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On Partial and Paraconsistent Logics

REINHARD MUSKENS

Abstract Inthis paper we consider the theory of predicate logics in which the
principle of bivalence or the principle of noncontradiction or both fail. Such
logics are partial or paraconsistent or both. We consider sequent calculi for
these logics and prove model existence. Egrthe most general logic under
consideration, we also prove a version of the Craig-Lyndon Interpolation The-
orem. The paper shows that many techniques used for classical predicate logic
generalize to partial and paraconsistent logics once the right setup is chosen.
Our logicL 4 has a semantics that also underlies Belnap’s logic and is related to
the logic of bilatticesL 4 is in focus most of the time, but it is also shown how
results obtained fok 4 can be transferred to several variants.

1 Introduction The principle of bivalence states that a sentence is either true or
false; the principle of noncontradiction says that no sentence is both true and false.
These two principles have been part and parcel of all standard formulations of logic
since the subject began with Aristotle. But they need not be accepted and in fact if
one of them is rejected (or if both are) we get a straightforward generalization of clas-
sical logic. Allowing the possibility that a sentence is neither true nor false yields a
partial logic (see, e.g., Cleavg][ Blamey [], Langholm [1]) and allowing sen-
tences to be both true and false leads to a paraconsistent logic. The possibility of
having partiality and paraconsistency at the same time is exemplified in B&lhap [
Partial and paraconsistent logics have applications in database theory (see the mo-
tivation given in [£]), in treatments of the Liar paradox (see, e.g., WoodfRf[
Visser [29)), in knowledge representation (Thijs§&g], Jaspard9)), in logic pro-
gramming (Fitting[L3), Bochman[g]), and in natural language semantics (see Bar-
wise and Pernyd], Muskens[p3], [24]). Apart from such applications there is another
motivation to study them which derives from an interest in classical logic: how much
of the latter’s metatheory rests on bivalence and noncontradiction and how much re-
mains if these principles are removed?

In this paper we shall consider predicate logics in which bivalence or noncon-
tradiction or both fail. Our prime example will be the lodig, a partial and para-
consistent predicate logic based Bh [For this logic we shall give a simple Gentzen
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sequent calculus and prove model existence (with useful corollaries such as complete-
ness, compactness, and thiastenheim-Skolem theorem) and Craig interpolation.

There will be logics other thahn, which we shall also consider briefly. Most of
our methods are in fact independent from the way in which certain basic choices for
setting up partial or paraconsistent logics are resolved. One such basic choice con-
cerns the notion ofonsequence. In dassical logic a set of premis&sentails a set of
conclusionsA if and only if in each model in which alf € T" are true somé € A is
true. The same definition can be used for a partial or paraconsistent logic and in this
case one obtains a notig#", transmission of truth. In classical systems this is indis-
tinguishable frontransmission of nonfalsity: We can defind” =" A to hold if and
only if somes € A is not false in each model in which noe T is false or, conversely,
if and only if somey € I is false whenever all € A are. A basic fact about the logics
under consideration is that transmission of truth and transmission of nonfalsity in gen-
eral are not equivalent. For example, if we have logical constants (zero-place connec-
tives)t andb, with t denoting the proposition that is always true and never false and
b the proposition that is always both true and false, we haw# b but nott =" b.

Note that we needed the nonclassical connedtifar this example; it is well known
that=" and="" are identical on formulas with only the classitat, A, v, V, and
3 (given the interpretations for these connectives considered below).

Which notion is the “right” notion of validityi="" or ="f? InL 4 neither of these
notions is taken, but the choice is resolved by requiring transmission of truth as well as
nonfalsity. The relation of entailment is defined by lettihg= A if and only if I" =1
A andl’ =" A. Thus, while=" andi="" are duals in an obvious sense, the notion
= will be its own dual. This, we feel, is a strong argument in its favor. The choice for
a“double-barreled” notion of consequence was also take#]jflf], and 24], but in
the literature we find instantiations of the other possibilities as welBJin21], [28],

[19], and [B], for example =" is taken to be the basic notion of consequence, asitisin
Hahnle[L7] and Baaz, Feriiller, and ZachZ]. In Holden [L8], on the other hand, we
find its dual="". The results in this paper generalize over such variations in a simple
way. As will be explained in some detail below, our basic notion wilHgebut extra
structural elements ¥~ and-A can be present in our Gentzen sequents. Addition of
+ (but not+) leads to the notiok="", while addingA (but not+£) leads to="".

The presence of- means that transmission of falsity from conclusions to premises
need not obtain while the presencefsignals that there need be no transmission
of truth.

The double-barreled notion of consequence distinguishéom the approach
taken in the tradition ofnany-valued logics (see, e.g., Schier 6], Roussealdd],
Carnielli [, [], [B], and [ 7], and Zach[BI]). Such logics are standardly associated
with a setN of truth values and a s& C N of designated truth values. A sentence
¢ follows from a set of sentencdsin this approach if and only i evaluates to an
element ofD in every model in which eacp e T evaluates to an element Bf. ="
and |=”f easily fit within this scheme, as will be seen below, puts an animal of
adifferent kind. Properties df= cannot always be reduced to propertie$=6f and
'=an

It is well known that partial and paraconsistent logics can usually be embedded
into classical logic. Such embeddings (see Feferfid@h Gilmore [L5, [Z1], and
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[24)) give useful abstract information about the embedded logic, but for more con-
crete information direct methods are necessary. For instda@eolserves that for

L 4, the compactness theorem, thtenheim-Skolem theorem, and the recursive ax-
iomatizability of = all follow from a simple embedding into predicate logic and the
corresponding theorems there. But this method of translation does not give a concrete
axiomatization and cannot be used to obtain Interpolation.

Apart from their technical use, embeddings of partial and paraconsistent logics
into the classical system give some intuitive guidance. The existence of such embed-
dings strongly suggests that many proofs for the classical theory will generalize to
cases where bivalence or noncontradiction are not assumed to hold. One purpose of
this paper, next to simply providing concrete syntactic characterizations of the conse-
guence relation for various useful logics and studying properties of this consequence
relation, is to show that this is indeed the case. The reader, therefore, should not be
disappointed if our proofs turn out to be generalizations of similar proofs for the clas-
sical theory. Fascinating as partial and paraconsistent logics are, many of their prop-
erties can be studied with the same arsenal of methods that is used for the classical
case.

The proof system in this paper will stay close to the sequent format introduced
in Langholm [R2]. For reasons that will be discussed below, Langholm’s sequents are
set up as ‘quadrants’, witlour structural positions instead of the usual two (left and
right). We found that this format helped to formulate Gentzen rules in a very concise
way.

Our axiomatization of thé 4 consequence relation with the help of Langholm’s
guadrants and the two structural elemegtsaand -/~ may seem strange at a first en-
counter. Is not a Gentzen calculus which depends on such unusual devices simply a
“hack”? One way to test the quality of a calculus is to see whether it admits of Inter-
polation and indeed we shall find that a version of the Craig-Lyndon theorem can be
proved in a very straightforward way. The result here should well be distinguished
from the result in Langholni{l], where Interpolation is proved for a partial, but not
paraconsistent, logic based . Onthe one hand, we have not been able to extend
our interpolation result fog= to three-valued logics. On the othdZI] remarks that
althoughi= “is perhaps a more worthy counterpart to the classical consequence rela-
tion,” an interpolation theorem for this notion “does not seem to be as easily obtained
as the interpolation theorem fef3” (the partial but not paraconsistent version of our
E='). Langholm tends to emphasize the difference between partial logic and classical
logic, arguing that the resemblances that people have noted between the two extend
only to concepts (such as'" and ="") that concern only the truth or only the fal-
sity behavior of sentences, while “the picture becomes considerably more complex
when questions concerning the interaction between the two are brought into focus.”
If the results in this paper are right, such conclusions are at least not warranted for
four-valued logics.

The setup of the rest of the paper will be as follows. In the next section we re-
call what happens when the classical connection between truth and falsity is given
up: under reasonable assumptions we then arrive at the bil&itiéé&R which was
introduced in Belnaf]. Sectior3describes the truth definition ftr, and shows the
functional completeness of its basic set of connectives. Sd&listusses semantic
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Figure 1: The bilattic?OUR

consequence and introduces sequents, and Séddores a sequent calculus. The
completeness proof for this calculus is given in Sedfituvia model existence. Sec-
tion[Zldiscusses ways to base our logic on three instead of four values, and the logic’s
interpolation theorem is proved in Sect[BhA last section gives conclusions.

2 Theeementsof FOUR Let us introduce the basic notions that lead to the logic
L4. If we give up both bivalence and noncontradiction, that is, if we sever the clas-
sical relation between truth and falsity completely, we arrive at Belnhap’s four values
true and not false, false and not true, both true and false, andneither true nor false
(see[d]). These we shall abbreviate g, b, andn, respectively. The first two of
these values correspond to the classical possibilities; the third represents contradict-
ing information; and the fourth no information at all. If we orde& {t, f, b, n} ac-
cording to the information content of its elements, we arrive at the lattice ordeging
depicted in Figur@] If we order the same elements with respect to their degrees of
truth and nonfalsity, we get the lattice orderigg The structurd4, <) was called
anapproximation latticein [[4], whereag4, <;) was called dogical |attice.

Given that formulag andy take their values id, how can we compute values
for =@, ¢ A Y, @ v ? This can be answered in a very simple way by separating
conditions for truth and conditions for falsity (see, e.g., DUnf)f

1. —p is true if and only ifyp is false,
—@ is false if and only ify is true;

2. oAy istrue if and only ifp is true andy is true,
oAy s false if and only ify is false ory is false;

3. @V istrue if and only ifp is true orys is true,
oV s false if and only ify is false andy is false.

So, for example, it receives the value (neither true nor false) and gets the value
t (true and not false), thep A v is evaluated an: ¢ A ¥ is not true sincey is not
true and it is not false since neithgmor y is false. Reasoning similarly in all other
cases we arrive at the following tables.

b

Alt fon vt f nb -

t|{t f n b t|t t t t t | f
flf f f f flt f n b flt
nin f n f nit n n t nin
blb f f b bt b t b b|b
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Itis easily seen that is meet and/ is join in the lattice(4, <;). Note that the Strong
Kleene truth tables are obtained if we restrigtv, and—to {t, f, n} orto{t, f, b}. In
fact, restricting values tt, f, n} corresponds to accepting noncontradiction but not
bivalence, while restricting td, f, b} corresponds to accepting bivalence but leaving
open the possibility of paraconsistency. In Seclidme shall show how the results
from this paper can easily be adapted to logics that are either partial or paraconsistent,
but not both.

The structurd?OUR = (4, <, <, —) is a prime example of what Ginzbufgd]
has called ailattice. For the general notion of a bilattice s@or one of Fitting’s
papers on the subject (e.qg., Fittifig3]). Here we shall content ourselves with con-
sidering predicate logics in which formulas can have their values oy in

® | o | b

b —
t t
f f
n n

- 35 = 35| =
O ~ O |+
O = = O —

t
t
n
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The truth functionsa, v, and— areclassical in the sense that they always yield a
value in{t, f} when given arguments froft, f}. The zero-place functionsandf are

also classical in this sense, of course. Composition of classical functions can only
give new classical functions and so it is clear thatv, —, t, f} cannot be function-

ally complete ord. In fact many new interesting operators can be investigated once
the classical connections between truth and falsity have been severed. For example,
one can introduce connectivgsand®, with truth tables as above, into the logical
language. These connectives (called “consensus” and “gullibility” in the literature on
bilattices) correspond to meet and join in the approximation lattice ), while —,
conflation, does on(4, <,) what negation does o@, <;). As was shown in4] the
set{®, A, =, —} is in fact functionally complete.

Sincel 4 is based on the bilatticEOUR there is a clear relation between this
logic and what Arieli and Avrorl]] have calledbilattice logics. But there is also an
important difference betwedry and the system presented|id,[as the latter’s con-
sequence relation is a certain generalizatiop=8f adequate for arbitrary bilattices.

Our preferred notion of consequence=swhich directly reflects<;. (Another dif-
ference is our restriction tBO UR, of course.) In Sectioflbelow we shall give more
information about the difference between our setup and Arieli and Avron’s.

3 Satisfaction and functional completeness Having described the basic domain of
truth values forL 4, we may proceed with defining the syntax and semantics of the
logic. The syntax is defined in the usual way with the help of function and relation
symbols in some countable languagea countable set of variables, and the logical
operatorgn, ~, —, —, A, V}. Of the latter, we have met, —, —, and A already;~

is identity anadv is universal quantification. The usual definitionsi@e andbound
variables sentences, and so on, obtainConstants are zero-place function symbols.
We wiite [ty /X1, .. ., th/Xn]@ for the simultaneous substitutiontaffor x; and- - - and

tn for X, in . The function {1 /Xy, ..., th/Xa] is @lled asubstitution. ¢ is asubstitu-

tion instance of y if ¢ = oy for some substitutioa. A model is a pair(D, I) where
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D + @ and[ is a function with domairL such that/ ( f) is ann-ary function onD if

f € Lis ann-ary function symbol and(R) is apair of n-ary relations oD if Re L
is ann-ary relation symbol. We denote the first element of this paira®R), the sec-
ond element ag~ (R). Assignments and the notatioragi a‘: for assignments are
defined as usual. The value of a terin a modelV under an assignmeais written
as [t]™ -2, or [t]™ if tis closed.

Definition 3.1 We define the three-place relatiod$ = ¢[a] (formulag is truein
model M under assignmera) and M = ¢[a] (¢ is falsein M undera) as follows.

1. M ¥ n[a],
M A nlal;

2.M = Rty...to[a] & ([t]™2, ..., [t.]M?) e IT(R),
M= Ry.. . t[a] = ([t]™2, ..., [t]™? e I (R);

3 MEu~E = [t]™?=[t]™?,
M=t ~tla < [u]™?#[L]"s

4. M E —¢la] — M = ¢[a],
M = —¢la] — M & ¢[a];

5. M = —¢[a] — M A ¢la],
M = —¢la] = M I~ ¢lal;

6. MEpAyldl <= MEgla]& M = yla),
M= pnylal = M- glalor M = ylal;

7. M = Vxg[a] < M E g[a)] for alld € D,
M = Vxg[a] < M = ¢[a}] for somed € D.

We write M |= ¢ (M = ¢) if ¢ is a sentence and¥ = ¢[a] (M = ¢[a]) for some
a.

Definition3.Tuses the format of assigning truth conditions and falsity conditions
separately, as discussed in the previous section. Alternatively, we can let formulas
take their values directly id by letting

[el™2=t iff M = gla] andM A ¢[a],
[el™-a=f iff M W g[a] andM = ¢[a],
[el™2a=n iff M b gla] andM A ¢la],
[e]™2=b iff Mk gla] andM = g[a].

Again we suppress superscripts where this may be done. It is easily verified that the
connectiveqn, -, —, and A have a semantics as discussed in the previous section
under this interpretation. The semantic¥a$ just what one would expect and bears
the usual relation to that of. Note that

[vxel ™2 = A\[e]™ %
deD
where/\ denotes arbitrary meet @, <;). This leavesit for us to motivate the seman-
tics of ~ for which we need a short digression. One common way [&éd moti-
vate logics in which truth and nonfalsity are not the same concept is to point out the
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existence of situations in which there is some form of distributed but fallible knowl-
edge. Suppose we have a database which can be updated by more than one employee.
Then it may occur that Tim enters thatwhile Tom enters-p. If the reasoning sys-

tem that comes with the database is based on classical logic this means that all future
questions posed to the system will be answered with ‘yes’. A partial or paraconsis-
tent logic can avoid this, for, as we shall see shogly;p = q does not hold in such
systems.

But this motivation does not preclude the possibility that the reasoning system
decides forsome sentences that they must take their value& jf}. For example,
whatever information there is in the database system, it makes little sense for the com-
puter to have doubts about statements it can decide itself, such as, $a452773.

The fact thatsome knowledge is distributed does not mean taldtkknowledge must
be treated as such by the reasoning system.

For arbitrary formulasp it is possible to state that the formula is true and not

false by stating — ¢ (wheret abbreviates-(—n A n) and— is as below). We may
imagine that an automated system which has expertise in a certain field simply asserts
t — ¢ for certaing and overrules all employee attempts of entering potentially con-
flicting information. For identity statements it seems that bivalence is even the only
possibility, provided that we wish to preserve two properties: (a) self-identity and
(b) replacement of equals by equals. No respectable notion of identity can do with-
out these. Suppose that some statemert t; could be both true and false. Then
—t; &~ t, would also be both true and false. Given the definitiof-gfself-identity,
the property thal= t; ~ t, requires that; ~ t; is true and not false and hence that
—t; ~ t; is false and not true. Note thgt~ t,, —t; ~ t, = —t; ~ t; is an instance
of replacing equals by equals. But now we have a valid sequent with two premises
which are both true (and false) but a conclusion which is not true. Contradiction. The
assumption that ~ t, could be neither true nor false is dealt with in a similar way.
In that casé; ~ tp, -ty &ty = —t; ~ t; has a false conclusion but no false premises.
Again this is a contradiction. It follows th#t ~ t, must be bivalent and hence that
the semantics as it is given is the only reasonable one.

We can introduce more connectives by means of abbreviation.

Definition 3.2 (Abbreviations)  Write

ey  for (eAY)V ((eVi)AN)
p@e for (eAy) Vv ((pVy)A—n)
p—>y for (mpVv-—yY)A(=—pV).

It is not difficult to check thaty and® denote meet and join in the approximation
lattice. The connective> is related to<;, for we have that

[o— vIMa=t iff [e]™?< [y]™2
[o— vlMa=1f iff [e]™2 2 [y]™2.

Suitable definitions of, b, v, and3 are left to the reader.

Theorem 3.3 (Functional Completeness) Every truth function is expressed by a
formula.
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Proof: Directly from the functional completeness (@, A, —, —}, shown in [p4],
and the definability 0&. O

4 Consegquence When we study the consequence relatierit immediately be-
comes apparent that the usual rules for negation are no longer ¥alidy = A

does not follow fronT" = ¢, A (for example, we have = p, but notp, —p ) and

I, ¢ = A does not entail” = —¢, A (sincel= p, —p). This means that such rules

can no longer appear in a syntactic characterization of the consequence relation and
that we must find something weaker. One solution is to give mixed rules for negation
and other connectives as it is done, for exampld@}n\\Ve can split the left rule for

A in two as follows.

I—pFA I',=¢yFA Mo, yEA
I=(pAYy) A oAy EA

We may also split the right rule:

TFo,A Ty, A T+ =g, ¥, A
TFoAy, A TF—(pAY), A

And other rules may be split in a similar way.

While it is possible to arrive at a sound and complete characterization of con-
sequence i 4 in this manner, it may be thought less than nice that some of these
rules are of a mixed character and combine two connectives. These rules do not con-
form to the so-called subformula property, as neithernor — is a subformula of
—(¢ A ¥). Notice, moreover, the similarity between the combined left rule for nega-
tion and conjunction and the right rule for conjunction without negation. A further
similarity obtains between the left rule for unnegated conjunction and the combined
right rule. We would do better if we could let such similar rules be instantiations of
asingle one.

In order to obtain such a more compact characterization we foll@i f taking
sequents to haveur structural positions instead of the usual two and in letting these
positions be arranged in a so-called quadrd®f] §lso considers the various direc-
tions in which transmissions of truth and falsity may go and obtains sequents such as

the following.
I'A I'lA I'lA
I x I x I X

Here the twonorth positions correspond to the two positions in a normal Gentzen
sequent” - A and the two other positions are added for a convenient treatment of
negation: having in a southern position will be equivalent to havingg in the cor-
respondingnorthern position and vice versa. The idea of using sequents with multiple
components dates back &g and[25], but Langholm’s setup is different from these
approaches, as will become apparent below. The ‘biconsequence relatid@sbof |
the other hand, are very similar to Langholm’s quadrants.

We linearize notation by attaching twagns i and j to formulas. i can ben
(north) or s (south), j can bee (east) or w (west). Instead of the rightmost sequent
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displayed above we write
" 1o eTlU{p™pe AU{p>" |9 e T} U{p*® | p € Z}.

While [2Z] considers the graphical representations shown above as different species
of sequents, we let them be manifestations of a single variety. In order to distinguish
the different kinds, we introduce the twtructural el ements A andy~ mentioned in

the introduction. With the help of these we can define our basic data structure.

Definition 4.1 A sequent is a set of signed sentences and structural elements.

The usual notation for sequents will be employed. In particular, we write (as we did
before)I", # instead ofl" U {©} whenevers is a signed sentence or a structural el-
ement. We do not require sequents to be finite. The leftmost representation above
corresponds to

(" 1@ eTIU{p™® @ e AJU{p>" |9 e T} U{¢>® | p € YU {£}.

The ideais that the direction from right to leftin a sequérgnot considered - € '
and that the direction from left to right is not considereghife I'. The situation that
{4, #} € I'is alimiting casel" will then be an axiom.

We say that a signed sentengk! is anorth sentence if = n, otherwise it is
asouth sentence. Similarlyy"! is awest sentence iff = w and aneast sentence if
j = e. AmodelM acceptsanorth sentence if M |= ¢; it accepts a south sentence
@ if M = ¢. M rejectsanorth sentence if M = ¢; it rejects a south sentengef
M E o.

Definition 4.2 M refutes™ T if A ¢ I and M accepts all west sentences but no
east sentence iR; M refutes— I' if 4 ¢ I" and M rejects all east sentences but no
west sentence ifi; andM refutesT if it refutes™ or refutes™ I'. A sequent” isvalid

if no M refutesr.

The notions of consequence considered in the introduction clearly are specializations
of the notion of a valid sequent, as we have that

NEX iff {"”|eelllU{p™®| ¢ e X}is valid,
NEYS iff {"Y|pell}U{p™®| ¢ e Z}U{£}is valid,
NE"S iff (" |eeU{p™®|¢e T}U{A}is valid.

Remark 4.3 This place is as good as any to emphasize the fact that in general there
iS no unique way to associate quadrant positions with truth values in our system. Itis
true that for the notions refuteand refute” the following pictures emerge.

true| not true not falsq false
false| not false not trug true

(See also the tableau system of D’Agostii@][which is based on the valuésie,
false, nontrue, andnonfalse.) But the general notion of refutation is a combination
of refute” and refute” and there is no similar picture corresponding to it. For this
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reason our main notion of logical consequepgeis not the kind of consequence rela-

tion that is studied in the tradition of many-valued logics, where an argument is valid
whenever the conclusion gets a designated truth value if all premises get a designated
truth value. The relations=" and =", on the other hand, do fall within this realm.

=1 is the relation we get whenandb are designated, while="" is the relation we

obtain whert andn are.

Definition 4.4 LetT be a sequent. We define tteal of I', dual (T"), to bethe se-
qguent which results frorr by simultaneously replacing every superscripn I" by
s, everyshy n, everyw by e, everye by w, A by ¥, and+ by A.

Lemma4.5 M refutes— I'if and onlyif M refutes—dual (I).

Proof: Immediate from the definitions. O

5 Asequent calculus Weturn to the proof theory of our system and provide the no-
tion of validity defined in the previous section with a corresponding notion of prov-
ability.

Definition 5.1 A sequent igrovable if it follows in the usual way from the fol-
lowing sequent rules. (Here and elsewhere we shal-fet=s, —s=n, —e = w,
—w==e)

(R) — o Te if ¢ is atomic
Lo ¢
) T
w I A e L £
(") r,n"v (%) r,n"¢
I Y
() Ty
_ r, ")
(=) T ]
(g e Li where(i,j) < (n. ) (s w})
() Sl where(i, j) € {(n, ), (s, &)}
ne T, [c/x]¢"] wherecis notinT" or ¢ and(i, j) €
V) T
, VX {(n, &), (s, w)}
noy DL [t/x]e"] .
(Vse) F,VX@I’J 1 Where('? J) € {<n’ w)v (S’ e>}
(id) Fi~tT where(i, j) € {(n, €), (s, w)}
L T, [to/X]¢" where (i, j) € {(n, w), (s, )},i" €

Tt~ t" [ti/Xlg ] (0}, j’ € {e w}andyis atomic.
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Itis clear that this cut-free calculus obeys the modularity constraint that only one log-
ical operator is dealt with in each rule. We also have a version ofubfermula
property as it is not difficult to show that, for each sentergceccurring somewhere
in a proofTl, ¢ is a substitution instance of songeoccurring as a subformula of a
sentence in the last sequentlof

Just as in the case of validity we can specialize our notion of provability and,
letting IT and X vary over sets of sentences, write

Mn-x iff {™"|eell}U{p™®| ¢ e X}is provable,
NEYS iff {o™Y | e eI} U{p™®| ¢ € =} U {#£} is provable,
nE"s iff {g"™" | peM}U{p™®|¢e T}U{A}is provable.

Example5.2 The following proof shows that (¢ A ¥) = —@ A —.

s yse o B sesese (R)
(ps,e w&e _(pn,e (=) (ps,e 1ﬁse _wn,e (-)
0SC YSE g A —ye (NS
AN e A
—(@AY™, —p A —y"E

n
(Ngs

Remark 5.3 Consider a calculus with rules as above except that{), (n*), and
(n®) are replaced by the single

T, ni,w :

Call a sequentr-provable if it follows from this calculus. It is not difficult to show
that, if " does not contaip~, T is tr-provable if and only ifl", # is provable. This
gives an alternative characterization-df. An alternative characterization f'f is
obtained by proceeding dually. FBmot containing structural elements, we have that
" is provable if and only if" is provable in the system resulting from the present one
with (4, ), (n*), and °) replaced by

r.nv pie’
We conclude that the structural elements are not strictly necessary for the setup. But
see Remark_4below.

It is easy to check that the following are derived rules of our calculus.

(fo where(i, j) € {{(n, w), (s, €)}

i\ i\
B where(i, ) € {(n, w), (s, &)}
(V&) T oV )T where(i, j) € {(n, &), (s, w)}

n,w n,e S,e S,w
ne Fv (p ’ I// Fv (p s I//

= T (g — )

, where(i, j) € {(n, €), (s, w)}
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(_>nw) F, (pn,e’ wse F, (pn,e’ (pS,w F, wn,w, ]//s,e F, wn,w, gl)S,u)
* T, (¢— )" ’
where(i, j) € {(n, w), (s, €)}
@) T, [c/X]¢"] wherec is not inT" or ¢ and(i, j) €
= F, ElX(p"J ' {(nv w>’ (Sv e)}
T, [t/X]¢"! .
(e F[E{;;('p—r , where(i, j) € {(n, &), (s, w)}

An inspection of the rules shows that if we restrict ourselves to sentences in which
n does not occur our various notions of provability collapse, that islTf@and = in

which no signed sentence contaimae have thafl - ¥ if and only if [T - X if and

only if IT " %, since no application of a rule can creagteor . But as soon as
enters the picture it is important to keep track of the extra structural elements. Here
are derived rules fdo, ®, and® in which A andy# play an important role.

GRS O g

(®°) Lg%yt rr(f@:f;e r.y'e, ~ wherei € {n, s}
(®"™) Lty Fr(w(p;w;?w Ly 7L\ wherei € {n, s}
(®°) L.yt Fr(fe;;;e Ly Sl wherei € {n, s}
(®") L.y FF(;pIe:wg'Le Ly %~ wherei € {n, s}

Remark 5.4 Note that the use of our structural elements here makes it possible to
formulate these rules without any violation of the subformula property.

Remark 5.5 Arieli and Avron [1] offer the following sequent rules f@ and®.

Lo v=— A Fr=A,¢ "= A, ¢
[®:>] —F,g0®lﬂ=>A [:>®] = A, 00
- Lo, Y= A ol L=A4A,7¢ = A~y
e =Ir=pey = A [= el —F=K-wen
MNNe=—A I''Yv=—A I'= A,p, V¥
[® =] FLo®v—=— A [= @] T—= A, 00V
[_@:ﬂf‘,—'go:>A -y — A [= @] I'=— A, —p, -y

=@ y) = A

= A =(edY)

It is not difficult to show that these rules are derivable in our calculus plus an addi-
tional thinning rule, provided we interpret= as-"". Inview of the soundness result
below, this also means that they are sound with respegetftoHowever, soundness
with respect td= does not obtain. Conside®[—], for example. Sincé, t = f,

it follows from this rule thaf @ t = f is derivable. But clearlyf @ t [~ f, asf @t
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evaluates as. We now prove the soundness of our calculus after stating a useful
lemma.

Lemmab.6 TIy,...,I'n/Tisasequentruleifandonlyifdual(Ty),...,dual(I'y)/
dual (T") isa sequent rule.

Proof: By a simple inspection of the sequent rules. O
Theorem 5.7 (Soundness) If a sequent is provable then it isvalid.

Proof: It can be shown for any sequent rule that some condition of the rule is
refutable™ if the conclusion of the rule is refutabte We prove this statement for
(v2), leaving the other cases to the reader. Supposefthat (D, I) and thatM
refutes™ T, Vxg™®. ThenM (= Vxgp[a] for somea, so that there is somé € D such
thatM |~ g[aj]. Let I’ be the interpretation function which is just likavith the pos-
sible exception thai’(c) = d and letM’ = (D, I'). ThenM’ |~ [c/X]¢ and, since
does not occur i U {¢}, M’ refutes™ T, [c/X]¢"&. For the case thaf, j) = (s, w),
repeat this argument, but uniformly replagewith <.

Other cases are proved in a similar vein and this settles that, for any sequent
rule, some condition of the rule is refutabléf the conclusion is refutabte. For the
dual case, suppose that the concludiarf arulel's, ..., I'y/I" is refutable . Then,
by Lemma4.5] dual (I') is refutable™. By Lemmal5.6 dual (I'y), ..., dual (Ty) /
dual (I") is a sequent rule, whence, by the previous reasodimg (I'y) is refutable”
for somek. A second application of Lemni@Zgives that' is refutable .

We conclude that the conclusion of any rule is valid if all its conditions are valid
and the theorem follows by an induction on the complexity of proofs. O

6 Elementary model theory The purpose of this section is to prove a model exis-
tence theorem for our logic. From this some useful corollaries in the form of a com-
pactness theorem, alvenheim-Skolem theorem and a Completeness theorem will
follow.

Definition 6.1 A sequent is called aHintikka sequent if and only if
1. {¢"", ¢"€} Z T, if ¢ is atomic;
2. {A. F1ern;

3.n?el=+Ac¢eT,
neel=+€cl;

4, —ghlel = p Ml eT;
5. —¢l el = ¢ eTl;

6. gAYl e T = ¢"l eTory"l e, if (i, ) € {(n, &), (s w)},
e AP e T = (M, yMy C T (i, ) € ((n, w), (s &));

7. Vx¢hl e I = [t/X]¢"] € T, for all closed terms, if (i, j) € {(n, w), (s, &)},
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vxg"l e I' = [c/X]¢"] € T, for some constart, if (i, j) € {(n, &), (s, w)};

8. t~thl &I if (i, j) € {(n, &), (s, w)},
i ", [ta/X¢" 1} S T = [to/X]¢" ) € T, if (i, |) € {(n, w), (s, &)}, 1" €
{n, s}, j’ € {e, w} andy is atomic.

Lemma6.2 If I isa Hintikka sequent then dual (T") isa Hintikka sequent.
Proof: By inspection. O

Lemma 6.3 (Hintikka Lemma) Each Hintikka sequent is refutable by a countable
model.

Proof: LetI be a Hintikka sequent. We first consider the caseth&I" and con-
struct a modefV which accepts all west sentences but no east senteiiteDafine
the relation~ between closed terms by setting

i~ tirty"elorty~t5%el).

It is easily verified that- is an equivalence relation. For each tetnhet T be the
equivalence clasl’ | t' ~ t} and letD be the seft | t is a closed term Define, for
eachn-ary function symbolf € £ and eachn-ary relation symboR € L:

I(H{, ..., th) = fty.. .t
IR = ({{t,....T) | Rty, ..., ta"¥ e T}, {(f,....Th) | Rty, ..., t.3 e T}).

The last clause of DefinitidA.Tlensures that this definition does not depend on the
choice ofty, ..., t,. Now let M = (D, I). Clearly, M is a countable model. An
induction on term complexity shows that, for eacfit]® = T. Another induction

on the number of connectives occurring in a sentence establishes that, fgr,each

A "Cel= MKy
B. %" el = M= ¢
C.o"el=— Mg
D. ¢l — M Ay

We work out theV case of the induction.

A. Assume thatvx¢™€ € T'. Then, by the definition of a Hintikka sequent,
[c/X]¢"€ e T for some constartt By the induction hypothesisy - [c/X]¢,
so thatM = ¢[af], wherea is arbitrary, follows by the usual substitution
lemma. From this we have thaf (- Vxg.

B. Vx¢%% e I' = [c/X]¢%" e T for somec = M = [¢/X]¢ = M
plaf] = M = Vxg.

C. ¥xp™” € I' = [t/X]e™¥ e T for all closed term$ = M = [t/X]¢ for all
t= M = g[a] forallt = M = g[aj] foralld € D = M = Vxg.

D. Vx¢3€ e I' = [t/X]¢>® € T for all closedt = M A [t/X]¢ for all t =
M A gla] forallt = M A g[a}] foralld € D= M A Vxg.
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The other cases of this induction are similar and are left to the reader. It follows that
M refutes™ T.

Now consider the case thagt ¢ I'. Sincedual (T") is a Hintikka sequent by
Lemmal6.2Jand since ¢ dual (I') we have that there is a countals which
refutes™dual (I') and hence, by Lemnfa5] refutes™ I'. Since~ and £ cannot
both be elements df, we have established the theorem. O

Definition 6.4 Let?P be a setof sequents in the langudgeP is aprovability prop-
erty with respect tas if and only if

1. If{T1,...,Th} S Pandl'y, ..., I'y/T is asequentrule, thdnh e P;
2. IfI' e Pandl’ C IV, thenI” € P, for eachl in L.

Theorem 6.5 (Model Existence) Let £ bealanguage and let C bea countably in-
finite set of constants such that £ N C = @. Assume that P is a provability property
with respect to £L U C and that " isa sequent in the language L. If T ¢ PthenT is
refutable by a countable model.

Proof: Let? andI be as described. We construct a Hintikka sequi&rguch that

[ CI'*. Letvy,..., %, ... bean enumeration of all signed sentences inC plus

the structural elements. Writé?) for the index that the signed sentence or structural
element? obtains in this enumeration. Define

g = T
Iy, if FaU{dn) e?P
nU {tn}, if I'hyU {9} ¢ P anddy, is not of the
- form vxg"™€ or Vxgp>¥
Cnir = 1 TnU{On, [c/X]e"}, if TaU{on} € P, (i, |) € {(n, €), (s, w)}

andd, is of the formvxg"!, wherec is
the first constant irC which does not
occur inl", U {9}

This is well defined since eadh, contains only a finite number of constants fr@n
ThatI'y ¢ P for eachn follows by a simple induction which uses the definition of a
provability property and the fact théty; ) is a sequent rule. Defirg = J,'n. We
prove that, for all finite set§yy , ..., ¥,} and for allk > maxky, ..., kn},

{ﬁkl,...,ﬁkn}gF*<:>FKU{ﬁkl,...,l9kn}¢ﬂ.D. D

In order to show that this holds, ldt > maxks,...,k,} and suppose that
{Dys .-, Uk} € I'". Then there is somé such that{dy,, ..., 9} S I',. Let
m = maxKk, £}. We have thatl'y U {9, ..., 0} € I'm. Sincel'n, ¢ P and?P is
closed under supersets it follows tHatU {dy,, ..., 9x,} ¢ P. For the reverse di-
rection, suppose that U {$,, ..., 9} ¢ P. Then, sinceP is closed under super-
setsI'y, U {P} ¢ P, for each of thek;. By the construction of* eachyy, € I'* and
{Dkys - » D} S T

With the help of[(J we verify thatI™ is a Hintikka sequent. Here we check only
a few conditions of Definitiof6.1]
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1. In order to check the first part of condition 6 of Definitibal] let (i, j) e
{(n, e), (s, w)} and suppose A /-1 € I'*. Letk be the maximum af(p A y'"1),
("), andi(y*1). (@ entails thafx U {¢ A -1} ¢ P. Since? is closed un-
der sequent rules, it follows witn2¢ ) that ', U {¢" ]} ¢ P or I U (v 1} ¢ P.
By (@ this implies thaty"1 € T or y"1 € T™*,

2. We verify that the seventh condition of Definitiilallholds for I'*. First
suppose thatxg"! e I'*, that (i, j) € {(n, e), (s, w)}, and thatt is an arbi-
trary closed term. Lek = max{t(Vx¢"1), ([t/x]¢"1)}. (1) gives thatl, U
{Vx¢"1} ¢ P and by the closure of under sequent rules we find thag U
{[t/X]¢"1} ¢ P. Thisinitsturn, byl{J, has as a consequence thak]¢" | € I'™*.
The construction of* ensures thatd/x]¢" ! € I'* for somec if Vxp™® e I'™* if
(i, j) € {(n, &), (s, w)}, so that the second part of clause 7 of Definiti@dlis
satisfied.

Checking the other conditions in the definition of a Hintikka sequent gives rise to con-
siderations that are very similar to those already encountered and is left to the reader.
Sincel’ C I'* andI™* is refutable by a countable mod&l;s refutable by that model.

O

In the following corollaried” will always be a sequent in some languagavhile
A ranges over sequents iU C where £ andC are as in the formulation of Theo-
rempg.5l

Corollary 6.6 (Compactness) If T"isvalid thenthereissomefinite I'g C I" which
isvalid.

Proof: The set{A | some finiteAy C A is valid} is easily seen to be a provability
property. It follows by Theorefa.SthatI" is refutable if no finitel'y € T is valid.
By contraposition we find that some finilg C I' must be valid ifT" is valid. O

Corollary 6.7 (Lowenheim—Skolem) If T" is not valid then T is refutable by a
countable model.

Proof: {A | Aisvalid} is a provability property. O
Corollary 6.8 (Completeness) If I"isvalidthen I is provable.

Proof: The set{A | A is provablé is a provability property. It follows thal is
refutable ifl" is not provable. O

7 Threevalues We have obtained our results for a logic that was both partial and
paraconsistent. What if we do not want to allow paraconsistency or do not want par-
tiality?

The solution is simple. For a logic without paraconsistency we must remove—
from our syntax and in order to make up for this loss we musfaad— as primitive
connectives. Next we additionally require in the definition ahadel that, for any
relation symbolR, I (R) N I~ (R) = @ (no gluts). This removes the possibility of
paraconsistency. The truth definition should give the new primitives the semantics
they previously obtained by expansion of their definitions:
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1 Mt
M f

2. M E¢— ylal <= M = gla] = M = yla]) & (M 5 yla] = M =
ela])
M=o yla] < (M = gla] & M b yla]) or (M 5 yla]& M A
ela])

That the seftf, n, =, A, —} is functionally complete for the new setup is easily seen
to hold on the basis of a minor variant of the proof of Thed8} Apart from o),

(—2%) and (~g) two extra rules are added to the sequent calculus to counterbalance
our restriction of the class of models (the rule fomill be omitted, of course).

(3w) Fv 7A (3@) F’ 7L
T, ¢"", ¢>" T, ¢"% ¢>®

The five new rules bring five new conditions in Definitierdwith them.
1. ol ¢ T if (0, j) € {(n, w), (s, &)}
2. {"", 3"} ST =€l
3. {¢", ¢} ST = ¢l
4

Lo = Yt e T = [p™, Y™ C T or {p38, ¢S} C T, if (i, )
{(n,e), (s, w))

5. 9— Yl e I = {p"®, Y58 CTor{p"®, ¢S} CTor{y™”, ySe CT
or {y™", o>} C T, if (i, j) € {{n, w), (s, &)}

It must then be checked in the proof of the Hintikka Lemma that the model which
is constructed satisfies our new requirement thatR) N I~ (R) = & for eachR.
But, in fact, this is trivial from the construction. The reader will have no difficulty in
seeing that, under these new conditions, all our previous proofs will go through.

In order to get logics that are not partial (but may be paraconsistent), we proceed
dually. First, we requir@ and— not to be in the language but introducd, and— .
We put the additional constraint on models th2ft € I (R) U I~ (R) for all n-ary
relation symbolsR (no gaps). The extra rules which need to be added af@, (b"),
(f2), (—2€), and (1) plus the following:

/W F77L /€ F77L\
N W W

Again we must add conditions corresponding to these rules to Defiftitidend we
must check that this causes the new requirement on models to be satisfied by the
model constructed in the Hintikka Lemma.

This shows that we can easily trade our four-valued logics for three-valued ones.
The choice of which notion of logical consequence should be yseg:", or =",
is independent from the choice which truth-values should be accepted.

To obtain classical logic add thw gluts and theno gaps requirements on mod-
els, removen, and—, but addf and—. A sequent calculus is obtained by adopting
extra rulesfs), (—08), (=), (3*), (3®), (3%), and (3°).
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8 InterpolationinL4 The purpose of this section is to prove a Craig-Lyndon inter-
polation theorem fok 4. The theorem will be restricted to languages without function
symbols other than individual constants, as a consideration of complex terms leads to
certain complications orthogonal to the main concerns of this paper. The Lyndon part
of the theorem can be formulated in a way that is slightly subtler than is possible in
classical logic. Due to the fact that we hawe negations { and—) in our setup,
there will also be two notions of positive and negative occurrences of formulas. It
will turn out that the theorem holds for both these notions. The proof of the theorem
was inspired by the proof in Kleen for the classical case, but also bears resem-
blance to the Maehara method discussed in TaKgu}i Proofs of interpolation for
H" and-" have been known before (s&&]J), but since it is unclear how interpola-
tion for - could be obtained from these, we give a direct proof here.

We color signed sentences in proofs in order to be able to keep track of them.
A colored signed sentence is a signed sentence which carries an additional subscript
r (red) orb (blue) and a coloring of a sequent prdafis obtained by coloring the
signed sentences in the sequent§lah such a way that a signed sentence shares its
color with its ancestors in the proof (because of our representation of sequents as sets
this may require that some signed sentenrteésiow get two representations;’ and
') Itis clear that, given any initial coloring of the end sequent of any pFbolf
itself can be colored.

If I" is a sequent in which the signed sentences are colored, welRr{i&) for
the sequent which results frofmby removing all signed sentences colored red (blue)
in T (note that this leaves the structural elements in place) and removing all subscripts
from the remaining signed sentences.

A relation symbolR occurs —-positively (—-negatively) in a sentence if it oc-
curs within the scope of an even (odd) number of negation symho&milarly R
occurs —-positively (—-negatively) in ¢ if it occurs within the scope of an even (odd)
number of—s. These notions of positive and negative occurrence within an unsigned
sentence can be extended to signed colored sentences by counting certain combina-
tions of signs and colors as extra negation symbols in the following way.

1. R occurs —-positively (—-negatively) in ¢! iff R occurs —-positively
(—-negatively) ing and(i, j, k) € {(n, w, ), (n, e b}, (s, w, b), (s, € r)}.

2. R occurs —-negatively (-positively) in ¢! iff R occurs —-positively
(—-negatively) ing and(i, j, k) € {(s, w, ), (s, € b), (n, w, b), (n, € r)}.

3. R occurs —-positively (—-negatively) in ¢,’ iff R occurs —-positively
(—-negatively) inp and(i, j, k) € {(n, w,r), (n, e, b), (s, w, ), (S, € b)}.

4. R occurs —negatively (-positively) in ¢! iff R occurs —-positively
(—-negatively) inp and(i, j, k) € {(n, w, b), (n, e, ), (s, w, b), (s, e r)}.

The main interpolation lemma can now be formulated and proved as follows.

Lemma8.1 Let A bea colored provable sequent in a language without function
symbols other than individual constants. Then there is a sentence x such that

1. A", x™€and AP, x™* are provable, and
2. each individual constant occurringin x also occursin A" and in AP;
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3. each relation symbol which occurs —-positively (—-negatively, —-positively,
—-negatively) in x also occurs —-positively (—-negatively, —-positively,
—-negatively) in both A" and AP.

x iscalled an interpolantof A and wewrite A : .

Proof: Let IT be a colored proof fonn. The argument will proceed by induction
on the complexity offl. Consider the last rulg used inIT and suppose that has
premisesAq, ..., An. Induction gives U, ..., xnp suchthatA1: x1,..., An: xn-

In the following statements, which exhaust all possibilitiesdpthe abbreviation

A1 X1 .- AniXn
A x

means y is an interpolant fon\ if eachy; is an interpolant fon\; (1 <i < n).’

(R)™ @) e+ 0) —% e
Lo, o° i f Top”, gt it
c , d - :
© o D=y
e : —,
( )F,wf””,wﬁe:w ® Cop”, 07 —¢
(¢ atomic)
(A, ) T A& A1
i I A X A X
nw int a b
(") ()F,n'r'w:x/\n ()F,n't;w:va
i I, A x U, A x
ne int a b
(%) ()F,n'r’e:x/\b ()F,n't;e:x\/n
(_|)int I"golk’J - X
T -
’ (pk - X
(_)int F,go:(’J - X
[ —o -
’ §0k X
(AR int (@) F»(Pi"j xa T, wlrj - X2 b F’(plt;J tx1 T Vflbj S X2
W
T (@A) xaVxe T @A)y’ xa A xe
(i, ) € {{n, &), (s, w)})
i Lo, wid s x -
(/\nw)lnt #ﬁ_’ ((Is J) € {<n7 w>, <sv e)})
* T (@A) x
. T, [c/X]¢:) : . .
(ves)™ LleXo (k € {r,b}, cnotinT, g and(i, j) € {(n, €), (s, w)})

1",VX(p:(’J ¢
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(vyin ( )FF[;V/X]L’ if c occursinl™ or ¢
xor!: x
ij .
(b) L, [e/Xgr” * x , if cdoes not occur i or ¢

I, Vxor! - vX[x/c]x

T, [c/x]g:) . .
(c) I.1c/Xey” - x X if coccursinr™® or ¢
.
[, VXep' @ x

T, [c/Xey @ x

] . if cdoes not occur if™® or ¢
', Vxgp® 1 IX[X/c] x

(d)

(i, J) € {(n, w), (s, &)})

id int S b S
(id) (a)l“,d%d'r”:f ()F,d%dL’J:t
~ ck, , [d/X]sﬂ X
if k k’ (k, K € {r, b}) or x is not free ing;

(i, ) e {{n,€), (s, w)})

b L, [C/X]§0 -

( ) i "7 :
~cb [d/X]er .—1d~cvx

if X is free inp andc occurs ind, ¢, orI'";

(C) r, [C/X]§0 . ’
~ Cb‘ [d/Xlgr ) Vy(=d ~ y v [y/clx)
if xis free ing andc does not occur i, ¢, orI'';

I',[c/X i/ I’ : X
d~ o ,[d/X]<p rd~cAx
if xis free ing andc occurs ind, ¢, or I'°;

r, [C/X]<p"J DX

(e) :
~ o), [d/Xel)  3yd~ y Aly/clx)
if xis free ing andc does not occur i, ¢, or I'°;

i, ) € {{n,w), (s,e)},i" € {n, s}, | € {e, w} andg is atomic)

This ends the long list of possible cases for We shall prove one characteris-
tic case, the (c) case of (M, leaving the others to an interested reader. Suppose
that T, [c/X]¢;! : x, wherex is free ing andc does not occur ird, ¢, or I'".
Then by definitionI™™, [c/X]¢!1", x™€ and I'®, x™* are provable. But a proof of
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I, [c/X]¢""1", x™€ can be extended as follows.
I, [c/x]g" T, x™e
Fr’ [d/X]goi/’j/, d~ Cs,e’ Xn,e
rr’ [d/X](pi/’j/, —d ~ Cn,e’ Xn,e
I, [d/x]¢" ), =d~ cv x™e
I, [d/X¢" T, ¥y(=d ~ y v [y/c] )™

The last step was possible becags#oes not occur ird, ¢, or I'". The proof of
re, x™¥ can be extended as follows.

(L)
()

(Vaw)

ne
Sw

(id)
(=)

Fb Xn,w m

a0 I V)

I’ —c~cv y"™* L)
r’,d~cl,-d~cvx""

P d~cl,vy(=d ~ y v [y/cx)™"

v

Sincex occurs free inp, d will occur in [d/X]¢ as well as ind ~ c. Moreover, since
r, [C/X](p:-/’J, . x, each individual constant inyj/c] x occurs in™® and also either in
I or in ¢. This means that each individual constan¥iy(—d ~ y v [y/c]x) oc-
curs both inf®, d ~ ¢ and inT™", [d/x]¢"1". If Ris a nonlogical relation constant
occurring—-positively (—-negatively, etc.) ivy(—d ~ y v [y/c] x), thenR occurs
—-positively (+-negatively, etc.) iny. Using the fact thal", [c/x]¢.") : x we eas-
ily find that R occurs—-positively (—-negatively,—-positively, —-negatively) both
inT d~c"landinl™, [d/xX]¢"]". We conclude tha¥y(—d ~ y v [y/c]x) is the
required interpolant.

This concludes the construction of an interpolantfor O

Theorem 8.2 (Craig-Lyndon Interpolation Theorem) Let I and A be sets of sen-
tences in a language without function symbols other than individual constants. If
I' = A thereisa sentence x such that

1L Tkyandyt A,

2. each individual constant which occursin x also occursinT" andin A;

3. each relation symbol which occurs —-positively (—-negatively, —-positively,
—-negatively) in x also occurs —-positively (—-negatively, —-positively,
—-negatively) inboth T" and A.

Here - can uniformly be replaced with - or with +"f.

Proof: Thel- case follows by applying the previous lemma to the colored sequent
O ={pf"" | p € T}U{gp®| ¢ € A}. For theF" and-"" cases conside® U {+}
and® U {-A}, respectively. O

A set of sentenceH is inconsistent if I1 I, that is, if{¢"™" | ¢ € [T} is provable.

Corollary 8.3 (Robinson Joint Consistency TheoremBupposeIl; and I, aresets
of sentencesin alanguage without function symbolsand that I, U IT, isinconsistent.

Thenthereisa sentence yx, all whose nonlogical symbolsalso occur in IT; U I, such

that T4 - x and Iy, x .
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Proof: Directly from Lemmadg.1l O

9 Conclusion Wehave generalized the sequent calculus for predicate logic to sys-
tems for a range of partial and paraconsistent logics. Our methods work for systems
based on one-directional notions of logical consequegdednd =""), but also for

the bidirectional notiofi= based orx, which to us seems more attractive from an es-
thetic point of view. The bidirectional notion differs from the one-directional notions
only if connectives are considered that can only be defined in termsbaft among

these are the importadt and®. Other interesting connectives which are definable
with n, but not without this connective, are discussedg That the techniques we
have used stay close to the techniques usually employed for predicate logic (e.g., in
Fitting [L4]) comes as a surprise in view of the remarks in the otherwise excélgnt [

and P2). The fact that we have been able to prove an interpolation theoretyfor
gives some support to the idea that a reasonable sequent formalization for this logic
was found.
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