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Dependent Choices and Weak Compactness

CHRISTIAN DELHOMMÉ and MARIANNE MORILLON

Abstract We work in set theory without the Axiom of Choice ZF. We prove
that the Principle of Dependent Choices (DC) implies that the closed unit ball of
a uniformly convex Banach space is weakly compact and, in particular, that the
closed unit ball of a Hilbert space is weakly compact. These statements are not
provable in ZF and the latter statement does not imply DC. Furthermore, DC
does not imply that the closed unit ball of a reflexive space is weakly compact.

1 Introduction We work in set theory without Axiom of Choice ZF and we de-
note by ω the set of natural numbers. In this paper, normed spaces (as defined, for
example, in [2], Definition 1.2, p. 63) are real normed spaces and they are endowed
with the norm metric. A metric space is said to be complete when every Cauchy fil-
ter of this space converges (see Remarks 2.9 and 2.10). A Banach space is a normed
space which is complete. The continuous dual of a normed space (E,‖.‖) is the vec-
tor space E∗ of real linear functionals on E which are bounded on the closed unit
ball of E, and E∗ is endowed with the dual norm ‖.‖∗: for every f ∈ E∗, ‖ f ‖∗ :=
sup{ f (x) : ‖x‖ ≤ 1}. The second dual of E is the normed space E∗∗. For every x ∈ E,
we denote by x̂ the evaluation at point x, that is, the mapping E∗ → R such that for
every f ∈ E∗, x̂( f ) = f (x). The natural map jE : E → E∗∗, given by jE(x) = x̂, is
linear and continuous since ‖ jE(x)‖∗∗ ≤ ‖x‖. Using the Hahn-Banach axiom, jE can
be proved isometric, that is, ∀x ∈ E ‖ jE(x)‖∗∗ = ‖x‖ (see [2], Corollary 6.7, p. 79),
but this is not provable in ZF, since there are models of ZF with infinite dimensional
normed spaces E such that E∗∗ = {0} (see Remark 2.8). The usual definition of “re-
flexivity” for a normed space E (see [2], p. 89, Definition 11.2) relies on the fact that
jE is isometric, so we will formulate this definition in ZF and we will call it simple re-
flexivity or reflexivity. The weak topology of E is the coarsest topology on E for which
every f ∈ E∗ is continuous: it is generated by the sets {x ∈ E : f (x) < λ}, λ ∈ R, and
f ∈ E∗, and it is denoted by σ(E, E∗) (see [2], Definition 1.1, p. 124). The weak*
topology of E∗ (see [2], Definition 1.1, pp. 124–5) is the coarsest topology on E∗ such
that for every x ∈ E, x̂ is continuous: it is generated by the sets { f ∈ E∗ : f (x) < λ},
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λ ∈ R, and x ∈ E, and it is denoted by σ(E∗, E). A topological space X is compact
if every nonempty set of closed subsets of X with the finite intersection property has
a nonempty intersection. In set theory with the Axiom of Choice ZFC, the reflexiv-
ity of E is known to be equivalent to the compactness of its closed unit ball for its
weak topology (see [2], Theorem 4.2, p. 132), but this equivalence is not provable in
ZF (see Remarks 1.2, 2.7, and 2.8), so we shall consider another notion of reflexivity
which we call compact reflexivity.

Let us state these two notions of reflexivity for a normed space E:

(Simple) Reflexivity: The natural mapping jE from E to its second dual E∗∗ is onto
and isometric.

Compact Reflexivity: The closed unit ball of E is compact for the weak topology.

Note that the classical proof of the following statement of Reflexive Compactness
relies on Alaoglu’s Theorem (see [2], Theorem 3.1, pp. 130–1) which is equivalent
(within ZF) to many other classical statements, for example, the Boolean Prime Ideal
Theorem (see Howard and Rubin [4], pp. 21–7); this last statement is not provable in
ZF (see Jech [5]), hence Alaoglu’s Theorem is not provable in ZF either.

RC (Reflexive Compactness): The closed unit ball of a reflexive normed space is
compact for the weak topology.

A (Alaoglu): The closed unit ball of the continuous dual of a normed space is com-
pact for the weak* topology.

We now consider some geometric properties of normed spaces. A normed space
(E,‖.‖) is a prehilbert space when there exists an inner product 〈., .〉 : E × E → R

such that for every x ∈ E, ‖x‖ = √〈x, x〉. A Hilbert space is a complete prehilbert
space. A normed space E is uniformly convex (see [1], p. 189) if the modulus of uni-
form convexity of E, δE : R

∗+ −→ R+ defined below, satisfies ε > 0 ⇒ δE(ε) > 0.

δE(ε) := inf
{

1 −
∥∥∥ x + y

2

∥∥∥ : ‖x‖ ≤ 1,‖y‖ ≤ 1 and ‖x − y‖ ≥ ε
}

Every prehilbert space is uniformly convex (see [1], pp. 189–90). We now consider
Reflexive Compactness particularized to uniformly convex Banach spaces and par-
ticularized further to Hilbert spaces:

RCuc (Reflexive compactness for uniformly convex Banach spaces): The closed
unit ball of a uniformly convex Banach space is weakly compact.

RCh (Reflexive Compactness for Hilbert spaces): The closed unit ball of a Hilbert
space is weakly compact.

Remark 1.1 Using projections on closed convex subsets in a Hilbert space (see
Lemma 3 in [3]), one can prove in ZF that every Hilbert space is simply reflexive.
Hence RC implies RCh; in particular, RCh does not imply DC.

In Fossy and Morillon [3], it is proved that RCh implies the following set-theoretic
axiom ACfin

ω which is not provable in ZF (see [5]); in particular, the statements RC
and RCh are not provable in ZF either.
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ACfin
ω (Countable Axiom of Choice for finite sets): If (An)n∈ω is a sequence of non-

empty finite sets, then
∏

n∈ω An �= ∅.

Remark 1.2 Thus, though in ZF every Hilbert space is simply reflexive, there are
models of ZF in which some Hilbert spaces are not compact reflexive. Hence simple
reflexivity does not imply compact reflexivity.

Now the following question is natural.

Question 1.3 Is there a principle of “Countable Choice” which implies the axiom
RCh?

In this paper, we prove that the following Principle of Dependent Choices implies
RCuc (thus it implies RCh too):

DC (Principle of Dependent Choices): If E is a nonempty set and R is a binary re-
lation on E satisfying

∀x ∈ E ∃y ∈ E xRy,

then there exists a sequence (xn)n∈ω such that for every n ∈ ω, xn Rxn+1.

We shall also observe that DC does not imply RC (see Remark 2.7). Note that BPI
does not imply DC and that DC does not imply BPI (see [4] or [5]).

2 The Principle of Dependent Choices implies RCuc

Notation 2.1 Consider a (real) normed space (E,‖ · ‖). For each nonnegative real
number r, �(0, r) denotes the closed ball of center 0 and radius r, that is, {z ∈ E :
‖z‖ ≤ r}; the closed unit ball �(0, 1) is denoted by �E. Given two real numbers r and
r′ such that 0 ≤ r ≤ r′, the crown {z ∈ E : r ≤ ‖z‖ ≤ r′} is denoted by D(0; r, r′).

Given a normed space E, we denote by TE the set of finite unions of closed convex
subsets of �E. Notice that (TE,∩,∪) is a lattice of subsets of �E and that each closed
set of �E for the weak topology is an intersection of elements of TE. A filter of TE

is any nonempty set F of nonempty elements of TE such that the intersection of any
two elements of F is in F and such that any element of TE which is a superset of an
element of F is in F too.

For each set F of subsets of �E, let

R(F ) := inf
{

r ∈ R : 0 ≤ r ≤ 1 and ∀F ∈ F , �(0, r) ∩ F �= ∅

}
.

When F has the finite intersection property, F ∪{�(0, r) : R(F ) < r ≤ 1} generates
a filter Fc of TE called the circled filter associated to F .

The following lemma is an easy consequence of the definitions.

Lemma 2.2 Let E be a normed space and F be a filter of TE.

1. For every real numbers r and r′ such that 0 ≤ r < R(F ) < r′, there exists
F ∈ Fc such that F ⊆ D(0; r, r′).

2. For any filter F ′ of TE extending Fc: R(F ′) = R(F ) and (F ′)c = F ′. �
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Lemma 2.3 Given a uniformly convex normed space E with modulus of uniform
convexity δE, consider real numbers η > 0 and r, r′ such that 0 < r < r′ and r ≥(
1 − δE(

η
r′ )

)
r′. Then the diameter of any convex subset C of the crown D(0; r, r′) is

less than or equal to η.

Proof: Assume by contradiction that some convex subset C of D(0; r, r′) contains
two points x and y such that ‖x − y‖ > η. Then, from the definition of δE, it follows
that ‖ x+y

2 ‖ <
(
1 − δE(

η
r′ )

)
r′; but ‖ x+y

2 ‖ ≥ r, since C is convex. �

Theorem 2.4 Given a uniformly convex Banach space E, let F be a filter of TE.
The Principle of Dependent Choices DC implies the nonemptiness of the set ∩F .

Proof: We prove the existence of a Cauchy filter G of TE (i.e., a filter containing sets
of arbitrary small diameter) extending the circled filter Fc associated to F (thus, since
the elements of G are closed and E is complete, ∩G �= ∅ and a fortiori, ∩F �= ∅).
Denote by δE the modulus of uniform convexity of E. Let R := R(F ). If R = 0,
then Fc is already Cauchy. Now assuming that R > 0, for each n ∈ ω, let rn and
r′

n be positive real numbers such that rn < R < r′
n and rn ≥ (

1 − δE( 1
(n+1)r′

n
)
)
r′

n

(e.g., consider αn > 0 such that 2αn
αn+R ≤ δE( 1

2(n+1)R ) and let rn := R − αn and r′
n :=

R + αn). Let S denote the set of finite mappings s ⊂ ω × TE such that

(i) for every n ∈ domain(s), s(n) ⊆ D(0; rn, r′
n),

(ii) Fc ∪ range(s) has the finite intersection property.

Every element of S admits a proper extension in S: given s ∈ S and n /∈ domain(s), it
follows from Lemma 2.2 that some element F of the filter Fs of TE generated by Fc ∪
range(s) is a subset of D(0; rn, r′

n); then, given closed convex subsets C1, . . . , Cm of
E such that F = C1 ∪ · · · ∪ Cm, observe that for some i ∈ {1, . . . , m}, Ci meets every
element of Fs, so that s ∪ {(n, Ci)} is a proper extension of s in S. Now, invoking DC,
get an increasing sequence (with respect to proper extension) (sn)n∈ω of TE, and ob-
serve that, given s := ∪{sn : n ∈ ω}, Lemma 2.3 implies that Fc ∪ range(s) generates
a Cauchy filter of TE. �

Corollary 2.5 DC =⇒ RCuc.

Proof: Given a uniformly convex Banach space E, let H be a nonempty set of
weakly closed sets of �E with the finite intersection property. Since each such closed
set is an intersection of elements of TE, ∩H = ∩F , where F = {F ∈ TE : F ⊇
H, for some H ∈ H }; but F is a filter of TE, hence ∩F �= ∅, according to Theo-
rem 2.4. �

Remark 2.6 RCuc does not imply A, since RCuc follows from DC, which does
not imply BPI, and hence, does not imply A either.

Remark 2.7 Pincus and Solovay [6] have built a model M of (ZF + DC) in which
every finitely additive measure is trivial. This means that, given any set I, for every
finitely additive mapping m : P (I) → R, there exists a family (λi)i∈I of real numbers
such that, for every subset A of I, m(A) = ∑

i∈A λi. It follows that the continuous
dual of 	∞(I) is equal to 	1(I). Thus, in this model M , every 	1(I) is a reflexive
normed space.
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Besides, the closed unit ball � of 	1(I) is never weakly compact when I is in-
finite: in fact, denoting by P f (I) the set of finite subsets of I, for each H ∈ P f (I),
let

FH :=
{

f ∈ � :
∑
k∈I

f (k) = 1 and ∀k ∈ H, f (k) = 0
}
.

Each FH is a weakly closed set of �, and when I is infinite, the family {FH : H ∈
P f (I)} has the finite intersection property, but

⋂ {FH : H ∈ P f (I)} is empty.

Summing up, in the model M , the space 	1(ω) is reflexive and separable but
its closed unit ball is not weakly compact. Hence simple reflexivity does not imply
compact reflexivity even in the case of separable spaces. Moreover, since the model
M satisfies DC, DC does not imply RC even for separable reflexive spaces.

Remark 2.8 Compact reflexivity does not imply simple reflexivity since, in every
model of ZF where Hahn-Banach Theorem fails (for instance, the model M above),
there exists an infinite dimensional normed space E such that E∗ = {0}: such an E
fails to be reflexive although �E is weakly compact.

Let us now consider the following consequence of DC:

ACω (Countable Axiom of Choice): If (An)n∈ω is a sequence of nonempty sets, then∏
n∈ω An �= ∅.

Remark 2.9 Say that a metric space (X, d) is sequentially complete when every
Cauchy sequence converges. So every complete metric space is sequentially com-
plete. In (ZF+ ACω), hence in (ZF+ DC), every sequentially complete metric space
is complete.

Remark 2.10 A set X is Dedekind-finite when there exists no one-to-one mapping
from ω to X. There are models of ZF (e.g., Cohen’s first model, see [5]) with a
Dedekind-finite dense subset A of R. The metric subspace A is sequentially com-
plete but it is not complete.
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Note: Uniformly convex spaces are simply reflexive (work in progress). Thus RC
implies RCuc; in particular, like RCh, RCuc fails to imply DC. (Cf. Abstract
and Remark 1.1.)
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We know no answer to the following questions:

Question 2.11 Are the statements A and RC equivalent?

Question 2.12 Does ACω imply RCh or RCuc?

Question 2.13 Are RCh and RCuc equivalent?
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