Notre Dame Journal of Formal Logic Volume 40, Number 4, Fall 1999

Dependent Choices and Weak Compactness

CHRISTIAN DELHOMMÉ and MARIANNE MORILLON

Abstract We work in set theory without the Axiom of Choice **ZF**. We prove that the Principle of Dependent Choices (**DC**) implies that *the closed unit ball of a uniformly convex Banach space is weakly compact* and, in particular, that *the closed unit ball of a Hilbert space is weakly compact*. These statements are not provable in **ZF** and the latter statement does not imply **DC**. Furthermore, **DC** does not imply that the closed unit ball of a reflexive space is weakly compact.

1 Introduction We work in set theory without Axiom of Choice **ZF** and we denote by ω the set of natural numbers. In this paper, normed spaces (as defined, for example, in [2], Definition 1.2, p. 63) are real normed spaces and they are endowed with the norm metric. A metric space is said to be *complete* when every Cauchy filter of this space converges (see Remarks 2.9 and 2.10). A Banach space is a normed space which is complete. The *continuous dual* of a normed space $(E, \|.\|)$ is the vector space E^* of real linear functionals on E which are bounded on the closed unit ball of E, and E* is endowed with the dual norm $\|.\|_*$: for every $f \in E^*$, $\|f\|_* :=$ $\sup\{f(x): ||x|| \le 1\}$. The second dual of E is the normed space E^{**} . For every $x \in E$, we denote by \hat{x} the evaluation at point x, that is, the mapping $E^* \to \mathbb{R}$ such that for every $f \in E^*$, $\hat{x}(f) = f(x)$. The natural map $j_E : E \to E^{**}$, given by $j_E(x) = \hat{x}$, is linear and continuous since $||j_E(x)||_{**} \le ||x||$. Using the Hahn-Banach axiom, j_E can be proved isometric, that is, $\forall x \in E \|j_E(x)\|_{**} = \|x\|$ (see [2], Corollary 6.7, p. 79), but this is not provable in **ZF**, since there are models of **ZF** with infinite dimensional normed spaces E such that $E^{**} = \{0\}$ (see Remark 2.8). The usual definition of "reflexivity" for a normed space E (see [2], p. 89, Definition 11.2) relies on the fact that j_E is isometric, so we will formulate this definition in **ZF** and we will call it *simple re*flexivity or reflexivity. The weak topology of E is the coarsest topology on E for which every $f \in E^*$ is continuous: it is generated by the sets $\{x \in E : f(x) < \lambda\}, \lambda \in \mathbb{R}$, and $f \in E^*$, and it is denoted by $\sigma(E, E^*)$ (see [2], Definition 1.1, p. 124). The weak* topology of E^* (see [2], Definition 1.1, pp. 124–5) is the coarsest topology on E^* such that for every $x \in E$, \hat{x} is continuous: it is generated by the sets $\{f \in E^* : f(x) < \lambda\}$,

Received January 7, 2000; revised January 30, 2001

 $\lambda \in \mathbb{R}$, and $x \in E$, and it is denoted by $\sigma(E^*, E)$. A topological space X is *compact* if every nonempty set of closed subsets of X with the finite intersection property has a nonempty intersection. In set theory with the Axiom of Choice **ZFC**, the reflexivity of E is known to be equivalent to the compactness of its closed unit ball for its weak topology (see [2], Theorem 4.2, p. 132), but this equivalence is not provable in **ZF** (see Remarks 1.2, 2.7, and 2.8), so we shall consider another notion of reflexivity which we call *compact reflexivity*.

Let us state these two notions of reflexivity for a normed space E:

(Simple) Reflexivity: The natural mapping j_E from E to its second dual E^{**} is onto and isometric.

Compact Reflexivity: *The closed unit ball of E is compact for the weak topology.*

Note that the classical proof of the following statement of *Reflexive Compactness* relies on *Alaoglu's Theorem* (see [2], Theorem 3.1, pp. 130–1) which is equivalent (within **ZF**) to many other classical statements, for example, the *Boolean Prime Ideal Theorem* (see Howard and Rubin [4], pp. 21–7); this last statement is not provable in **ZF** (see Jech [5]), hence *Alaoglu's Theorem* is not provable in **ZF** either.

RC (Reflexive Compactness): The closed unit ball of a reflexive normed space is compact for the weak topology.

A (Alaoglu): The closed unit ball of the continuous dual of a normed space is compact for the weak* topology.

We now consider some *geometric* properties of normed spaces. A normed space $(E, \|.\|)$ is a *prehilbert space* when there exists an inner product $\langle ., . \rangle : E \times E \to \mathbb{R}$ such that for every $x \in E$, $\|x\| = \sqrt{\langle x, x \rangle}$. A *Hilbert space* is a complete prehilbert space. A normed space E is *uniformly convex* (see [1], p. 189) if the *modulus of uniform convexity of* E, $\delta_E : \mathbb{R}_+^* \longrightarrow \mathbb{R}_+$ defined below, satisfies $\varepsilon > 0 \Rightarrow \delta_E(\varepsilon) > 0$.

$$\delta_E(\varepsilon) := \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : \|x\| \le 1, \|y\| \le 1 \text{ and } \|x-y\| \ge \varepsilon \right\}$$

Every prehilbert space is uniformly convex (see [1], pp. 189–90). We now consider Reflexive Compactness particularized to uniformly convex Banach spaces and particularized further to Hilbert spaces:

RCuc (Reflexive compactness for uniformly convex Banach spaces): *The closed unit ball of a uniformly convex Banach space is weakly compact.*

RCh (Reflexive Compactness for Hilbert spaces): *The closed unit ball of a Hilbert space is weakly compact.*

Remark 1.1 Using projections on closed convex subsets in a Hilbert space (see Lemma 3 in [3]), one can prove in **ZF** that every Hilbert space is simply reflexive. Hence **RC** implies **RCh**; in particular, **RCh** does not imply **DC**.

In Fossy and Morillon [3], it is proved that **RCh** implies the following set-theoretic axiom $\mathbf{AC}_{\omega}^{\text{fin}}$ which is not provable in **ZF** (see [5]); in particular, *the statements* **RC** and **RCh** are not provable in **ZF** either.

 $\mathbf{AC}^{\text{fin}}_{\omega}$ (Countable Axiom of Choice for finite sets): If $(A_n)_{n \in \omega}$ is a sequence of non-empty finite sets, then $\prod_{n \in \omega} A_n \neq \emptyset$.

Remark 1.2 Thus, though in **ZF** every Hilbert space is simply reflexive, there are models of **ZF** in which some Hilbert spaces are not compact reflexive. Hence *simple* reflexivity does not imply compact reflexivity.

Now the following question is natural.

Question 1.3 *Is there a principle of "Countable Choice" which implies the axiom* **RCh**?

In this paper, we prove that the following *Principle of Dependent Choices* implies **RCuc** (thus it implies **RCh** too):

DC (Principle of Dependent Choices): *If E is a nonempty set and R is a binary relation on E satisfying*

$$\forall x \in E \ \exists y \in E \ xRy$$
,

then there exists a sequence $(x_n)_{n\in\omega}$ such that for every $n\in\omega$, x_nRx_{n+1} .

We shall also observe that **DC** does not imply **RC** (see Remark 2.7). Note that **BPI** does not imply **DC** and that **DC** does not imply **BPI** (see [4] or [5]).

2 The Principle of Dependent Choices implies RCuc

Notation 2.1 Consider a (real) normed space $(E, \|\cdot\|)$. For each nonnegative real number r, $\Gamma(0, r)$ denotes the closed ball of center 0 and radius r, that is, $\{z \in E : \|z\| \le r\}$; the closed unit ball $\Gamma(0, 1)$ is denoted by Γ_E . Given two real numbers r and r' such that $0 \le r \le r'$, the crown $\{z \in E : r \le \|z\| \le r'\}$ is denoted by D(0; r, r').

Given a normed space E, we denote by T_E the set of finite unions of closed convex subsets of Γ_E . Notice that (T_E, \cap, \cup) is a lattice of subsets of Γ_E and that each closed set of Γ_E for the weak topology is an intersection of elements of T_E . A *filter* of T_E is any nonempty set \mathcal{F} of nonempty elements of T_E such that the intersection of any two elements of \mathcal{F} is in \mathcal{F} and such that any element of T_E which is a superset of an element of T_E is in T_E too.

For each set \mathcal{F} of subsets of Γ_E , let

$$R(\mathcal{F}) := \inf \Big\{ r \in \mathbb{R} : 0 \le r \le 1 \text{ and } \forall F \in \mathcal{F}, \ \Gamma(0, r) \cap F \ne \emptyset \Big\}.$$

When \mathcal{F} has the finite intersection property, $\mathcal{F} \cup \{\Gamma(0, r) : R(\mathcal{F}) < r \le 1\}$ generates a filter \mathcal{F}_c of T_E called the *circled filter* associated to \mathcal{F} .

The following lemma is an easy consequence of the definitions.

Lemma 2.2 Let E be a normed space and \mathcal{F} be a filter of T_E .

- 1. For every real numbers r and r' such that $0 \le r < R(\mathcal{F}) < r'$, there exists $F \in \mathcal{F}_c$ such that $F \subseteq D(0; r, r')$.
- 2. For any filter \mathcal{F}' of T_E extending \mathcal{F}_c : $R(\mathcal{F}') = R(\mathcal{F})$ and $(\mathcal{F}')_c = \mathcal{F}'$. \square

Lemma 2.3 Given a uniformly convex normed space E with modulus of uniform convexity δ_E , consider real numbers $\eta > 0$ and r, r' such that 0 < r < r' and $r \ge \left(1 - \delta_E(\frac{\eta}{r'})\right)r'$. Then the diameter of any convex subset C of the crown D(0; r, r') is less than or equal to η .

Proof: Assume by contradiction that some convex subset C of D(0; r, r') contains two points x and y such that $||x - y|| > \eta$. Then, from the definition of δ_E , it follows that $||\frac{x+y}{2}|| < (1 - \delta_E(\frac{\eta}{r'}))r'$; but $||\frac{x+y}{2}|| \ge r$, since C is convex.

Theorem 2.4 Given a uniformly convex Banach space E, let \mathcal{F} be a filter of T_E . The Principle of Dependent Choices **DC** implies the nonemptiness of the set $\cap \mathcal{F}$.

Proof: We prove the existence of a Cauchy filter \mathcal{G} of T_E (i.e., a filter containing sets of arbitrary small diameter) extending the circled filter \mathcal{F}_c associated to \mathcal{F} (thus, since the elements of \mathcal{G} are closed and E is complete, $\cap \mathcal{G} \neq \varnothing$ and a fortiori, $\cap \mathcal{F} \neq \varnothing$). Denote by δ_E the modulus of uniform convexity of E. Let $R:=R(\mathcal{F})$. If R=0, then \mathcal{F}_c is already Cauchy. Now assuming that R>0, for each $n\in \omega$, let r_n and r'_n be positive real numbers such that $r_n < R < r'_n$ and $r_n \ge \left(1 - \delta_E(\frac{1}{(n+1)r'_n})\right)r'_n$ (e.g., consider $\alpha_n > 0$ such that $\frac{2\alpha_n}{\alpha_n + R} \le \delta_E(\frac{1}{2(n+1)R})$ and let $r_n := R - \alpha_n$ and $r'_n := R + \alpha_n$). Let \mathcal{S} denote the set of finite mappings $s \subset \omega \times T_E$ such that

- (i) for every $n \in \text{domain}(s)$, $s(n) \subseteq D(0; r_n, r'_n)$,
- (ii) $\mathcal{F}_c \cup \text{range}(s)$ has the finite intersection property.

Every element of S admits a proper extension in S: given $s \in S$ and $n \notin \text{domain}(s)$, it follows from Lemma 2.2 that some element F of the filter \mathcal{F}_s of T_E generated by $\mathcal{F}_c \cup \text{range}(s)$ is a subset of $D(0; r_n, r'_n)$; then, given closed convex subsets C_1, \ldots, C_m of E such that $F = C_1 \cup \cdots \cup C_m$, observe that for some $i \in \{1, \ldots, m\}$, C_i meets every element of \mathcal{F}_s , so that $s \cup \{(n, C_i)\}$ is a proper extension of s in S. Now, invoking \mathbf{DC} , get an increasing sequence (with respect to proper extension) $(s_n)_{n \in \omega}$ of T_E , and observe that, given $s := \cup \{s_n : n \in \omega\}$, Lemma 2.3 implies that $\mathcal{F}_c \cup \text{range}(s)$ generates a Cauchy filter of T_E .

Corollary 2.5 DC \Longrightarrow RCuc.

Proof: Given a uniformly convex Banach space E, let \mathcal{H} be a nonempty set of weakly closed sets of Γ_E with the finite intersection property. Since each such closed set is an intersection of elements of T_E , $\cap \mathcal{H} = \cap \mathcal{F}$, where $\mathcal{F} = \{F \in T_E : F \supseteq H, \text{ for some } H \in \mathcal{H}\}$; but \mathcal{F} is a filter of T_E , hence $\cap \mathcal{F} \neq \emptyset$, according to Theorem 2.4.

Remark 2.6 RCuc *does not imply* **A**, since **RCuc** follows from **DC**, which does not imply **BPI**, and hence, does not imply **A** either.

Remark 2.7 Pincus and Solovay [6] have built a model \mathcal{M} of $(\mathbf{ZF} + \mathbf{DC})$ in which every finitely additive measure is trivial. This means that, given any set I, for every finitely additive mapping $m : \mathcal{P}(I) \to \mathbb{R}$, there exists a family $(\lambda_i)_{i \in I}$ of real numbers such that, for every subset A of I, $m(A) = \sum_{i \in A} \lambda_i$. It follows that the continuous dual of $\ell^{\infty}(I)$ is equal to $\ell^{1}(I)$. Thus, in this model \mathcal{M} , every $\ell^{1}(I)$ is a reflexive normed space.

Besides, the closed unit ball Γ of $\ell^1(I)$ is never weakly compact when I is infinite: in fact, denoting by $\mathcal{P}_f(I)$ the set of finite subsets of I, for each $H \in \mathcal{P}_f(I)$, let

$$F_H := \left\{ f \in \Gamma : \sum_{k \in I} f(k) = 1 \quad \text{and} \quad \forall k \in H, \ f(k) = 0 \right\}.$$

Each F_H is a weakly closed set of Γ , and when I is infinite, the family $\{F_H : H \in \mathcal{P}_f(I)\}$ has the finite intersection property, but $\bigcap \{F_H : H \in \mathcal{P}_f(I)\}$ is empty.

Summing up, in the model \mathcal{M} , the space $\ell^1(\omega)$ is reflexive and separable but its closed unit ball is not weakly compact. Hence *simple reflexivity does not imply compact reflexivity* even in the case of separable spaces. Moreover, since the model \mathcal{M} satisfies **DC**, **DC** *does not imply* **RC** even for *separable* reflexive spaces.

Remark 2.8 Compact reflexivity does not imply simple reflexivity since, in every model of **ZF** where Hahn-Banach Theorem fails (for instance, the model \mathcal{M} above), there exists an infinite dimensional normed space E such that $E^* = \{0\}$: such an E fails to be reflexive although Γ_E is weakly compact.

Let us now consider the following consequence of **DC**:

AC_{ω} (Countable Axiom of Choice): If $(A_n)_{n \in \omega}$ is a sequence of nonempty sets, then $\prod_{n \in \omega} A_n \neq \emptyset$.

Remark 2.9 Say that a metric space (X, d) is *sequentially complete* when every Cauchy sequence converges. So every complete metric space is sequentially complete. In $(\mathbf{ZF} + \mathbf{AC}_{\omega})$, hence in $(\mathbf{ZF} + \mathbf{DC})$, every sequentially complete metric space is complete.

Remark 2.10 A set X is *Dedekind-finite* when there exists no one-to-one mapping from ω to X. There are models of **ZF** (e.g., Cohen's first model, see [5]) with a Dedekind-finite dense subset A of \mathbb{R} . The metric subspace A is sequentially complete but it is not complete.

Note: Uniformly convex spaces are simply reflexive (work in progress). Thus **RC** implies **RCuc**; in particular, like **RCh**, **RCuc** fails to imply **DC**. (Cf. Abstract and Remark 1.1.)

We know no answer to the following questions:

Question 2.11 Are the statements **A** and **RC** equivalent?

Question 2.12 Does AC_{ω} imply RCh or RCuc?

Question 2.13 Are RCh and RCuc equivalent?

REFERENCES

- [1] Beauzamy, B., *Introduction to Banach Spaces and Their Geometry*, North-Holland, Amsterdam, 1985. Zbl 0491.46014 MR 88f;46021 1, 1
- [2] Conway, J. B., *A Course in Functional Analysis*, 2d edition, Springer-Verlag, 1990. Zbl 0706.46003 MR 91e:46001 1, 1, 1, 1, 1, 1
- [3] Fossy, J., and M. Morillon, "The Baire category property and some notions of compactness," *Journal of the London Mathematical Society*, vol. 57 (1998), pp. 1–19. Zbl 0922.03070 MR 99m:03096 1.1, 1
- [4] Howard, P., and J. Rubin, Consequences of the Axiom of Choice, Mathematical Surveys and Monographs, vol. 59, American Mathematical Society, 1998. Zbl 0947.03001 MR 99h:03026 1, 1
- [5] Jech, T., *The Axiom of Choice*, Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1973. Zbl 0259.02051 MR 53:139 1, 1, 1, 2.10
- [6] Pincus, D., and R. M. Solovay, "Definability of measures and ultrafilters," *The Journal of Symbolic Logic*, vol. 42 (1977), pp. 179–90. Zbl 0384.03030 MR 58:227 2.7

ERMIT, Département de Mathématiques Université de la RÉUNION 15, avenue René Cassin, BP 7151 97715 Saint-Denis Messag. cedex 9 FRANCE

email: delhomme@univ-reunion.fr email: mar@univ-reunion.fr