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ESSENTIAL FORCING GENERICS

STEPHANIE CAWTHORNE AND DAVID KUEKER

Abstract We use model theoretic forcing to study and generalize the con-
struction of (K ,≤)-generic models introduced by Kueker and Laskowski. We
characterize the (K ,≤)-generic models in terms of forcing and introduce a more
general class of models, called essential forcing generics, which have many of
the same properties.

1. Introduction

(K,≤)-generic models were introduced in Kueker and Laskowski [4] as a generaliza-
tion of the classical Fraisse construction of homogeneous-universal models. In this
paper we use a form of model-theoretic forcing to study and generalize this construc-
tion. In particular, we characterize the (K ,≤)-generic models in terms of forcing and
introduce a more general class of models, the essential forcing generics, which have
many of the same properties. This paper is intended to demonstrate that in addition
to being a useful tool for studying (K ,≤)-generics, forcing leads to generalizations
of interest.

In Section 2 we introduce the sort of forcing we use throughout the paper (a gen-
eralization of Robinson’s finite forcing [5]) and state the basic facts on the existence
and the properties of forcing generics.

In Section 3 we define the essential forcing generics as countable models which
are forcing generic with respect to Lω1ω. We characterize them as “homogeneous-
universal” for a weak form of homogeneity (Theorem 3.5) and identify the (K ,≤)-
generics as a specific sort of essential forcing generic (Theorem 3.6).

In Section 4 we study properties of essential forcing generics, obtaining general-
izations of many of the results on (K ,≤)-generics established in [4].

The results in this paper form part of the first author’s doctoral dissertation,
Cawthorne [2].
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2. Forcing with Directed Families of Finite Structures

Throughout this paper we assume that L is a countable relational language. The
assumption that L is relational is not essential but it simplifies the presentation. In [4]
the notion of a smooth class (K ,≤) of finite structures, which is used to construct
(K ,≤)-generic structures, is introduced. We work with directed families, smooth
classes which are countable up to isomorphism and satisfy joint embedding.

Definition 2.1 Let K be a class of finite L-structures closed under isomorphism
and let ≤ be a binary relation on K . Then (K ,≤) is a directed family of finite structures
provided the following hold:

1. K is countable up to isomorphism;
2. ≤ is transitive and for all B,C ∈ K ,B ≤ C implies B ⊆ C;
3. (K ,≤) satisfies joint embedding, that is, for every B1,B2 ∈ K there are

C ∈ K and isomorphic embeddings fi : Bi → C so that fi (Bi) ≤ C for
i = 1, 2;

4. for each B ∈ K there is a set pB(x) of universal formulas with |x| = |B|

such that for any B ∈ K with B ⊆ C,B ≤ C if and only if C |H ϕ(b) for all
ϕ ∈ pB, where b enumerates B; we also require pB = pC whenever B ∼= C.

We refer to ≤ as strong substructure. Further, we may assume pA(x) contains the
basic open diagram of A, so that if B |H ∧pA(a′) then defining f (ai) = a′

i for all
i < |A| yields an isomorphism of A onto A′ ≤ B.

By convention, A,B,C will always refer to structures in K while M,N will be
used for arbitrary (usually infinite) structures. The universe of A,M will be denoted
by A,M respectively.

We use directed families (K ,≤) to define a forcing relation where structures in
K are the forcing conditions and ≤ is the extension relation. The resulting notion of
forcing is a straightforward generalization of Robinson’s finite forcing (see [5]) and
is covered by Keisler’s very general treatment (see [3]). In this section we give the
basic definitions and facts concerning forcing and forcing generics, specialized to our
context. These are almost all standard and the reader is referred to [3] and [5] for
more detail.

Definition 2.2 Let (K ,≤) be a directed family of finite structures. We define the
relation A forces θ,A  θ , for A ∈ K and θ ∈ SnL(A), as follows:

if θ is atomic then A  θ iff A |H θ ;
if θ is (ϕ ∨ ψ) then A  θ iff A  ϕ or A  ψ ;
if θ is ∃yϕ(y) then A  θ iff A  ϕ(a) for some a ∈ A;
if θ is ¬ϕ then A  θ iff there is no B ∈ K such that A ≤ B and

B  ϕ.

Technically our notation should indicate the dependence of forcing on (K ,≤), but
we suppress this since the context will make clear what directed family is involved.
Note that ∧,→, and ∀ are treated as defined symbols in the context of forcing. Weak
forcing is introduced as usual: A w θ if and only if A  ¬¬θ . Since (K ,≤) will
always denote a directed family of finite structures, we will frequently omit this in
statements of theorems and definitions.

Before defining forcing generics we need to extend the definition of ≤ which we
accomplish using the definability condition (4) in the definition of directed family.
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Definition 2.3 Let B ∈ K and let M be arbitrary. Then B ≤ M holds if and only
if B ⊆ M and M |H ϕ(b) for all ϕ ∈ pB, where b enumerates B.

Definition 2.4 Let (K ,≤) be a directed family and let M be arbitrary. M is a
forcing generic if and only if for every θ ∈ SnL(M), M |H θ if and only if there is
some A ∈ K such that A ≤ M and A  θ .

Note that we allow M to be uncountable. Accommodating uncountable structures
also requires us to extend the notion of (K ,≤)-union as follows.

Definition 2.5 Let (K ,≤) be a directed family of finite structures. A structure M

is a (K ,≤)-union if and only if every finite subset X of M is contained in the universe
of some A ≤ M.

Forcing generic structures then are those obtained from “generic sequences” of struc-
tures in K .

Lemma 2.6 Let (K ,≤) be a directed family. A structure M is a forcing generic
if and only if M is a (K ,≤)-union and for every θ ∈ SnL(M) there is some A ≤ M

such that M  (θ ∨ ¬θ).

From the above lemma the existence of forcing generics follows as usual. The ex-
istence of a (K ,≤)-universal forcing generic uses the countability of K and joint
embedding.

Theorem 2.7 Let (K ,≤) be a directed family. Then for every A ∈ K there is a
countable forcing generic M such that A ≤ M. In fact, there is a countable forcing
generic M which is (K ,≤)-universal, that is, every A ∈ K embeds into M as a
≤-substructure.

The existence of forcing generics has the usual characterization of weak forcing as a
consequence.

Corollary 2.8 For every A ∈ K , θ ∈ SnL(A),A w θ if and only if M |H θ for
every forcing generic M with A ≤ M.

The following Löwenheim-Skolem result now enables us to construct uncountable
forcing generics as unions of families of countable forcing generics. In particular,
the union of any elementary chain of forcing generics is forcing generic.

Lemma 2.9 A structure M is forcing generic if and only if every finite X ⊆ M is
contained in the universe of some countable forcing generic N such that N ≺ M.

We note the following consequence of joint embedding which enables us to refer to
the complete theory of the forcing generics.

Lemma 2.10 Let (K ,≤) be a directed family and assume M and N are both forcing
generic. Then M ≡ N.

Recall that M ⊆∀ N means that for all universal formulas θ(x) and all a ⊆ M we
have M |H θ(a) if and only if N |H θ(a). If M and N are both forcing generics and
M ⊆∀ N then M ≺ N. In fact, by further extending the definition of ≤, we can prove
a stronger statement.

Definition 2.11 Let M be a (K ,≤)-union and assume M ⊆ N. Then M ≤ N

holds if and only if for every A ∈ K , if A ≤ M then A ≤ N.
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Due to the requirement that the formulas in pA be universal, we know that M ⊆∀ N

implies M ≤ N for any (K ,≤)-union M.

Lemma 2.12 Let M,N be forcing generics. If M ≤ N then M ≺ N.

Finally we remark that forcing can be extended to infinitary sentences by adding to
the definition the clause A 

∨
8 if and only if A  ϕ for some ϕ ∈ 8. If L∗ is

some fragment of L∞ω then we can say that M is forcing generic with respect to L∗

if and only if for every ϕ(x) in L∗ and a ⊆ M we have M |H ϕ(a) if and only if
A  ϕ(a) for some A ≤ M.

The existence of forcing generics with respect to countable fragments can then be
proved just as Theorem 2.7 (see [3] for more detail). However, there need not be a
forcing generic with respect to all of Lω1ω. Such forcing generics, when they exist,
have very nice properties and are the main subject of this paper.

3. Essential Forcing Generics

Examples (see the end of this section) show that there may be many countable forcing
generics for a given (K ,≤). In this section we show how to pick out a unique, count-
able forcing generic called an essential forcing generic. Essential forcing generics
may be characterized in a way analogous to the definition of (K ,≤)-generics and
the corresponding existence theorem is also analogous to that concerning (K ,≤)-
generics.

Definition 3.1 A countable structure M is an essential forcing generic if and only
if M is forcing generic with respect to all of Lω1ω.

The uniqueness of essential forcing generics is a consequence of joint embedding and
the existence of Scott sentences.

Theorem 3.2 If M and N are both essential forcing generics, then M ∼= N.

Proof: Let σ of Lω1ω be the Scott sentence of M. Then A  σ for some A ≤ M.
Since (K ,≤) satisfies joint embedding it follows that there is no B ∈ K such that
B  ¬σ , hence B w σ for all B ∈ K . Taking B ≤ N, we conclude that N |H σ ,
hence M ∼= N. �

Essential forcing generics are precisely the (K ,≤) “homogeneous-universal models”
for the following weaker notion of homogeneity.

Definition 3.3 Let (K ,≤) be a directed class. A countable structure M is weakly
(K ,≤)-homogeneous if and only if for every A ≤ M there is some B ∈ K such that
A ≤ B ≤ M and whenever f : B ∼= B′ where B′ ≤ M then f � A extends to an
automorphism of M.

Thus, the notion of (K ,≤)-homogeneous from [4] is the strengthening of this weak
form in which B = A.

To prove our characterization of essential forcing generics we require the following
lemma, whose proof is a standard back-and-forth argument which is omitted.

Lemma 3.4 Let M be a countable (K ,≤)-universal (K ,≤)-union. Then M is
weakly (K ,≤)-homogeneous if and only if the following holds:
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(3∗) for every A ≤ M there is some B such that A ≤ B ≤ M and whenever
C ∈ K , B ≤ C then there is some f : C ∼= C′ where C′ ≤ M and
f � A = idA.

If the countable structure M is a (K ,≤)-union and is weakly (K ,≤)-homogeneous
then for every a ⊆ M there is some B ∈ K , a ⊆ B, and B ≤ M such that whenever
f : B ∼= B′ where B′ ≤ M then f � a extends to an automorphism of M. This
follows by finding A ∈ K with a ⊆ A and A ≤ M and then applying the definition
of weakly (K ,≤)-homogeneous. This same comment holds also for the condition 3∗

in Lemma 3.4.

Theorem 3.5 A countable structure M is an essential forcing generic if and only
if the following hold:

1. M is a (K ,≤)-union,
2. M is (K ,≤)-universal,
3. M is weakly (K ,≤)-homogeneous.

Proof: First we show that (1), (2), and (3) will hold assuming M is an essential
forcing generic. (1) holds since all forcing generics are (K ,≤)-unions. To show
(2), let A ∈ K and let σ be ∃xϕ(x) where ϕ(x) =

∧
pA(x). Then A  σ , since

B |H ϕ(a) for all B ∈ K with A ≤ B. Hence, by joint embedding, B w σ for all
B ∈ K . Therefore, M |H σ and so A ∼= A′ for some A′ ≤ M, since we may assume
that pA contains the open diagram of A.

To show that (3) holds, fix some A ≤ M and let a list the elements of A. There is
then a Scott formula ϕa(x) in Lω1ω such that for all a′ ⊆ M we have M |H ϕa(a′) if
and only if (M, a) ∼= (M, a′). Choose B so that A ≤ B ≤ M and B  ϕa(a). Then
B is as required in the definition of weak (K ,≤)-homogeneity, since if f : B ∼= B′

where B′ ≤ M then B′  ϕa( f (a)). Hence (M, a) ∼= (M, f (a)) by the choice of
ϕa.

For the other direction, we assume M is countable and satisfies (1), (2), and (3).
We show directly by induction on θ(x) of Lω1ω that for every a ⊆ M , M |H θ(a)
if and only if B  θ(a) for some B ≤ M. The only case requiring argument is
θ(a) = ¬ϕ(a). By the inductive hypothesis, M |H θ(a) if and only if there is no
B ≤ M such that B  ϕ(a). In particular, if there is some B ≤ M such that
B  θ(a), then M |H θ(a). For the converse, assume M |H θ(a). By the remark
after Lemma 3.4, we may choose B as in (3∗) of Lemma 3.4 so that a ⊆ B. We claim
that B  θ(a). If not, then there is some C ∈ K such that B ≤ C and C  ϕ(a).
But then, by Lemma 3.4, there is f : C ∼= C′ where C′ ≤ M and f � a = ida. Thus
C′  ϕ(a), contradicting the inductive hypothesis. �

(K ,≤)-generics are thus seen to be essential forcing generics. The following result
characterizes (K ,≤)-generics completely in terms of forcing.

Theorem 3.6 Let (K ,≤) be a directed family. If M is (K ,≤)-generic then M is
an essential forcing generic. Moreover, M is (K ,≤)-generic if and only if for every
formula ϕ(x) of Lω1ω and every a ∈ M , M |H ϕ(a) if and only if B w ϕ(a) for
every B ≤ M with a ⊆ B.

Proof: Assume M is (K ,≤)-generic. The proof that M |H ϕ(a) if and only if
B w ϕ(a) for every B ≤ M with a ⊆ B is by induction. It is exactly like the
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last paragraph of the proof of Theorem 3.5, except that (strong) (K ,≤)-homogeneity
yields the right-hand side for all such B.

For the other direction it suffices to show (K ,≤)-homogeneity holds. This too is
just like the corresponding part of the proof of Theorem 3.5. �

(K ,≤)-generics are also universal among forcing generics. The proof of this requires
the following lemma, implicit in the proof of Proposition 3.1 of [4].

Lemma 3.7 If M is (K ,≤)-generic and N is a countable (K ,≤)-union, then
N ∼= N′ for some N′ ≤ M.

Part (b) of the next corollary is an interesting consequence of the universality of
(K ,≤)-generics given in part (a).

Corollary 3.8 Let M be (K ,≤)-generic and let T = T h(M).

(a) A countable structure N is forcing generic if and only if N is a (K ,≤)-union
and N is elementarily embeddable in M.

(b) If every countable model of T can be elementarily embedded in some forcing
generic, then M is ω-saturated.

Proof: The left to right direction of (a) is immediate from Lemma 3.7, Theorem 3.6
and Lemma 2.12. For the other direction, assume N is a (K ,≤)-union and N ≺ M.
We show by induction on formulas θ(x) of L that for all a ⊆ N we have N |H θ(a)
if and only if A  θ(a) for some A ≤ N.

Since N is a (K ,≤)-union, all cases are trivial except for θ = ¬ϕ. Assuming
N |H θ(a), we in fact show that A  θ(a) for every A ≤ N with a ⊆ A. Given
such an A, suppose that A ≤ B for some B ∈ K with B  ϕ(a). Then there is
such a B ≤ M because M is (K ,≤)-generic. Hence, M |H ϕ(a), contradicting the
hypothesis that N ≺ M.

By part (a) and Lemma 2.9, every countable model of T can be elementarily
embedded in M. Therefore, M is ω-saturated by Proposition 3.1 of [4] or by its
generalization, Lemma 4.5 of the following section. �

There are examples (see below) of directed classes (K ,≤) for which no essential
forcing generic exists. What is needed in addition is a weak version of amalgamation,
just as full amalgamation is what is needed for the existence of (K ,≤)-generics. We
omit the proof, which is similar to the proof of the corresponding result for (K ,≤)-
generics.

Definition 3.9 A directed class (K ,≤) satisfies the weak amalgamation property
if and only if for every A ∈ K there is some D ∈ K such that A ≤ D and whenever
D ≤ B0,B1 then there is C ∈ K and isomorphic embeddings fi : Bi → C so that
fi (Bi) ≤ C for i = 1, 2 and f1 � A = f2 � A.

Theorem 3.10 Let (K ,≤) be a directed class of finite structures. Then there is an
essential forcing generic if and only if (K ,≤) satisfies weak amalgamation.

By exploiting the forcing definition of essential forcing generics, we obtain the fol-
lowing useful sufficient condition for their existence.

Lemma 3.11 Let (K ,≤) be a directed class and assume there are only countably
many countable forcing generics up to isomorphism. Then there is an essential forcing
generic.
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Proof: Let {σn : n ∈ ω} list Scott sentences for every countable forcing generic.
Then

∨
n∈ω σn is true on every countable forcing generic, hence is weakly forced by

every A ∈ K . So there is some n ∈ ω and some A ∈ K such that A  σn. Let M

be the countable model whose Scott sentence is σn . If L∗ is any countable fragment
of Lω1ω containing σn and A ≤ N, where N is forcing generic with respect to L∗,
then M ∼= N. Since there are such forcing generics N for every countable fragment
of Lω1ω, it follows that M must be forcing generic with respect to each countable
fragment and hence must be an essential forcing generic. �

We conclude this section with a number of examples.

Example 3.12 The only nonlogical symbol of L is a binary relation S. K is
the class of all finite L-structures embeddable in (Z, S), where S is the immediate
successor relation on Z. For A,B ∈ K we define A ≤ B to hold if and only if A ⊆ B

and for every a1, a2 ∈ A if there is an S-chain in B connecting a1 to a2 then this
S-chain already belongs to A. Then (K ,≤) is a directed family of finite structures,
and every model of T = T h((Z, S)) is forcing generic. The countable ω-saturated
model of T is the (K ,≤)-generic.

Example 3.13 L, K , and T are as in the above example, but the extension re-
lation on K is ordinary substructure. Then once again every model of T is forc-
ing generic, but there is no (K ,⊆)-generic since amalgamation fails. However,
(Z, S) is an essential forcing generic, since every structure in K forces ∀x∀y[(x 6=

y) →
∨

n∈ω[ϕn(x, y) ∨ ϕn(y, x)]] where ϕ0(x, y) is S(x, y) and ϕn+1(x, y) is
∃u0, . . . , un[S(x, u0) ∧ · · · ∧ S(un, y)]. This follows because any pair of elements
of A can be connected in some B with A ⊆ B.

Example 3.14 L and T are as in the above examples. K ′ is the class of finite
L-structures embeddable in (Z, S) in which every pair of elements is connected by an
S-chain and the extension relation is ordinary substructure. Then (K ′,⊆) is directed.
(Z, S) is the only forcing generic and is (K ′,⊆)-generic.

Example 3.15 L is as in the previous examples and L∗ adds a unary predicate P.
K ∗ is the class of all finite L∗-structures A∗ so that A∗ � L ∈ K , from Example 3.12.
We define ≤∗ on K ∗ by A∗ ≤∗ B∗ if and only if A∗ ⊆ B∗ and A∗ � L ≤ B∗ � L,
where ≤ is as in Example 3.12. Then (K ∗,≤∗) is directed and all models of the
complete theory of the forcing generics are forcing generics. But there is no essential
forcing generic, since weak amalgamation fails.

In Example 3.13 we saw that (Z, S) was an essential forcing generic for (K ,⊆)
which was not (K ,⊆)-generic. However, we showed in Example 3.14 that (Z, S) was
(K ′,⊆)-generic for a suitable choice of K ′. Can this always be done? Does every
essential forcing generic become (K ′,≤′)-generic for some directed family (K ′,≤′)?
As the following example shows, the answer is no.

Example 3.16 Let L = {≤, P}, where P is a unary “coloring” of points. Let 6
be the set of ∀∃ sentences expressing the following:

1. ≤ is a tree order of the universe.
2. The tree has one component.
3. All immediate successors of a point have the same color.
4. The least element and its immediate successors all satisfy P.
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Let K be the collection of finite models of 6. For A,B ∈ K , we define A ≤ B to
hold if and only if A ⊆ B and no element of (B − A) precedes any element of A.
Then (K ,≤) is directed.

There is just one forcing generic M. It is a model of 6; it has a least element
and every other element has an immediate predecessor; every element has infinitely
many immediate successors (all of the same color), but there are infinitely many of
these successors having immediate successors of each color; the tree is well founded
of height ω. Since there is only one forcing generic, it is essential by Lemma 3.11.

Claim 3.17 There is no directed (K ′,≤′) so that M is(K ′,≤′)-generic.

Proof: It suffices to show that for every A ⊆ M(a = A), which contains some
element of height ≤ 2, there is some A′ ⊆ M(a′ = A′) so that (M, a) ≡∀ (M, a′)

but (M, a) 6∼= (M, a′). Given such an A, let a0 be a maximal element in A and let
b be its immediate predecessor. Choose a ′

0 to be an immediate successor of b not in
A whose immediate successors all have color different from that of the immediate
successors of a0. Let A′ = (A − {a0}) ∪ {a′

0}. �

There is an obvious generalization of essential forcing generics to allow uncount-
able models. M is an essential forcing generic if and only if for every formula
θ(x) of L∞ω and every a ⊆ M,M |H θ(a) if and only if there is some A ≤ M

such that A  θ(a). However, since K is assumed to be countable up to isomor-
phism, a Löwenheim-Skolem argument shows that such models are precisely the
L∞ω-elementary extensions of countable essential forcing generics. Thus, nothing
essentially new is obtained.

4. Properties of Essential Forcing Generics

In this section we show that many of properties of (K ,≤)-generics established in [4]
are in fact consequences of properties of essential forcing generics.

The first group of results concerns the special case in which L is finite and pA

is finite for every A ∈ K . Under these hypotheses the (K ,≤)-generic is atomic
(Proposition 3.4 in [4]) and as a consequence one obtains a result characterizing
when its complete theory is ω-categorical (Theorem 3.5 of [4]). Both these results,
and more, hold for essential forcing generics.

Theorem 4.1 Assume L is finite and pA is finite for all A ∈ K .

(a) If M is an essential forcing generic then M is atomic.
(b) There is an essential forcing generic if and only if there is an atomic forcing

generic.

Proof: Since L is finite, we may assume that pA includes the basic open diagram
of A.

(a) Assume M is an essential forcing generic and let a ⊆ M . By the remark after
Lemma 3.4, we may choose B so that a ⊆ B and B satisfies the definition of
weak (K ,≤)-homogeneity for a. Let ϕ(x) = ∃y ∧ pB(x, y), where x corre-
sponds to a in the enumeration of B. Then ϕ determines a up to isomorphism
in M, so it isolates the complete type of a. Thus M is atomic.

(b) It suffices to show that if M is an atomic forcing generic then M is an essential
forcing generic. We show the conditions in Theorem 3.5 all hold. Certainly
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M is a (K ,≤)-union. If A ∈ K , then B w ∃x ∧ pA(x) for every B ∈ K ,
implying M |H ∃x ∧ pA(x). Hence, A embeds strongly into M and M is
(K ,≤)-universal. To show M is weakly (K ,≤)-homogeneous, let A ≤ M

and let ϕ(x) isolate the complete type of a in M, where a enumerates A.
Then B  ϕ(a) for some B where A ≤ B ≤ M. If f : B ∼= B′ where
B′ ≤ M then M |H ϕ( f (a)), hence f � A extends to an automorphism of M

as required. �

The following is an immediate consequence of Theorem 4.1.

Corollary 4.2 Assume L is finite and pA is finite for all A ∈ K . Assume M is an
essential forcing generic and let T = T h(M). Then the following are equivalent:

1. T is ω-categorical;
2. M is ω-saturated.

The next result has no finiteness assumptions. Note that if ≤ is just usual substructure
then the hypothesis is precisely that M is algebraically prime in the sense of Baldwin
and Kueker [1].

Theorem 4.3 Let M be an essential forcing generic and assume T = T h(M) has
a prime model. Assume that M can be embedded as a strong substructure in every
model of T. Then M is prime.

Proof: Let N be the prime model of T . Then by assumption M ∼= M′ ≤ N. It
suffices to show N is forcing generic, since we then have M′ ≺ N by Lemma 2.12,
and thus M is prime.

We may assume N ≺ M. It suffices to show that if N |H θ(a) then there is
some C ≤ N such that C  θ(a). Let ϕ(a) isolate the type of a in N, hence in
M. Then M |H θ(a) ∧ ϕ(a) implying A  θ(a) and A  ϕ(a) for some A ≤ M.
But M ∼= M′ for some M′ ≤ N. So there is some A′ ∼= A,A′ ≤ M′ ≤ N and
A′  θ(a′),A′  ϕ(a′) where a′ is the image of a under the isomorphism. But
N ≺ M so A′ ≤ M and M |H ϕ(a′) ∧ θ(a′), hence N |H ϕ(a′) ∧ θ(a′). Thus,
(N, a) ∼= (N, a′). The inverse image of A′ under the isomorphism will thus be some
B such that B ≤ M and B  θ(a), as desired. �

The main results in [4] concern the circumstances under which the (K ,≤)-generic
is ω-saturated. In particular, the (K ,≤)-generic is ω-saturated provided it is weakly
saturated (Proposition 3.1 of [4]), and in that case its complete theory is 1-model
complete (Theorem 3.2 of [4]). We establish the same facts for essential forcing
generics as consequences of some more general results. We recall the definition of
ω-homogeneity.

Definition 4.4 A structure M is ω-homogeneous if and only if for any a, b ⊂ M ,
if (M, a) ≡ (M, b) then for every c there is a d such that (M, a, c) ≡ (M, b, d).

Examples show that an essential forcing generic need not be ω-homogeneous but the
following result explains the limitation.

Lemma 4.5 Assume M is an essential forcing generic and that there is some
ω-homogeneous model N realizing precisely the same types as M. Then M is ω-
homogeneous.
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Proof: Let M,N be as in the statement, assume (M, a) ≡ (M, b) and let c ∈ M
be given. We show that there is some d ∈ M such that (M, a, c) ≡ (M, b, d).
By the remark after Lemma 3.4, we may assume b ⊆ C where C ≤ M and C

satisfies the definition of weak (K ,≤)-homogeneity for b. Since N realizes all types
realized in M, we can find a∗, c∗, b

∗
= B∗ and C∗ such that (N, a∗) ≡ (N, b

∗
),

C∗ ≤ N, and (C, b) ∼= (C∗, b
∗
). Since N is ω-homogeneous, there is some d∗ ∈ N

so that (N, a∗, c∗) ∼= (N, b
∗
, d∗). Now, since M realizes all types realized in N,

we can find b
′
, d ′,C′ such that (M, b

′
, d ′) ≡ (N, b

∗
, d∗),C′ ≤ M, and (C∗, b

∗
) ∼=

(C′, b
′
), that is, (C, b) ∼= (C′, b

′
). By the choice of C the restriction of this last

isomorphism to b extends to an automorphism of M and the inverse image of d ′ will
be the desired d. �

The following is an immediate consequence.

Theorem 4.6 If M is an essential forcing generic and weakly saturated (i.e.,
realizes all pure types consistent with its complete theory), then M is ω-saturated.

Without reference to essential forcing generics, we show that the complete theory T
of the forcing generics is 1-model complete, assuming every type consistent with T
is realized on some forcing generic. We first note the following.

Lemma 4.7 Let T be the complete theory of the forcing generics. Assume every
type consistent with T is realized in some forcing generic. Then every ω-saturated
model of T is forcing generic.

Proof: Let M be an ω-saturated model of T (possibly uncountable) and let a ⊆ M .
By hypothesis the complete type of a is realized on some forcing generic N which
we may take to be countable. Since M is ω1-universal, we may also take N ≺ M.
Thus, M is also forcing generic by Lemma 2.9. �

We now obtain the following result giving a sufficient condition for the complete
theory of the forcing generics to be 1-model complete.

Theorem 4.8 Let T be the complete theory of the forcing generics. Assume that
every type consistent with T is realized in some forcing generic. Then T is 1-model
complete. If ≤ is ordinary substructure, then T is model complete.

Proof: Let M be anω-saturated model of T . By Lemma 4.7 M is forcing generic. If
T is not 1-model complete, then there are N,N′ |H T such that N ⊆∀ N′ but N 6≺ N′.
So there is a ⊆ N such that (N, a) ⇒∃∀ (N

′, a) but (N, a) 6≡ (N′, a). Since M is
saturated, we get b, b

′
⊆ M such that (M, b) ≡ (N, a) and (M, b

′
) ≡ (N′, a) hence

(M, b) ⇒∃∀ (M, b
′
) but (M, b) 6≡ (M, b

′
).

Now, extend b to some C where C ∈ K ,C ≤ M. Since M is ω-saturated,
there is C ′ such that (M, b, c \ b) ⇒∀ (M, b

′
, c′ \ b

′
) where c, c′ enumerate C,C ′,

respectively. Therefore, (C, b) ∼= (C′, b
′
) and C′ ≤ M, hence (M, b) ≡ (M, b

′
)

which is a contradiction. In the case in which ≤ is ⊆, the same argument shows
model completeness. �

In the special case in which ≤ is ordinary substructure, [4] obtains a more satisfactory
result characterizing the circumstances under which the (K ,≤)-generic isω-saturated
(Theorem 2.5 of [4]). We generalize this result to essential forcing generics satis-
fying one more condition. One of the main distinctions between (K ,≤)-generics
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and essential forcing generics, as shown in Example 3.13, is that an essential forcing
generic need not embed every countable (K ,≤)-union. If we add this property then
we obtain the exact analogue to Theorem 2.5 of [4].

We first need the following generalization of Lemma 2.4 of [4].

Lemma 4.9 Assume ≤ is ordinary substructure. Let T be the complete theory
of the forcing generics and assume every countable model of T embeds in some
(K ,⊆)-union. If M is an essential forcing generic, then M is an existentially closed
model of T∀.

Proof: Assume θ(x, y) is an open formula, a ∈ M , and N |H ∃xθ(x, a) for some
N such that N |H T∀ and M ⊆ N. Since N is embeddable in a model of T , and by the
hypothesis of Lemma 4.9, we may assume N is a (K ,⊆)-union. By adding dummy
variables as needed, it may be assumed that a is the universe of some A ∈ K ,A ⊆ M.
Since weak amalgamation holds for (K ,⊆), there is B ∈ K ,B ⊇ A such that any two
extensions of B can be amalgamated over a, that is, B satisfies weak amalgamation for
A. Let C ⊆ N be finite with C |H ∃xθ(x, a) and B ⊆ C. Since N is a (K ,⊆)-union,
there is C′ ∈ K , C ⊆ C′. Now weak amalgamate C′ into M over a. �

Finally we obtain the following.

Theorem 4.10 Assume ≤ is ordinary substructure. Let M be an essential forcing
generic and assume every countable (K ,⊆)-union embeds into M. Let T = T h(M).
Then the following are equivalent:

1. M is ω-saturated;
2. T is model complete and every countable model of T embeds into some

(K ,⊆)-union;
3. T∀ has a model companion and every countable model of T embeds into some

(K ,⊆)-union.

Proof: (1 ⇒ 2) Assume that M is ω-saturated. Then any countable N which
models T embeds (elementarily) into M, which is a (K ,⊆)-union. Since the essential
forcing generic is ω-saturated, T is model complete by Theorem 4.8.

(2 ⇒ 3) Since T is model complete, T is the model companion of T∀.

(3 ⇒ 1) Assume that S is the model companion of T∀. M is an existentially closed
model of T∀ = S∀ by Lemma 4.9. Thus M |H S so T = S is model complete.
By hypothesis, however, every countable model of T embeds isomorphically, hence
elementarily, into M. Hence, M is a weakly saturated model of T , so M isω-saturated
by Theorem 4.6. �
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