tree propertyW and
inacc(x) that x is inaccessibleW . Then we have seen thatW |= ∃x.τ(x) ∧ inacc(x)

if and only if W contains a weakly compact cardinal. In a similar vein we can
write down a first-order statement ms(x) such that ms(x) is true if and only ifx is
measurableW . It can be proved thatx is measurableW if and only if it is measurable,
and this will demonstrate that if measurable cardinals exists,ρ is greater than the least
measurable cardinal! This shows that the Löwenheim number of modal logic, even
though it can be shown to exist, in general exceeds any large cardinal that can be de-
fined by means of a higher order sentence (if that cardinal exists), since higher or-
der quantification is reducible to first-order quantification in presence of full compre-
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hension, as long as we quantify over classes that are bounded by some definable set
theoretical function of the occurring (first-order) set-variables. This is the case with
quantifying over trees over a cardinal or over ultrafilters on a cardinalκ, which are
subsets of℘n(κ) for some suitablen.

Let us briefly mention that although we have succeeded in characterizingρ, the
identity ofρ f remains unclear. For the logics we have defined above are finitely ax-
iomatizable, but we have not shown them to be complete. Since there always is a
completion, this was enough for establishing a lower bound forρ. However, it is not
in general the case that the completion of a finitely axiomatizable logic is finitely ax-
iomatizable again. So we lack an essential link here to establish lower bounds forρ f .
Notice by the way that the completeness of� may well depend on the size of the uni-
verse, though its consistency is independent of it. Finally, the Löwenheim numbers
of K4 logics are also not known.
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NOTE

1. We remark that theβi are actually not needed, since the formulas are without variables.
Moreover, notice that the framesFi need actually not be disjoint; the cardinality of the
disjoint union is identical to the limit in either case.
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