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Abstract. A Markovian queueing network is considered with d independent customer
classes and d server pools in Halfin–Whitt regime. Class i customers has priority for
service in pool i for i � 1, . . . , d, and may access some other pool if the pool has an idle
server and all the servers in pool i are busy. We formulate an ergodic control problem
where the running cost is given by a non-negative convex function with polynomial
growth. We show that the limiting controlled diffusion is modelled by an action space
which depends on the state variable. We provide a complete analysis for the limiting
ergodic control problem and establish asymptotic convergence of the value functions for
the queueing model.
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1. Introduction
In this article we consider a queueing system consisting of d independent customer classes and d server pools
(or stations). Each server pool contains n identical servers. Customers of class i have priority for service in pool
i and this priority is of preemptive type. Therefore a newly arrived job of class i at time t would preempt the
service of a class j job, j , i, if there is a class j job receiving service from pool i at time t. A customer from
class j may access service from pool i, j , i , if and only if there is an empty server in the pool i and all the
servers in the pool j are busy. Therefore service stations are cross-trained to serve nonpriority customers when
its own priority customer class is underloaded. Customers are also allowed to renege the system from the queue.
The arrival of customers are given by d-independent Poisson processes with parameter λn

i , i � 1, . . . , d. By µn
i j

we denote the service rate of class i customers at station j. We shall use µi instead of µii for i � 1, . . . , d. The
network is assumed to work under Halfin-Whitt setting in the sense that

lim
n→∞

√
n
(
1−

λn
i

nµi

)
exists, for all i ∈ {1, . . . , d}. (1)

Therefore under (1) each customer class i is in criticality with respect to pool i, i ∈ {1, . . . , d}, i.e., n≈ rn
i +ρi

√
rn

i for
some constant ρi where rn

i � λ
n
i /µi is the mean offered load of class i to the pool i. Note that the above criticality

condition is different from those generally used in multiclass multi-pool setting (Atar 2005). This condition
could be seen as a generalization to Ramanan and Reiman (2003, Assumption 4.12(3)) to the many-server setting.
To elaborate we recall the generalized processor sharing (GPS) network from Ramanan and Reiman (2003).
In a multiclass GPS network with d customer classes and single server the server would use a fraction αi ,
(α1 , . . . , αd) ∈ (0,∞)d is a given probability vector, of the total processing capacity to serve class-i jobs when
all the job classes are available in the system, otherwise (that is when positive number of classes are empty)
any excess processing capacity, normally reserved for the job classes that are empty, is redistributed among
the nonempty classes in proportion to the weight vector (α1 , . . . , αd). In this case the conventional heavy traffic
condition implies that limn→∞

√
n(rn

i /n−αi) exists for all i, see Ramanan and Reiman (2003, Assumption 4.12(3)).
Therefore (1) can be seen as a many-server analogue to the conventional heavy-traffic condition of GPS network.
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Control is given by a matrix value process Z where Zi j denotes the number of class-i customers getting served
at station j. We note that for our model a control Z need not be work-conserving. The running cost is given
by r(Q̂n) where r is a non-negative, convex function of polynomial growth and Q̂n denotes the diffusion-scaled
queue length vector i.e., Q̂n � (1/

√
n)Q where Q is the queue length vector. We are interested in the cost function

lim sup
T→∞

1
T
Ɛ

[∫ T

0
r(Q̂n(s))ds

]
.

The value function V̂n is defined to be the infimum of the above cost where the infimum is taken over all
admissible controls. One of the main results of this paper analyze asymptotic behavior of V̂n as n→∞. In
Theorem 2.1 we show that V̂n tends to the optimal value of an ergodic control problem governed by certain
class of controlled diffusions. We also study the limiting ergodic control problem and establish the existence-
uniqueness results of the value function in Theorem 3.1. It is worth mentioning that results like Theorems 2.1
and 3.1 continue to hold if one considers other types of convex running cost functions which might depend
on Ẑn (see Remark 5.1). Let us denote by i→ j (i9 j) when class-i customers can (resp., can not) access service
from station j. In this article we have concentrated on the situation where i→ j, for all i , j, but it is not a
necessary condition for our method to work. As noted in Remark 5.2, if we impose i9 j for some i , j in the
above queueing model, our results continue to hold without any major change in the arguments.
Literature review. Scheduling control problems have a rich and profound history in queueing literature. The

main goal of these problems is to schedule the customers/jobs in a network in an optimal way. But it is not
always possible to find a simple policy that is optimal. It is well known that for various queueing networks
with finitely many servers cµ policy is optimal (Atar and Biswas 2014, Biswas 2014, Mandelbaum and Stolyar
2004, van Mieghem 1995). cµ scheduling rule prioritize the service of the job classes according to the index ciµi
(higher index gets priority for receiving service) where ci denotes the holding cost for class-i and 1/µi denotes
the mean service time of class-i jobs. In case of many servers, it is shown in Atar et al. (2010, 2011) that a
similar priority policy, known as cµ/θ-policy, that prioritize the jobs according to the index ciµi/θi , θi being the
abandonment rate of class-i, is optimal when the queueing system asymptotic is considered under fluid scaling
and the cost is given by the long run average of a linear running cost. But existence of such simple optimal
priority policies are rare in Halfin-Whitt setting. In general, by Halfin-Whitt setting we mean the number of
servers n and the total offered load r scale like n≈ r+ρ

√
r for some constant ρ. See (2) below for exact formulation

for our model. There are several papers devoted to the study of control problems in Halfin-Whitt regime. Atar
et al. (2004), Harrison and Zeevi (2004) studied a control problem with discounted pay-off for multiclass single
pool queueing network and asymptotics of the value functions are obtained in Atar et al. (2004). Later these
works are generalized to multi-pool case in Atar (2005). Atar et al. (2009) considered a simplified multiclass
multi-pool control problem with a discounted cost criterion where the service rates either depend on the class
or the pool but not the both, and established asymptotic optimality for the scheduling policies. Under some
assumptions on the holding cost, a static priority policy is shown to be optimal in Dai and Tezcan (2008, 2011) in
a multiclass multi-pool queueing network where the cost function is of finite horizon type. Gurvich and Whitt
(2009) studied queue-and-idleness-ratio controls, and their associated properties and staffing implications for
multiclass multi-pool networks. In Arapostathis et al. (2015) the authors considered an ergodic control problem
for multiclass many-server queueing network and established convergence of the value functions. Some other
works that have considered ergodic control problems for queueing networks are as follows: Budhiraja et al.
(2011) considers an ergodic control problem in the conventional heavy-traffic regime and establishes asymptotic
optimality, Kim and Ward (2013) studies admission control problem with an ergodic cost criterion for a single
class M/M/N +M queueing network. For an inverted “V” model it is shown in Armony (2005) that the fastest-
server-first policy is asymptotically optimal for minimizing the steady-state expected queue length and waiting
time. Ward and Armony (2013) considered a blind fair routing policy for multiclass multi-pool networks and
used simulations to validate the performance of the blind fair routing policies comparing them with non-blind
policies derived from the limiting diffusion control problem. Recently, ergodic control of multiclass multi-pool
queueing networks is considered in Arapostathis and Pang (2016) where the authors have addressed existence
and uniqueness of solutions of the HJB (Hamilton-Jacobi-Bellman) equation associated to the limiting diffusion
control problem. Asymptotic optimality results for the N-netwrok queueing model are obtained in Arapostathis
and Pang (2017). Most of these above works (Arapostathis et al. 2015; Atar 2005; Atar et al. 2004, 2009; Harrison
and Zeevi 2004) on many server networks consider work-conserving policies as their admissible controls. It
is necessary to point out some key differences of the present queueing network with the one considered in
Arapostathis and Pang (2016), Atar (2005). First of all the Halfin-Whitt condition above (see (1)) is different
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from Atar (2005, p. 2614) and therefore, the diffusion scalings of the customer count processes are also different.
Moreover, the collection of admissible controls in Atar (2005) includes a wider class of scheduling policies which
are jointly work-conserving and need not follow any class-to-pool priority, whereas for the queueing model
under consideration every admissible control must obey the class-to-pool priority constrain. The particular
nature of our network allow us to consider an optimal ergodic control problem with a general running cost
function and to obtain asymptotic optimality (Theorem 2.1) under standard assumptions on the service rates.
Motivation and comparison. The above model is realistic in many scenario. For instance, in a call center different

service stations are designed to serve certain type of customers and they may choose to help other type of
customers when one or many servers are idle in the station. It is known that cross-training of customer sales
representatives in inbound call center reduces the average number of customers in queue. We refer to Iravani
et al. (2007) and the references therein for a discussion on labor cross-training and its effect on the performance
on queueing networks. Since it is expensive to train every sales representative in all skills it becomes important
to understand the optimal cross-training structure of the agents which reduces the average number of customers
in queue. Iravani et al. (2007) uses average shortest path length as a metric to predict the more effective cross-
training structures in terms of customer waiting times. Our model is a variant of these networks. As mentioned
before, we may have i9 j for some i , j in our queueing network which should be interpreted as the inability
of station j to serve class i jobs. It is also reasonable to have class-to-pool priority when the agents in pool i
are primarily trained to serve jobs of class i, i ∈ {1, . . . , d}, and might not be efficient in serving class j, i , j.
It should be noted that for our queueing model we have fixed a cross-training structure and we are trying to
investigate the optimal dynamic scheduling policy that will optimize the pay-off function.
Our model also bears resemblance with Generalized Processor Sharing (GPS) models from Ramanan and

Reiman (2003, 2008). In fact, our model can be scaled to a single pool case where each class of customers have
priority in accessing a fixed fraction of the total number of servers and they may get access to other servers,
fixed for other customer classes, if the queues of other customer classes are empty. It should be observed that
the multi-pool version is more general than the single pool version. For instance, it is not natural to have µi j , µi ,
for i , j, in the setting of a single pool with homogeneous servers, but this is not the case for a multi-pool
model. Therefore we stick to the multi-pool network model. A legitimate question for these processor sharing
type model is that whether the GPS type policy is optimal or not for the pay-off function considered above.
Motivated by this question a similar control problem is considered in Biswas et al. (2017) for a queueing model
with finitely many servers and it is shown that the value function associated to the limiting controlled diffusion
model solves a non-linear Neumann boundary value problem. The solution is obtained in the viscosity sense
and therefore, it is hard to extract any information about the optimal control, even for the diffusion control
problem. The present work is also motivated by a similar question but for the many-server queueing network.
One motivation of the present work is to get some insight about the optimal control. The motivating question
here is if we allow the non-priority classes of pool i to access the servers of pool i in some fixed proportion
when pool i has some free servers then such scheduling policy would be optimal or not. In the present work
we characterize the value functions of the queueing model by its limit and construct a sequence of admissible
policies that are asymptotically optimal. Though theoretically we can find a minimizer for the limiting HJB, it is
not easy to compute it explicitly or numerically. One of the future directions is to compute the minimizer and
compare its performance with the GPS type scheduling.

The methodology of this problem is not immediate from any existing work. In general, the main idea is
to convert such problems to a controlled diffusion problem and analyze the corresponding Hamiltion-Jacobi-
Bellman(HJB) equation to extract information about the minimizing policies. All the exiting works (Arapostathis
et al. 2015, Atar 2005, Atar et al. 2004, Harrison and Zeevi 2004) use work-conservative properties of the controls
to come up with an action space that does not depend on the state variable. But as we mentioned above that
our policies need not be work-conserving. Also there is an obvious action space that one could associate to
our model (see (10)). Unfortunately, this action space depends on the state variable. In general, such action
spaces are not very favorable for mathematical analysis. Existence of measurable selectors and regularity of
Hamiltonian do not become obvious due to the dependency of action space on the state variable. Interestingly,
for our model we could show that the structure of drift and convexity of the running cost play in favour of our
analysis and we can work with such state dependent action spaces. In particular, we obtain uniform stability
(Lemma 4.2) and also show that the Hamiltonian is locally Hölder continuous (Lemmas 4.3 and 4.6). Since our
action space depends on state variable we need to verify that the Filipov’s criterion holds (Aliprantis and Border
2006, Chapter 18) and then by using Filipov’s implicit function theorem we establish existence of a measurable
minimizer for the Hamiltonian. This is done in Theorem 3.1. But such a minimizer need not be continuous,
in general, and one often requires a continuous minimizing selector to construct ε-optimal policies for the
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value functions V̂n (see Arapostathis et al. 2015, Atar et al. 2004). With this in mind, we consider a perturbed
problem where we perturb the cost by a strictly convex function and show that the perturbed hamiltonian has
a unique continuous selector (Lemma 4.1). In Theorem 3.1 below we show that this continuous minimizing
selector is optimal for the perturbed ergodic control problem and can be used to construct ε-optimal policies
(Theorem 5.2). To summarize our contribution in this paper, we have

• considered an ergodic control problem for the M/M/N + M queueing network with labor cross-training
and identified the limit of the value functions,

• solved the limiting HJB and established asymptotic optimality.
Notations. By �d we denote the d-dimensional Euclidean space equipped with the Euclidean norm | · |. We

denote by �d×d the set of all d× d real matrices and we endow this space with the usual metric. For a, b ∈�, we
denote the maximum (minimum) of a and b as a ∨ b (a ∧ b, respectively). We define a+ � a ∨ 0 and a− � −a ∧ 0.
For given a ∈ �, bac denotes the largest integer that is smaller or equal to a. Given a topological space X and
B ⊂X , the interior, closure, complement and boundary of B in X are denoted by B0, B̄, Bc and ∂B, respectively.
1B is used to denote the characteristic function of the set B. By B(X) we denote the Borel σ-field of X . Let
C([0,∞): X) be the set of all continuous functions from [0,∞) to X . Given a path f : �+→ �, we denote by
∆ f (t), jump of f at time t, i.e., ∆ f (t)� f (t)− f (t−). We define Ck(�d), k ∈�, as the set of all real valued k times
continuously differentiable functions on �d . For α ∈ (0, 1), Ck , α

loc (�
d) denotes the set of all real valued k-times

continuously differentiable function on �d with its k-th derivative being locally α-Hölder continuous on �d . For
any any domain D ⊂ �d , · k , p(D), p ≥ 1, denotes the set of all k-times weakly differentiable functions that is in
Lp(D) and all its weak derivatives up to order k are also in Lp(D). By ·

k , p
loc (D), p ≥ 1, we denote the collection

of function that are k-times weakly differentiable and all its derivatives up to order k are in Lp
loc(D). Cpol(�d

+
)

denotes the set of all real valued continuous functions f that have at most polynomial growth i.e.,

lim sup
|x |→0

| f (x)|
|x |k � 0, for some k ≥ 0.

For a measurable f and measure µ we denote 〈 f , µ〉 � ∫ f dµ. Let ¯(g) denote the space of function f ∈ C(�d)
such that

sup
x∈�d

| f (x)|
1+ |g(x)| <∞.

By �(g) we denote the subspace of ¯(g) containing function f satisfying

lim sup
|x |→∞

| f (x)|
1+ |g(x)| � 0.

Infimum over empty set is regarded as +∞. κ1 , κ2 , . . . , are deterministic positive constants whose value might
change from line to line.
The organization of the paper is as follows. The next section introduces the setting of our model and state

our main result on the convergence of the value functions. In Section 3 we formulate the limiting controlled
diffusion and state our results on the ergodic control problem with state dependent action space. Section 4
obtains various results for the controlled diffusion and its HJB which are used to prove Theorem 3.1 from
Section 3. Finally, in Section 5 we obtain asymptotic lower and upper bounds for the value functions.

2. Setting and Main Result
Let (Ω,&,� ) be a given complete probability space and all the stochastic variables introduced below are defined
on it. The expectation w.r.t. � is denoted by Ɛ. We consider a multiclass Markovian many-server queueing
system which consists of d customer classes and d server pools. Each server pool is assumed to contain n
identical servers (see Figure 1).
The system buffers are assumed to have infinite capacity. Customers of class i ∈ {1, . . . , d} arrive according

to a Poisson process with rate λn
i > 0. Upon arrival, customers enter the queue of their respective classes if

not being processed. Customers of each class are served in the first-come-first-serve (FCFS) service discipline.
Customers can abandon the system while waiting in the queue. Patience time of the customers are assumed to
be exponentially distributed and class dependent. Customers of class i, i ∈ {1, . . . , d}, renege at rate γn

i . We also
assume that no customer renege while in service. Customers of class i have highest priority in accessing service
from station i. A customer of class i, i ∈ {1, . . . , d}, is allowed to access service from station j, j ∈ {1, . . . , d}, i , j,
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Figure 1. d � 3. Dotted lines represents access of other classes to the pool in absence of its priority class customers in the
queue.
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if and only if the j-th queue is empty and all the servers in the i-th pool are occupied by class-i customers. By
µn

i j , i , j ∈ {1, . . . , d}, we denote the service rate of class i at station j. We denote µn
ii by µ

n
i for i ∈ {1, . . . , d}. We

assume that customer arrivals, service and abandonment of all classes are mutually independent.
The Halfin-Whitt Regime. We study this queueing model in the Halfin-Whitt regime (or the Quality-and-

Efficiency-Driven (QED) regime). We consider a sequence of systems indexed by n where the arrival rates λn
i

and n grows to infinity at certain rates. Let rn
i :� λn

i/µn
i be the mean offered load of class i customers. In the

Halfin-Whitt regime, the parameters are assumed to satisfy the following: as n→∞,

λn
i

n
→ λi > 0, µn

i → µi > 0, µn
i j→ µi j ≥ 0, for i , j,

γn
i → γi > 0,

λn
i − nλi√

n
→ λ̂i ,

√
n(µn

i − µi)→ µ̂i , (2)

rn
i

n
→ 1 �

λi

µi
.

We note that µi j , i , j, could also be 0 for some i , j. µi j � 0 could be understood as a situation where servers
at station j are very inefficient in serving class-i customers.

State Descriptors. Let Xn
i � {Xn

i (t): t ≥ 0} be the total number of class i customers in the system and Qn
i �

{Qn
i (t): t ≥ 0} be the number of class i customers in the queue. By Zn

i j , i , j ∈ {1, . . . , d}, we denote the number
of class i customers at the station j. As earlier we denote Zn

ii by Zn
i for i ∈ {1, . . . , d}. The following basic

relationships hold for these processes: for each t ≥ 0, and i � 1, . . . , d,

Xn
i (t)� Qn

i (t)+Zn
i +

∑
j: j,i

Zn
i j(t), Qn

i (t) ≥ 0, Zn
i j(t) ≥ 0, and Zn

i +
∑
k: k,i

Zn
ki(t) ≤ n. (3)

Let {An
i , S

n
i , S

n
i j ,R

n
i , i , j � 1, . . . , d} be a collection of independent rate-1 Poisson processes. Define

Ãn
i (t) :� An

i (λn
i t), S̃n

i (t) :� Sn
i

(
µn

i

∫ t

0
Zn

i (s)ds
)
,

S̃n
i j(t) :� Sn

i j

(
µn

i j

∫ t

0
Zn

i j(s)ds
)
, R̃n

i (t) :� Rn
i

(
γn

i

∫ t

0
Qn

i (s)ds
)
.

Then the dynamics takes the form

Xn
i (t)� Xn

i (0)+ Ãn
i (t) − S̃n

i (t) −
∑
j: j,i

S̃n
i j(t) − R̃n

i (t), t ≥ 0, i � 1, . . . , d. (4)

Scheduling Control. We will consider policies that are non-anticipative. We also allow preemption. Under these
policies every customer class and its associated station must follow a work-conserving constrain in the following
sense: for all i ∈ {1, . . . , d},

(Xn
i (t) − n)+ � Qn

i (t)+
∑
j: j,i

Zn
i j(t), t ≥ 0. (5)
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Combining (3) and (5) we see that
Zn

i � Xn
i ∧ n , 1 ∈ 1, . . . , d , t ≥ 0. (6)

Therefore, when a server from station i-becomes free and there are no customers of class-i waiting in the queue,
the server may process a customer of class j, i , j. Also a customer of class i does not receive service from a
server at the station j, j , i , if there is an empty server at station i. Service preemption is allowed, i.e., service of
a customer class can be interrupted at any time to serve some other class of customers and the original service
is resumed at a later time, possibly by a server at some other station. It should be noted that a policy need not
be work-conserving. For instance, it could happen that under some policy there are empty servers at station j
but there could be queue of class i, i , j.
Define the σ-fields as follows

F n
t :� σ{Xn(0), Ãn

i (t), S̃n
i (t), S̃n

i j(t), R̃n
i (t): i � 1, . . . , d , 0 ≤ s ≤ t} ∨N , and

Gn
t :� σ{δÃn

i (t , r), δS̃n
i (t , r), δS̃n

i j(t), δR̃n
i (t , r): i � 1, . . . , d , r ≥ 0},

where

δÃn
i (t , r) :� Ãn

i (t + r) − Ãn
i (t), δS̃n

i (t , r) :� Sn
i

(
µn

i

∫ t

0
Zn

i (s)ds + µn
i r

)
− S̃n

i (t),

δS̃n
i j(t , r) :� Sn

i j

(
µn

i j

∫ t

0
Zn

i j(s)ds + µn
i j r

)
− S̃n

i (t), δR̃n
i (t , r) :� Rn

i

(
γn

i

∫ t

0
Qn

i (s)ds + γn
i r

)
− R̃n

i (t),

and N is the collection of all � -null sets. The filtration {F n
t , t ≥ 0} represents the information available up to

time t while Gn
t contains the information about future increments of the processes.

We say that a control policy is admissible if it satisfies (5) (or, equivalently (6)) and,
(i) Zn(t) is adapted to F n

t ,
(ii) F n

t is independent of Gn
t at each time t ≥ 0,

(iii) for each i � 1, . . . , d, and t ≥ 0, the process δS̃n
i (t , ·) (δS̃n

i j(t , ·)) agrees in law with Sn
i (µn

i ·) (Sn
i j(µn

i j ·)), and
the process δR̃n

i (t , ·) agrees in law with Rn
i (γn

i ·).
By criterion (iii) above the increments of the processes have same distribution as the original processes

in addition to being independent of F N
t (by (ii) above). We denote the set of all admissible control policies

(Zn ,F n ,Gn) by 5n .

2.1. Control Problem Formulation
Define the diffusion-scaled processes

X̂n
� (X̂n

1 , . . . , X̂
n
d )T , Q̂n

� (Q̂n
1 , . . . , Q̂

n
d )T , and Ẑn

� [Ẑn
i j],

by

X̂n
i (t) :�

1√
n
(Xn

i (t) − n), Q̂n
i (t) :�

1√
n

Qn
i (t), Ẑn

i j :� 1√
n

Zn
i j , i , j, Ẑn

i (t) :�
1√
n
(Zn

i (t) − n) (7)

for t ≥ 0. By (4) and (6), we can express X̂n
i as

X̂n
i (t)� X̂n

i (0)+ `n
i t + µn

i

∫ t

0
(X̂n

i )−(s)ds −
∑
j: j,i

µn
i j

∫ t

0
Ẑn

i j(s)ds − γn
i

∫ t

0
Q̂n

i (s)ds

+ M̂n
A, i(t) − M̂n

S, i(t) −
∑
j: j,i

M̂n
S, i j(t) − M̂n

R, i(t), (8)

where `n � (`n
1 , . . . , `

n
d )T is defined as

`n
i :� 1√

n
(λn

i − µn
i n)�

λn
i − nλi√

n
−
√

n(µn
i − µi),

and

M̂n
A, i(t):�

1√
n
(An

i (λn
i t)−λn

i t), M̂n
S, i(t):�

1√
n

(
Sn

i

(
µn

i

∫ t

0
Zn

i (s)ds
)
−µn

i

∫ t

0
Zn

i (s)ds
)
,

M̂n
S, i j(t):�

1√
n

(
Sn

i j

(
µn

i

∫ t

0
Zn

i j(s)ds
)
−µn

i

∫ t

0
Zn

i j(s)ds
)
, M̂n

R, i(t):�
1√
n

(
Rn

i

(
γn

i

∫ t

0
Qn

i (s)ds
)
−γn

i

∫ t

0
Qn

i (s)ds
)
,

(9)

are square integrable martingales w.r.t. the filtration {F n
t }.
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Note that by (2)
`n

i �−−−→n→∞
`i :� λ̂i − µ̂i .

By �d×d
+

we denote the set of real matrices with non-negative entries. Define

M :�
{

m ∈ �d×d
+

: uii � 0,
∑
k: k,i

uki ≤ 1, ∀ i
}
.

For any x ∈ �d , we define

M(x) :�
{

u ∈M:
∑
j: j,i

mi j x
−
j ≤ x+

i , ∀ i
}
. (10)

It is easy to see that M(x) is a non-empty convex and compact subset of M for all x ∈ �d . Also 0 ∈M(x), for all
x ∈ �d . From (3), (5) and (6) we have for i ∈ {1, . . . , d},∑

k: k,i

Ẑn
ki ≤ (X̂n

i )− ,
∑
j: j,i

Ẑn
i j ≤ (X̂n

i )+. (11)

Define

Ûn
ki(t) :�

Ẑn
ki(t)

(X̂n
i (t))−

, t ≥ 0,

where we fix Ûn
ki(t)� 0 if (X̂n

i (t))− � 0. We also set Ûn
ii(t)� 0, for all i ∈ {1, . . . , d}, and t ≥ 0. Therefore using (11)

we obtain, ∑
k: k,i

Ûn
ki(t) ≤ 1,

∑
j: j,i

Ûn
i j(t)(X̂n

j (t))− ≤ (X̂n
i (t))+. (12)

Thus Ûn(t) ∈M(X̂n(t)) for all t and Ûn(t) is F n
t adapted. Also Ûn

i j represents the fraction of the number of
servers (Xn

j − n)− at station j that are serving class-i customers. As we show later, it is convenient to view Ûn(t)
as the control.
2.1.1. The Cost Minimization Problem. We next introduce the running cost function for the control problem. Let
r: �d

+
→�+ be a given function satisfying

0 ≤ r(x) ≤ c1(1+ |x |m), for some m ≥ 1, (13)

and some positive constant c1. We also assume that r is convex and therefore, locally Lipschitz. For example, if
we let hi , hi ≥ 0, be the holding cost rate for class i customers, then some of the typical running cost functions
are the following:

r(x)�
d∑

i�1
hi x

mi
i , min

i
mi ≥ 1.

These running cost functions evidently satisfy the condition in (13).
Given the initial state Xn(0) and an admissible scheduling policy Zn ∈5n , we define the diffusion-scaled cost

function as
J(X̂n(0), Ẑn) :� lim sup

T→∞

1
T
Ɛ

[∫ T

0
r(Q̂n(s))ds

]
, (14)

where the running cost function r satisfies (13). Then, the associated cost minimization problem is defined by

V̂n(X̂n(0)) :� inf
Zn∈5n

J(X̂n(0), Ẑn). (15)

We refer to V̂n(X̂n(0)) as the diffusion-scaled value function given the initial state X̂n(0) for the nth system.
From (5) we see that for i ∈ {1, . . . , d}, and t ≥ 0,

Q̂n
i (t)� (X̂n

i (t))+ −
∑
j: j,i

Ûn
i j(t)(X̂n

j (t))−.

Therefore redefining r as

r(x , u)� r
(
x+

1 −
∑
j: j,1

u1 j x
−
j , . . . , x

+

d −
∑
j: j,d

udj x
−
j

)
, u ∈M(x), (16)

we can rewrite the control problem as

V̂n(X̂n(0))� inf J̃(X̂n(0), Ûn),
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where
J̃(X̂n(0), Ûn) :� lim sup

T→∞

1
T
Ɛ

[∫ T

0
r(X̂n(s), Ûn(s))ds

]
, (17)

and the infimum is taken over all admissible pairs (X̂n , Ûn) satisfying (12). Hence Ûn(t) ∈M(X̂n(t)), almost
surely, for all t ≥ 0.

For simplicity we assume that the initial condition X̂n(0) is deterministic and X̂n(0)→ x, as n→∞, for some
x ∈ �d .
2.1.2. The Limiting Controlled Diffusion Process. As in Arapostathis et al. (2015), Atar et al. (2004), Harrison
and Zeevi (2004), the analysis will be done by studying the limiting controlled diffusions. One formally deduces
that, provided X̂n(0)→ x, there exists a limit X for X̂n on every finite time interval, and the limit process X is
a d-dimensional diffusion process, that is,

dXt � b(Xt ,Ut)dt +ΣdWt , (18)

with initial condition X0 � x. In (18) the drift b(x , u): �d ×M→�d takes the form

bi(x , u)� `i + µi x
−
i −

∑
j: j,i

µi j ui j x
−
j − γi

(
x+

i −
∑
j: j,i

ui j x
−
j

)
, with ` :� (`1 , . . . , `d)T. (19)

The control Ut lives in M and is non-anticipative, W is a d-dimensional standard Wiener process independent
of the initial condition X0 � x, and the covariance matrix is given by

ΣΣT
� diag(2λ1 , . . . , 2λd).

A formal derivation of the drift in (19) can be obtained from (5) and (8). We also need the control to satisfy
Ut ∈M(X(t)) for all t ≥ 0. We define q: �d ×M→�d as follows,

qi(x , u)� x+

i −
∑
j: j,i

ui j x
−
j , i ∈ {1, . . . , d}. (20)

Thus from (19) we get that
bi(x , u)� `i + µi x

−
i −

∑
j: j,i

µi j ui j x
−
j − γi qi(x , u). (21)

A detailed description of Equation (18) and related results are given in Section 3.
2.1.3. The Ergodic Control Problem for Controlled Diffusion. Define r̃: �d

+
×M→�+, by

r̃(x , u) :� r(q+

1 (x , u), . . . , q+

d (x , u)).

We note that for u ∈M(x) the cost r̃(x , u) agrees with r(x , u) given by (16). In analogy with (17) we define the
ergodic cost associated with the controlled diffusion process X and the running cost function r̃(x , u) as

J(x ,U) :� lim sup
T→∞

1
T
ƐU

x

[∫ T

0
r̃(Xt ,Ut)dt

]
, U ∈5.

Here 5 denotes set of all admissible controls which are defined in Section 3. We consider the ergodic control
problem

%∗(x)� inf
U∈5

J(x ,U). (22)

We call %∗(x) the optimal value at the initial state x for the controlled diffusion process X. It is shown later
that %∗(x) is independent of x. A detailed treatment and related results corresponding to the ergodic control
problem are given in Section 3.
Next we state the main result of this section, the proof of which can be found in Section 5.

Theorem 2.1. Let X̂n(0)→ x ∈ �d , as n→∞. Also assume that (2) and (13) hold where the cost function r is convex.
Then

lim
n→∞

V̂n(X̂n(0))� %∗ ,

where %∗(x) is given by (22).
Theorem 2.1 is similar in Arapostathis et al. (2015, Theorems 2.1 and 2.2). The central idea of the proof of

Theorem 2.1 is same as that of Arapostathis et al. (2015). One of the main advantage of the present setting is the
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stability of the system. We could directly show that for all n large the mean-empirical measures corresponding
to n-th system has all polynomial moments finite under every admissible policy (see Lemma 5.1). This is not
the case in Arapostathis et al. (2015) where a spatial truncation method is used to treat such difficulty. We must
also note that the action space in our setting depends on the location x whereas in Arapostathis et al. (2015)
the action space is a fixed compact set. Therefore we need to adopt suitable modification for this problem. As
shown below the convexity property of the cost and the structure of drift b play a key role in our analysis.

3. An Ergodic Control Problem for Controlled Diffusions
3.1. The Controlled Diffusion Model
The dynamics are modelled by controlled diffusion processes X � {X(t), t ≥ 0} taking values in �d , and governed
by the Itô stochastic differential equation

dX(t)� b(X(t),U(t))dt +ΣdW(t), (23)

where b is given by (21) and

ΣΣT
� diag(2λ1 , . . . , 2λd).

All random processes in (23) live in a complete probability space (Ω,&, {&t},� ). The process W is a d-
dimensional standard Brownian motion independent of the initial condition X0.
Definition 3.1. A process U, taking values in M and U(t)(ω) is jointly measurable in (t , ω) ∈ [0,∞)×Ω, is said
to be an admissible control if, there exists a strong solution X � {X(t): t ≥ 0} satisfying (23), and,

• U is non-anticipative: for s < t, Wt −Ws is independent of

&s :� the completion of σ{X0 ,U(p),W(p), p ≤ s} relative to (&,� ).
• U(t) ∈M(X(t)), almost surely, for t ≥ 0.
We let 5 denote the set of all admissible controls. Note that the drift b is Lipschitz continuous and the

diffusion matrix Σ non-degenerate. Since 0 ∈M(x) for all x ∈�d we see that U ≡ 0 is in 5. Thus 5 is non-empty.
Let a :�ΣΣT . We define the family of operators Lu : C2(�d)→C(�d), with parameter u ∈M, by

Lu f (x) :� 1
2

d∑
i , j�1

ai j∂i j f (x)+
d∑

i�1
bi(x , u)∂i f (x), u ∈M. (24)

We refer to Lu as the controlled extended generator of the diffusion (23). In (24) and elsewhere in this paper we
have adopted the notation ∂i :� ∂/∂xi and ∂i j :� ∂2/(∂xi∂x j).
A control U ∈ 5 is said to be stationary Markov if for some measurable v: �d→M we have U(t) � v(X(t)).

Therefore for a stationary Markov control we have v(X(t)) ∈M(X(t)) for all t ≥ 0. By 5SM we denote the set of
all stationary Markov controls.
Now we introduce relaxed controls which will be useful for our analysis. Association of relaxed controls

to such control problems is useful since it extends the action space to a compact, convex set (Arapostathis
et al. 2012). In our setup we show that we can not do better even we extend the controls to include relaxed
controls (see Theorems 3.1 and 4.1). Moreover, relaxed control would be useful to prove asymptotic lower
bounds (Theorem 5.1). By P(M) we denote the set of all probability measures on M. We can extend the drift b
and the running cost r on P(M) as follows: for v(du) ∈P(M),

b(x , v) :�
∫

M
b(x , u)v(du), and r(x , v) :�

∫
M

r(x , u)v(du).

Controls taking values in P(M) are known as relaxed controls. Similarly, we can extend the definition of sta-
tionary Markov controls to measure valued processes. A stationary Markov control v: �d → P(M) is said to
be admissible if there is a unique strong solution to (23) and 〈1M(X(t)) , v(X(t))〉 � 1, almost surely, for all t ≥ 0.
We continue to denote this extended class by 5SM. We endow the space 5SM with the following topology
(Arapostathis et al. 2012, Chapter 2.2.4): vn→ v in 5SM if and only if∫

�d
f (x)

∫
M

g(x , u)vn(du | x)dx −−−→
n→∞

∫
�d

f (x)
∫

M
g(x , u)v(du | x)dx

for all f ∈ L1(�d) ∩ L2(�d) and g ∈Cb(�d ×M).
Proposition 3.1. The space 5SM under the above mentioned topology is compact whenever the initial condition X(0) is a
fixed point.
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Proof. Let X(0)� x. Let {vn} ∈5SM be a sequence of stationary Markov controls. Then (Xn(t), vn(Xn(t))) satisfies
(23) and

〈1M(Xn (t)) , vn(Xn(t))〉 � 1, a.s., for t ≥ 0. (25)

Now from Arapostathis et al. (2012, Section 2.4) there exists a measurable v: �d→ P(M) such that vn→ v as
n→∞ along some subsequence in the topology of Markov control. We continue to denote the subsequence
by vn . Now consider the strong solution X(t) corresponding to the Markov control v. Existence of the unique
strong solution is assured by Arapostathis et al. (2012, Theorem 2.2.12). Moreover, Xn ⇒ X as n → ∞, in
C([0,∞),�d). A similar the argument as in Arapostathis et al. (2012, Lemma 2.4.2) shows that for any t > 0,

‖pn(t , x , ·) − p(t , x , ·)‖L1(�d )→ 0, as n→∞, (26)

where pn , p denote the transition density of Xn , X respectively, at time t starting from x. Also the transition
densities are locally bounded. Now observe that (x , u) 7→ 1Mc (x)(u) is a lower-semicontinuous function. This fact
follows from the definition of M(x). Hence there exists a sequence of bounded, continuous function gk : �d×M→
� such that (see for example, Krantz 2001, Proposition 2.1.2)

gk(x , u)↗ 1Mc (x)(u), pointwise, as k→∞.

Let φk be any smooth, non-negative function taking values in [0, 1] with support in �k(0). We choose φk to
satisfy φk↗ 1, as k→∞. Then from the convergence criterion of Markov controls we get for all k ≥ 1,∫

�d
p(t , x , y)φk(y)

∫
M

gk(y , u)v(du | y) dy

≤
∫
�d

p(t , x , y)φk(y)
∫

M
gk(y , u)(v(du | y)dy − vn(du | y))

+ sup
(y , u)∈�d×M

|gk(y , u)|‖pn(t , x , ·) − p(t , x , ·)‖L1(�d ) +

∫
�d

pn(t , x , y)φk(y)
∫

M
gk(y , u)vn(du | y)

≤
∫
�d

p(t , x , y)φk(y)
∫

M
gk(y , u)

(
v(du | y) − vn(du | y)

)
+ sup
(y , u)∈�d×M

|gk(y , u)|‖pn(t , x , ·) − p(t , x , ·)‖L1(�d ) +

∫
�d

pn(t , x , y)
∫

M
1Mc (y)(u)vn(du | y)→ 0, as n→∞,

where in the last line we use (25), (26). Therefore letting k→∞ we have for t > 0 that

Ɛ

[∫
M

1Mc (X(t))v(du | X(t))
]
� 0.

This proves that for every t > 0, support of v(du | X(t)) lies in M(X(t)) almost surely. Now define v(x) � 0 to
make sure v(X(0)) ∈M(X(0)). This completes the proof. �
It is well known Arapostathis et al. (2012, Theorem 2.2.12) that for every Markov control in 5SM there is a

unique strong solution to (23) which is also a strong Markov process. A stationary control is called stable if the
associated Markov process X is positive recurrent.
We recall the cost function r̃ from previous section where

r̃(x , u)� r(q+

1 (x , u), . . . , q+

d (x , u))

and r is a convex function that satisfies (13). Define

[[u]] :�
d∑

i , j�1
|ui j |2 , where u ∈M.

For ε ∈ (0, 1), we consider the following perturbed cost function

r̃ε(x , u) :� r̃(x , u)+ ε[[u]].

Since [[·]] is strictly convex in u, we have r̃ε(x , ·) strictly convex on M(x) for every x ∈ �d . For U ∈5, we define

J(x ,U)� lim sup
T→∞

1
T
Ɛ

[∫ T

0
r̃(X(s),U(s))ds

]
, Jε(x ,U)� lim sup

T→∞

1
T
Ɛ

[∫ T

0
r̃ε(X(s),U(s))ds

]
.
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Therefore we have two value functions given by

%∗ :� inf
U∈5

J(x ,U), %ε :� inf
U∈5

Jε(x ,U). (27)

We have suppressed the dependency of x from the value function as it is shown below that the value functions
do not depend on x. Our main result of this section is the following.

Theorem 3.1. There exist Vε, V ∈C2(�d) satisfying the following Hamilton-Jacobi-Bellman (HJB) equations,

min
u∈M(x)

(LuVε(x)+ r̃ε(x , u))� %ε , for ε ∈ (0, 1), (28)

min
u∈M(x)

(LuV(x)+ r̃(x , u))� %∗ , (29)

such that
(i) for each ε ∈ (0, 1), there is a unique continuous selector of (28) which is also optimal for %ε;
(ii) if a pair (V̄ε, %̄ε) ∈C2(�d) ∩Cpol(�d) ×� satisfies (28) then we have (V̄ε , %̄ε)� (Vε , %ε);
(iii) as ε→ 0, Vε→V in ·

2, p
loc (�

d), p ≥ 1;
(iv) every measurable selector of (29) is optimal for %∗;
(v) if a pair (V̄ , %̄) ∈C2(�d) ∩Cpol(�d) ×� satisfies (29) then we have (V̄ , %̄)� (V, %∗).
It is not hard to see that %ε↘ %∗, as ε→0 (the difference between the running costs is the order of ε). Therefore

using Theorem 3.1 we can find ε-optimal controls (in fact, continuous Markov controls) for %∗. Continuity
property of the Markov controls plays a key role in the construction of ε-optimal admissible controls for the
queueing models and in obtaining asymptotic upper bound for Theorem 2.1. Results similar to Theorem 3.1
are also obtained in Arapostathis et al. (2015) for a fixed action space that does not depend on x. Therefore
the results of Arapostathis et al. (2015) do not directly apply here. Because of the state dependency of the
action space we need to put extra effort to establish regularity properties of the value function. Also, finding a
measurable minimizing selector of (29) becomes less obvious. On the other hand, we have uniform stability (see
Lemma 4.2), an advantage compared to Arapostathis et al. (2015), which help us in proving Thoerem 3.1. It is
shown that the ε-perturbed Hamiltonian in (28) has certain regularity properties (Lemma 4.3) which together
with the strict convexity of the perturbed cost r̃ε help us in finding a unique continuous minimizing selector
(Lemma 4.1). Using these properties we characterize the discounted value function Vα

ε with the running cost r̃ε
in Theorem 4.2. Then using uniform stability and the Sobolev estimates we show that the scaled value function
V̄α
ε :� Vα

ε −Vα
ε (0) converges to a limit Vε, as α→ 0, that solves (28). A similar argument is also used to justify

the passage of limit in Vε→V as ε→ 0. The detailed proof of Theorem 3.1 is given in Section 4.

4. Uniform Stability and Related Results
The goal of this section is to prove Theorem 3.1 and obtain related estimates. In what follows, we use several
standard results from the theory of elliptic PDE’s without explicitly mentioning its reference. Those results can
be found in Gilbarg and Trudinger (1983), Arapostathis et al. (2012, appendix). For instance, the following is
used in several places: if a function ψ ∈· 2, p

loc (�), p > d, � is an open set, satisfies 1
2
∑

i j ai j∂i jψ(x)� f (x) for some
function f ∈Cα(�), α ∈ (0, 1), then ψ ∈C2, β

loc (�) for some β > 0.
We start by proving continuity property of the selector. Define a map ϕ: �d ×�d→M as follows.

ϕ(x , p) :� arg min
u∈M(x)

{b(x , u) · p + r̃ε(x , u)}.

Since M(x) is convex and compact for every x and r̃ε(x , ·) is strictly convex on M(x) we see that ϕ is well
defined.

Lemma 4.1. For every ε ∈ (0, 1), the function ϕ defined above is continuous.

Proof. Consider a point (x , p) ∈ �d ×�d . Let ϕ(x , p) � u ∈M(x). We claim that if x−i � 0 for some i ∈ {1, . . . , d},
then

uki � 0, for all k , i. (30)

Suppose (30) is not true and uki > 0 for some k , i. We define ū ∈M as follows,

ūlm �

{
u j1 j2 if j1 , k , or j2 , i ,
0 if j1 � k , and j2 � i.
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It is easy to check that ū ∈M(x). We also have

b(x , u) · p + r̃ε(x , u) > b(x , ū) · p + r̃ε(x , ū).

which contradicts the fact that u ∈ arg minu∈M(x){b(x , u) · p + r̃ε(x , u)} and this proves (30). Let (xn , pn) → (x , p),
as n→∞. We show that ϕ(xn , pn)→ ϕ(x , p), as n→∞. Let

un :� ϕ(xn , pn) ∈ arg min
u∈M(xn )

{b(xn , u) · pn + r̃ε(xn , u)}, u :� ϕ(x , p) ∈ arg min
u∈M(x)

{b(x , u) · p + r̃ε(x , u)}.

Since the sequence {un} is bounded we can assume that un→m0 ∈M. It is also easy to see that m0 ∈M(x). We
need to show that m0 � u. Given u as above we find mn ∈M(xn) such that mn → u, as n→∞. Construction
of mn is done in following two cases.

Case 1: Let u � 0. Therefore we let mn � 0 ∈M(xn) for all n.
Case 2: Let u , 0 . Then using (30) we see that whenever uki > 0 for some k and i , k we have x−i > 0. Let

I(x)� {i: uki > 0 for some k , i}. Therefore (xn)−i > 0 for all i ∈ I(x) and large n. Define for large n,

δn
ki :�

2|xn − x |
(xn)−i

, whenever uki > 0.

We set δn
ki � 0 otherwise. Define (mn)ki � uki − δn

ki for all k , i. Since δn→ 0 as n→∞, we have mn ∈M for all
large n. Now we show that mn ∈M(xn) for all large n. To do this we note that for any i ∈ {1, . . . , d},∑

j: j,i
(mn)i j(xn)−j �

∑
j: ui j>0
(ui j − δn

i j) · (xn)−j �
∑

j: ui j>0
ui j · (xn)−j − |xn − x |

∑
j: ui j>0

2.

If the set { j: ui j > 0} is empty then the rhs of the above display is less than (xn)+i . Otherwise we get∑
j: j,i
(mn)i j(xn)−j ≤

∑
j: ui j>0

ui j x
−
j + |x − xn |

∑
j: ui j>0
(ui j − 2) ≤ x+

i − |x − xn |
∑

j: ui j>0
1 ≤ (xn)+i + |x − xn |

(
1−

∑
j: ui j>0

1
)
≤ (xn)+i ,

where in the second inequality we use the fact that u ∈M(x) and ui j ≤ 1. This proves that mn ∈M(xn) for all
large n. Hence using the definition we have

b(xn , un) · pn + r̃ε(xn , un) ≤ b(xn ,mn) · pn + r̃ε(xn ,mn),

and letting n→∞, we get
b(xn ,m0) · p + r̃ε(x ,m0) ≤ b(x , u) · p + r̃ε(x , u).

Therefore m0 ∈M(x) is also a minimizer in M(x). By uniqueness property of the minimizer in M(x) we get
m0 � u. Hence the proof. �

Let V ∈ C2(�d) be such that V (x) � |x |k for |x | ≥ 1 where k ≥ 1. In fact, we can take V to be non-negative.
Also define

h(x) :� |x |k , for x ∈ �d .

Following lemma establishes uniform stability of the our system.

Lemma 4.2. There exists a positive constants c5, c6, depending on k, such that

sup
u∈M(x)

LuV (x) ≤ c5 − c6h(x), for all x ∈ �d . (31)

Proof. Recall from (21) that for u ∈M(x),

bi(x , u)� `i + µi x
−
i −

∑
j: j,i

µi j ui j x
−
j − γi qi(x , u), qi(x , u)� x+

i −
∑
j: j,i

ui j x
−
j .

For x ∈ �d , and u ∈M(x), we have qi(x , u) ≥ 0, and

d∑
i�1
|xi | �

d∑
i�1
(x+

i + x−i ) ≤
d∑

i�1

(
qi(x , u)+

∑
j: j,i

ui j x
−
j + x−i

)
≤

d∑
i�1
(qi(x , u)+ d x−i ),
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where in the last line above we use the fact that ui j ≤ 1. Hence

|x |2 ≤ d
d∑

i�1
(qi(x , u)+ d |x−i |)2 ≤ 2d

d∑
i�1
((qi(x , u))2 + d2 |x−i |2). (32)

We note that for any u ∈M(x), we have

qi(x , u) · xi � qi(x , u) · x+

i ≥ q2
i (x , u).

Thus for u ∈M(x) and |x | ≥ 1, we obtain

d∑
i�1

bi(x , u) · ∂iV (x) ≤ k |x |k−2
( d∑

i�1
|`i | |xi | − µi |x−i |2 − xi

∑
j: j,i

µi j ui j x
−
j − γi qi(x , u)xi

)
≤ k |x |k−2

( d∑
i�1
|`i | |xi | − µi |x−i |2 − γi q

2
i (x , u)

)
≤ κ1 |x |k−1 − κ2 |x |k , (33)

for some constants κ1, κ2 > 0, where in the second inequality we use the fact that

xi

∑
j: j,i

µi j ui j x
−
j � x+

i

∑
j: j,i

µi j ui j x
−
j ≥ 0,

for u ∈M(x), and in the third inequality we use (32). Now the proof can be seen using (33). �

Next we discuss a convex analytic approach that assures the existence of an optimal control. To do this we
introduce some more notations. For U ∈5, we define

%U(x) :� lim sup
T→∞

1
T
ƐU

x

[∫ T

0
r̃(X(t),U(t)) dt

]
.

We use the notation ƐU[ · ] to express the dependency in U. For β > 0, we define

5β :� {U ∈5: %U(x) ≤ β for some x ∈ �d}.

Let 5β
SM �5SM ∩5β. Denote

%∗ :� inf{β > 0: 5β ,�}, %̂∗ :� inf{β > 0: 5β
SM ,�}, %̃∗ :� inf{π(r̃): π ∈ G},

where
π(r̃) :�

∫
�d×M

r̃(x , u)π(dx ,du),

and,

G :�
{
π ∈P(�d ×M):

∫
�d×M

Lu f (x)π(dx ,du)� 0, for all f ∈C∞c (�d), and
∫
�d×M

1M(x)(u)π(dx ,du)� 1
}
. (34)

In what follows, we denote by τ(A) the first exit time of a process {Xt , t ∈ �+} from a set A ⊂ �d , defined by

τ(A) :� inf{t > 0: Xt <A}.

The open ball of radius R in �d , centered at the origin, is denoted by �R, and we let τR :� τ(�R), and τ̆R :� τ(�c
R).

Theorem 4.1. We have
(a) %∗ � %̂∗ � %̃∗.
(b) There exists v ∈5SM such that %v � %∗.

Proof. Let U ∈5. Applying Itô’s formula, it follows from (31) that

1
T
(ƐU

x [V (X(τR ∧T))] −V (x)) ≤ c5 − c6
1
T
ƐU

x

[∫ τR∧T

0
h(X(s))ds

]
.
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Letting R→∞, and then T→∞, we see that

lim sup
T→∞

1
T
ƐU

x

[∫ T

0
h(X(s))ds

]
<∞.

Since h is inf-compact, the above display implies that the mean-empirical measures {ζx , t : t > 0}, defined by

ζx , t(A× B) :� 1
t
Ɛx

[∫ t

0
1A×B(X(s),U(s))ds

]
,

are tight. Since ∫
�d×M

1Mc (x)(u)ζx , t(dx ,du)� 0,

and (x , u) 7→ 1Mc (x)(u) is lower-semicontinuous, it is easy to see that every sub sequential limit of {ζx , t : t > 0},
as t→∞, lies in G. Also if π is one of the limits of {ζx , t : t > 0}, we get

π(r̃) ≤ lim sup
T→∞

1
T
ƐU

x

[∫ T

0
r̃(X(s),U(s))ds

]
.

This shows that %̃∗ ≤ %∗. Let π ∈ G. Using disintegration of measure we write π(dx ,du)� v(du | x)µv(dx). There-
fore by definition, we have∫

�d
Lv f (x)µv(dx)�

∫
�d

∫
M

Lu f (x)v(du | x)µv(dx)� 0, ∀ f ∈C∞c (�d).

Hence applying Arapostathis et al. (2012, Theorem 2.6.16) we see that µv(dx) has locally strictly positive density.
In particular, µv(dx) is mutually absolutely continuous with respect to the Lebesgue measure on �d . Combining
these observations with the fact that∫

�d×M
1Mc (x)(u)π(dx ,du)�

∫
�d×M

v(Mc(x) | x)µv(dx)� 0,

we conclude that v(Mc(x) | x)� 0 almost surely with respect to the Lebesgue measure on �d . Since v(Mc(x) | x)
is Borel-measurable we can modify v on a Borel set of measure 0 so that v(Mc(x) | x) � 0 holds everywhere.
Hence the stationary solution X(t) corresponds to the Markov control v(· | x) would satisfy v(M(X(t)) | X(t))� 1
almost surely. Thus v(· | x) is an admissible Markov control. By ergodic theorem Yosida (1980), Arapostathis
et al. (2012, Theorem 1.5.18) it is know that

lim sup
T→∞

1
T
Ɛv

x

[∫ T

0
r̃(X(s), v(X(s)))ds

]
−−−→
n→∞

π(r̃), for almost every x ∈ �d .

Note that if r̃(X(s), v(X(s))) is continuous we could use weak convergence of mean-empirical measures, corre-
sponding to X, to justify the above limit. But v need not be continuous, in general. So we use ergodic theorem
to pass the limit. Thus %̂∗ ≤ %̃∗. But by definition %∗ ≤ %̂∗. Thus we have %∗ � %̂∗ � %̃∗. This proves (a).
To prove (b), we consider a sequence πn ∈ G along which the infimum is achieved. Applying Lemma 4.2

we obtain that the measures {πn} are tight and thus it has a convergent subsequence. Let π be one of the
subsequential limits and πn→π, after relabelling, as n→∞. Lower-semicontinuity of (x , u) 7→ 1Mc (x)(u) implies
that π ∈ G. Moreover,

π(r̃) ≤ lim inf
n→∞

πn(r̃)� %∗.

Thus the infimum is achieved at π and the Markov control is obtained by disintegrating π(dx ,du) �
v(du | x)µv(dx) where v(du | ·) is our required Markov control. �

Remark 4.1. We observe that the arguments of Theorem 4.1 continue to hold if we replace r̃ by r̃ε and % by %ε.
The above theorem also establishes independence of % (and %ε) from x.

The above existence result of optimal Markov control is purely analytic and it does not provide any character-
ization of the optimal controls. To prove Theorem 2.1 we need to find an optimal control with some regularity
properties such as continuity. But the above result does not say anything about the regularity properties of
optimal Markov controls. Therefore we will analyze the associated HJB to extract more information about the
optimal Markov controls.
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For α ∈ (0, 1), we define

Vα
ε (x) :� inf

U∈5
Ɛx

[∫ ∞

0
e−αs r̃ε(X(s),U(s))ds

]
. (35)

The following result characterize the α-discounted problem.

Theorem 4.2. For every ε ∈ (0, 1), Vα
ε ∈C2(�d) satisfies the HJB

min
u∈M(x)

(LuVα
ε (x)+ r̃ε(x , u)) − αVα

ε � 0. (36)

Moreover, the unique minimizing selector is an optimal Markov control for (35).

Before we prove the theorem we need to establish some regularity properties of the Hamiltonian. To do so
we define,

Hε(x , p) :� min
u∈M(x)

{p · b(x , u)+ r̃ε(x , u)}.

Lemma 4.3. Let K ⊂ �d be compact. Then for any R > 0, there exists a constant c � c(K,R, ε), depending on K,R and
ε, such that

|Hε(x , p) −Hε(y , q)| ≤ c(|x − y |1/4 + |p − q |), for all x , y ∈K, and, p , q ∈ �R(0).
Proof. We note that for any x ∈K, we have

|Hε(x , p) −Hε(x , q)| ≤ sup
(x , u)∈K×M

|b(x , u)| |p − q |.

Therefore it is enough to show that for any x , y ∈K, q ∈ �R(0),

Hε(x , q) −Hε(y , q) ≤ c(K,R, ε)|x − y |1/4. (37)

Since b and r are locally Lipschitz, we have a constant κ > 0, depending on K, such that

|b(x , u) − b(x , ū)| + | r̃(x , u) − r̃(x , ū)| ≤ κ
∑
i, j
|ui j x

−
j − ūi j x

−
j |, for u , ū ∈M(x), x ∈K. (38)

Let u ∈M(y) be a minimizer of
{q · b(y , u′)+ r̃ε(y , u′)},

in M(y). In fact, this is the unique minimizer because of the strict convexity of the functional. Define θ :�
[(2κ/ε)(|q | + 1)]1/2 ∨ d. We claim that

for any δ ∈ (0, 1/θ), there is no ui j > θδ, if y−j < δ
2. (39)

The above implies that either ui j ≤ θδ or ∑
j: ui j>θδ

y−j ≥ δ2 ∑
j: ui j>θδ

1. Supposing the contrary, we assume that (39)
is not ture i.e., there exists i , j, i , j, such that

ui j ∈ (δθ, 1], and y−j < δ
2.

We define ũ ∈M(y) as follows

ũ j1 j2 �

{
u j1 j2 if j1 , i , or j2 , j,
0 otherwise.

Then using (38) we obtain

{q · b(y , u)+ r̃ε(y , u)} − {q · b(y , ũ)+ r̃ε(y , ũ)} ≥ −κ |q |δ2 − κδ2
+ ε |ui j |2 ≥ −(|q | + 1)κδ2

+ εθ2δ2 > 0.

This contradicts that fact that u ∈M(y) is a minimizer. This proves the Claim (39).
Now we proceed to prove (37). We note that it is enough to show (37) for |x − y | < 1/θ. Let |x − y | < 1/θ. We

define A(y) ⊂ {1, . . . , d} as follows.

A(y) :�
{

i ∈ {1, . . . , d}:
∑

j: ui j>θ |x−y |1/4
y−j ≥ |x − y |1/2

}
.
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Note that A(y) could be empty. Observe that for any i ∈ Ac we either have ui j ≤ θ |x − y |1/4 for all j , i, or
y−j ≤ |x − y |1/2 for all j satisfying ui j > θ |x − y |1/4. But the second situation does not occur due to (39). Thus for
i ∈Ac(y) we have ui j ≤ θ |x − y |1/4 for all j , i. Therefore there exists a constant κ1, depending on K and θ, such
that for all i ∈Ac(y), ∑

j: j,i
ui j y

−
j ≤ κ1 |x − y |1/4. (40)

Now we define ū ∈M as follows

ūi j �


0, it i ∈Ac(y),
0, if i ∈A(y) and ui j ≤ θ |x − y |1/4 ,
(ui j − θ |x − y |1/4), otherwise.

We show that ū ∈M(x). To do so we only need to check that for i ∈A(y),∑
j: j,i

ūi j x
−
j ≤ x+

i .

For i ∈A(y), ∑
j: j,i

ūi j x
−
j �

∑
j: ui j>θ |x−y |4

(ui j − θ |x − y |1/4)x−j

≤
∑

j: ui j>θ |x−y |4
(ui j − θ |x − y |1/4)(y−j + |x − y |)

≤
∑
j: j,i

ui j y
−
j +

∑
j: ui j>θ |x−y |4

(ui j |x − y | − θ |x − y |1/4 y−j )

≤ y+

i +
∑

j: ui j>θ |x−y |4
(ui j |x − y | − θ |x − y |1/4 y−j )

≤ x+

i + |x − y |
(
1+

∑
j: j,i

ui j

)
− θ |x − y |3/4

≤ x+

i ,

where in the last line we use the fact that |x− y |1/4d ≤ d/θ1/4 < θ. This shows ū ∈M(x). Also by the construction
of ū and (40) it is evident that for all i , j ∈ {1, . . . , d}, i , j,

|ui j y
−
j − ūi j x

−
j | ≤ κ2 |x − y |1/4 , and | |ui j |2 − |ūi j |2 | ≤ κ2 |x − y |1/4 ,

for some constant κ2. Hence (37) follows using the above display and (38). �

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. The proof is in spirit of Arapostathis et al. (2012, Theorem 3.5.6). Two key ingredients for
the proof are Lemmas 4.1 and 4.3. Recall that �R denotes the ball of radius R around 0. It is known that there
exists a solution ϕR ∈C2, β(�R), β ∈ (0, 1/4), satisfying

1
2

d∑
i , j�1

ai j∂i jϕR(x)+Hε(x ,∇ϕ(x))� αϕR(x), x ∈ �R ,

ϕ � 0, on x ∈ ∂�R .

The existence result follows from Gilbarg and Trudinger (1983, Theorem 11.4) and maximum-principle together
with Lemmas 4.1 and 4.3. See Arapostathis et al. (2012, Theorem 3.5.3) for a similar argument. Following a
similar argument as in Arapostathis et al. (2012, Theorem 3.5.6) together with Lemma 4.1 we can show that

ϕR(x)� inf
U∈5

Ɛx

[∫ τR

0
e−αs r̃ε(X(s),U(s))ds

]
. (41)

Therefore choosing k > m in Lemma 4.2 and using (13) we see that

Vα
ε (x) ≤ inf

U∈5
Ɛx

[∫ ∞

0
e−αs h(X(s))ds

]
<
κ1

α
+V (x), (42)
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for some constant κ1. Hence using (41) we get that ϕR(x) < κ1/α +V (x) for all x. This shows that ϕR is locally
bounded, uniformly in R. Hence using standard theory of elliptic PDE’s and Lemma 4.1 we obtain that for any
domain D ⊂ �d and p ≥ 1,

‖ϕ‖·2, p (D) ≤ κ2 ,

where the constant κ2 is independent of R. Hence we can extract a subsequence of ϕR that converges to ϕ
as R→∞ in ·

2, p
loc (�

d), p ≥ 2d , and in C1, r
loc (�

d) for r ∈ (0, 1/4). Using locally Lipschitz property of Hε(x , ·), by
Lemma 4.3, we obtain that ϕ is a weak solution to

min
u∈M(x)

(Luϕ(x)+ r̃ε(x , u))� αϕ(x), for x ∈ �d . (43)

Lemma 4.3 and the theory of elliptic PDE’s give us ϕ ∈ C2(�d). From (41) we also have ϕ ≤ Vα
ε . To show that

equality we consider the minimizing selector u( · ) of (43). Existence of such selector is assured from Lemma 4.1.
Hence we have

1
2

d∑
i , j�1

ai j∂i , jϕ+ b(x , u(x)) · ∇ϕ(x)+ r̃ε(x , u(x))� αϕ(x).

Since u(x) ∈M(x) for all x, the solution X corresponding to this Markov control is admissible. Therefore applying
Itô’s formula we get

Ɛx[e−αt∧τRϕ(X(t ∧ τR))] −ϕ(x)� Ɛu
x

[∫ t∧τR

0
e−αs r̃ε(X(s), u(X(s)))ds

]
.

Now we use the non-negativity of ϕ to conclude that

Ɛu
x

[∫ t∧τR

0
e−αs r̃ε(X(s), u(X(s)))ds

]
≤ ϕ(x),

Letting R→∞, in the above display and using Fatou’s lemma we get

Ɛu
x

[∫ t

0
e−αs r̃ε(X(s), u(X(s)))ds

]
≤ ϕ(x).

This shows Vα
ε � ϕ and u is an optimal Markov control. �

By 5̃SM we denote the set of all admissible deterministic Markov controls, i.e., 5̃SM denotes collection of all
measurable v: �d→M such that v(x) ∈M(x) for all x. We recall that τ̆r denotes the hitting time to the ball �r , i.e.,

τ̆r :� inf{t ≥ 0: X(t) ∈ �r}.

Lemma 4.4. Let V̄α
ε :� Vα

ε −Vα
ε (0). Then V̄α

ε is bounded in ·
2, p
loc (�

d), p ≥ 1, and {αVα
ε (0)}α∈(0, 1) is also bounded. Let

(Vε , %) ∈·
2, p
loc (�

d) ×� be any sub-sequnetial limit of (V̄α
ε , αVα

ε (0)), as α→ 0, then we have Vε ∈C2(�d) that satisfies,

min
u∈M(x)

(LuVε(x)+ r̃ε(x , u))� %. (44)

Moreover % ≤ %ε. Furthermore,
(a) Vε(x) ≤ lim infr↓0 infv∈5̃SM

Ɛv
x[∫
τ̆r
0 (r̃ε(X(s), v(X(s))) − %)ds].

(b) If uε ∈ 5̃SM denote the minimizing selector of (44) then

Vε(x) ≥ −%Ɛ
uε
x [τ̆r] − sup

�r

Vε , for all x ∈ �c
r .

Proof. From (42) we obtain that for any R > 0,

αmax
x∈�R

Vα
ε (x) < κR ,

where the constant κR does not depend on α and ε. Hence applying Arapostathis et al. (2012, Lemma 3.6.3)
(see also Arapostathis et al. 2015, Lemma 3.5) we get that V̄α

ε is bounded in ·
2, p
loc (�

d), p ≥ 1. Also boundedness
{αVα

ε (0)}α∈(0, 1) follows from the above display. For p > 2d, we see that any sub-sequential limit also converges
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in C1, r
loc (�

d). Hence any sub-sequential limit (Vε , %) would satisfy (44). We can improve regularity of Vε to C2

using Lemma 4.3. Now we show that % ≤ %ε. Let U ∈5 be any admissible control. We also assume that

lim sup
T→∞

1
T
ƐU

x

[∫ T

0
r̃ε(X(s),U(s))ds

]
<∞,

for some x. It is easy to see that

lim sup
T→∞

1
T
ƐU

x

[∫ T

0
r̃ε(X(s),U(s))ds

]
� lim sup

N→∞

1
N
ƐU

x

[∫ N

0
r̃ε(X(s),U(s))ds

]
,

where N runs over natural numbers. In fact, it is easy to see that for RHS of above display is smaller that LHS,
and for any Tn→∞, we have

lim sup
Tn→∞

1
Tn

ƐU
x

[∫ Tn

0
r̃ε(X(s),U(s))ds

]
� lim sup

Tn→∞

bTn + 1c
bTnc

1
bTn + 1c Ɛ

U
x

[∫ bTn+1c

0
r̃ε(X(s),U(s))ds

]
≤ lim sup

N→∞

1
N
ƐU

x

[∫ N

0
r̃ε(X(s),U(s))ds

]
.

Define
aN :� ƐU

x

[∫ N

N−1
r̃ε(X(s),U(s))ds

]
, N ≥ 1.

For β � e−α, we have
∞∑

N�1
βN aN ≥ e−α

∞∑
N�1

ƐU
x

[∫ N

N−1
e−α s r̃ε(X(s),U(s))ds

]
� e−αƐU

x

[∫ ∞

0
e−α s r̃ε(X(s),U(s))ds

]
.

Therefore applying Sznajder and Filar (1992, Theorem 2.2) we get

lim sup
T→∞

1
T
ƐU

x

[∫ T

0
r̃ε(X(s),U(s))ds

]
≥ lim sup

α→0
(1− β)

∞∑
N�1

βN aN ≥ lim sup
α→0

(1− e−α)e−αV ε
α (x). (45)

Since limα→0(1− e−α)/α � 1 we obtain from (45) that

lim sup
T→∞

1
T
ƐU

x

[∫ T

0
r̃ε(X(s),U(s))ds

]
≥ %,

where we use the fact that for any x ∈�d , α(Vα
ε (x)−Vα

ε (0))→ 0 as α→ 0. Since U ∈5 is arbitrary we have %ε ≥ %.
(a) follows from the same argument as in Arapostathis et al. (2012, Lemma 3.7.8). In fact, following Arapostathis
et al. (2012, Lemma 3.7.8) one obtains that for any r > 0,

Vε(x) ≤ inf
v∈5̃SM

Ɛv
x

[∫ τ̆r

0
(r̃ε(X(s), v(X(s))) − %)ds +Vε(X(τ̆r))

]
. (46)

Let uαε be the minimizing selector of (36). Then applying Lemma 4.1 we get that uαε → uε pointwise, as α→ 0.
Also by Theorem 4.2 we have

V̄α
ε (x)� Ɛ

uαε
x

[∫ τ̆r

0
e−αs(r̃ε(X(s), uαε (X(s))) − %)ds

]
+ Ɛ

uαε
x [V̄α

ε (X(τ̆r))]

+ Ɛ
uαε
x [α−1(1− e−ατ̆r )(% − αVα

ε (X(τ̆r))], ∀ x ∈ �c
r .

Since uαε → uε, using Lemma 4.2 we have (see also Arapostathis et al. 2015, Lemma 3.8)

Ɛ
uαε
x [τ̆r] −−−→

α→0
Ɛuε

x [τ̆r], for all x ∈ �c
r .

Since (1− e−αs) ≤ αs , for s ≥ 0, combining above two display we get, as α→ 0, that

Vε(x) ≥ −%Ɛ
uε
x [τ̆r] − sup

y∈�r

Vε(y), for x ∈ �c
r . �
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The following lemma establishes optimality of uε that we choose above.

Lemma 4.5. Every sub-sequential limit Vε that we obtain in Lemma 4.4 is in �(|x |k) for k > m , where m is given by
(13). Also if uε is the minimizing selector in (44) we have

%ε � % � lim sup
T→∞

1
T
Ɛx

[∫ T

0
r̃ε(X(s), uε(X(s)))ds

]
, ∀ x ∈ �d . (47)

Proof. From Lemma 4.4 (see (46)) we obtain that

|Vε(x)| ≤ sup
v∈5̃SM

Ɛv
x

[∫ τ̆r

0
(r̃ε(X(s), v(X(s)))+ %∗)ds

]
+ sup

Br

Vε , ∀ x ∈ �c
r . (48)

For v ∈ 5̃SM, we define

Lv f (x)� 1
2

d∑
i , j�1

ai j∂i j f (x)+ b(x , v(x)) · ∇ f (x), f ∈C2(�d).

Considering k � m in Lemma 4.2 and applying Dynkin’s formula we obtain, for v ∈ 5̃SM, that

Ɛv
x[V (X(t ∧ τ̆r))] −V (x)� Ɛv

x

[∫ t∧τ̆r

0
LvV (X(s))ds

]
� Ɛv

x

[∫ t∧τ̆r

0
1{v(X(s))∈M(X(s))}L

vV (X(s))ds
]
≤ Ɛv

x

[∫ t∧τ̆r

0
(c5 − c6 |X(s)|m)ds

]
.

Now V being non-negative, letting t→∞, in the above display we obtain

Ɛv
x

[∫ τ̆r

0

(
|X(s)|m − c5

c6

)
ds

]
≤ 1

c6
V (x), for x ∈ �c

r .

Choose r ≥ large enough so that |x | ≥ 1
2 ∨ 4c5/c6 for x ∈ �c

r . Therefore

Ɛv
x

[∫ τ̆r

0

1
4 (1+ |X(s)|

m)ds
]
≤ Ɛv

x

[∫ τ̆r

0

1
2 |X(s)|

m ds
]
≤ 1

c6
V (x), for x ∈ �c

r .

Thus (13) and (48) gives that Vε ∈ ¯(|x |m). Hence Vε ∈ �(|x |k), k > m.
Now let uε be the minimizing selector of (44). We observe that uε ∈ 5̃SM. Moreover, using Lemma 4.2 we see

that uε is stable with

lim sup
T→∞

1
T
Ɛuε

x

[∫ T

0
|X(t)|k dt

]
<∞,

for any k ≥ 1. Thus if µuε denote the invariant measure corresponding to the Markov control uε we have∫
�d
|x |kµuε (dx) <∞, for k ≥ 1.

Since Vε ∈ �(|x |k), k > m, it follows from Ichihara and Sheu (2013, Proposition 2.6) that

lim
T→∞

1
T
Ɛuε

x [|Vε(X(T))|]� 0, for x ∈ �d .

Thus (47) follows by an application of Dynkin’s formula to (44). �

To this end we define
H(p , x) :� inf

u∈M(x)
{p · b(x , u)+ r̃(x , u)}.

the following result is similar to Lemma 4.3.

Lemma 4.6. Let K ⊂ �d be compact. Then for any R > 0, there exists a constant c � cK,R, depending on K, R, such that

|H(x , p) −H(y , q)| ≤ c(|x − y |1/2 + |p − q |), for all x , y ∈K, and, p , q ∈ �R(0).
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Proof. We note that the proof of Lemma 4.3 is not applicable here to conclude the result. In fact, the constant
θ defined in Lemma 4.3 tends to infinity as ε→ 0. However, we adopt a similar technique to establish Hölder
regularity of the Hamiltonian. In view of Lemma 4.3, we see that it is enough to show the following: there
exists θ1, depending on K,R, such that for any u ∈M(y) we could find ū ∈M(x) such that

|ui j y
−
j − ūi j x

−
j | ≤ θ1 |x − y |1/2 , for all i , j. (49)

and x , y ∈K. Let u ∈M(y). Let θ be a positive number that will be chosen later. Define

A(θ) :�
{

i ∈ {1, . . . , d}:
∑

j: ui j>θ |x−y |1/2
y−j ≤ |x − y |1/2

}
.

We define ū ∈M as follows,

ūi j �


0, if i ∈A(θ),
0, if i ∈Ac(θ), and, ui j ≤ θ |x − y |1/2 ,
ui j − θ |x − y |1/2 , otherwise.

It is easy to see that (49) is satisfied with the above choice of ū. Thus it remains to show that ū ∈M(x). It is
enough to show that for i ∈Ac(θ), we have ∑

j: j,i
ūi j x

−
j ≤ x+

i . (50)

Now for i ∈Ac(θ), ∑
j: j,i

ūi j x
−
j ≤

∑
ui j>θ |x−y |1/2

(ui j − θ |x − y |1/2)(y−j + |x − y |)

≤
∑

ui j>θ |x−y |1/2
ui j y

−
j + |x − y |

∑
j: j,i

ui j − θ |x − y |1/2
∑

ui j>θ |x−y |1/2
y−j

≤ y+

i + |x − y |
∑
j: j,i

ui j − θ |x − y |1/2
∑

ui j>θ |x−y |1/2
y−j

≤ x+

i + d |x − y | − θ |x − y |.

Thus choosing θ > d we see that (50) holds for i ∈Ac(θ) and ū ∈M(x). �
Now we are ready to prove Thereom 3.1.

Proof of Theorem 3.1. Existence of solution Vε ∈ C2 and optimality of %ε follows form Lemma 4.5. Uniqueness
of (Vε , %ε) can be obtained following the same arguments as in Arapostathis et al. (2012, Theorem 3.7.12(iii)).
Hence (i) and (ii) follows. Now we argue that for any r > 0,

sup
ε∈(0, 1)

sup
�r

|Vε | <∞. (51)

We recall that Vε is obtained as a limit of V̄α
ε � Vα

ε −Vα
ε (0) where Vα

ε is given by (35). From Arapostathis et al.
(2015, Lemma 3.5) (see also Arapostathis et al. 2012, Lemma 3.6.3) one obtains that supε∈(0, 1) supx∈�r

|V̄α
ε (x)| <∞.

This gives us (51). Therefore combining (51), (48) and the arguments in Lemma 4.5 we find a constant κ such that

sup
ε∈(0, 1)

|Vε(x)| ≤ κ(1+ |x |m), ∀ x ∈ �d .

Hence applying the theory of elliptic PDE’s we see that the family {Vε} bounded in ·
2, p
loc (�

d), for p ≥ d. Since
·

2, p
loc (�

d), p > 2d , is compactly embedded in C
1, β
loc (�

d), β ∈ (0, 1/2), we obtain {Vε} bounded in C
1, β
loc (�

d), β ∈ (0, 1/2).
Thus we have V ∈· 2, p

loc (�
d) ∩C

1, β
loc (�

d) with p > 2d, and β ∈ (0, 1/2), such that Vε→ V in ·
2, p
loc (�

d) ∩C
1, β
loc (�

d)
along some sub-sequence of ε→ 0. Letting ε→ 0 in (28) we see that (V, %) satisfies (29). Using Lemma 4.6 and
regularity property of non-degenerate elliptic operator we get V ∈C2(�d).
(iv): Therefore there exists a classical solution (V, %∗) to (29). We now show that there exists a measurable

minimizing selector of (29). We first show that the map χ: �d→ 2M , defined as χ(x) � M(x), is measurable. To
check measurability we need to show that for any closed F ⊂M,

χ`(F) :� {x ∈ �d : χ(x) ∩ F ,�},
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is a Borel set (see Aliprantis and Border 2006, p. 557). χ` is referred to as the lower-inverse of χ. In fact, we show
that χ`(F) is a closed set whenever F is closed. Let xn→ x, as n→∞, for a sequence {xn} ⊂ χ`(F). Then there
exists un such that un ∈ χ(xn)∩ F and un ∈M(xn). Now M being compact there exists u ∈ F satisfying un→ u as
n→∞. It is easy to check that u ∈M(x). Thus χ(x) ∩ F ,� implying x ∈ χ`(F). This shows that χ`(F) is a Borel
set. Thus χ is a measurable correspondence (Aliprantis and Border 2006, Chapter 18). Since χ is a compact
set-valued map it is a weakly-measurable correspondence (Aliprantis and Border 2006, Theorem 18.10). Hence
from Filippov’s implicit function theorem (Aliprantis and Border 2006, Theorem 18.17) we obtain that there
exists a measurable selector u: �d→M such that u(x) ∈M(x) for all x, and

1
2

d∑
i , j�1

ai j∂i jV(x)+ b(x , u(x)) · ∇V(x)+ r̃(x , u(x))� %∗. (52)

On the other hand, we have V ∈ �(|x |k), k > m. Therefore applying Dynkin’s formula to (52) with a similar
argument as in Lemma 4.5 we obtain that u is optimal for %∗.

(iii) and (v): We have already shown above that Vε→V , along some subsequence as ε→ 0, in ·
2, p
loc (�

d), p ≥ 1.
Therefore to get the convergence of full sequence it is enough to establish the uniqueness of the limit. Form
Lemma 4.4(a) and (46) we observe that

V(x) ≤ lim inf
r↓0

inf
v∈5̃SM

Ɛv
x

[∫ τ̆r

0
(r̃(X(s), v(X(s))) − %∗)ds

]
.

Now uniqueness can be obtained following a similar argument as in Arapostathis et al. (2012, Theo-
rem 3.7.12(iii)). �

5. Asymptotic Optimality
The goal of this section is to prove Theorem 2.1. In Theorem 5.1 below we show that %∗ is an asymptotic
lower bound for the value functions V̂n(X̂n(0)) as n→∞. Then using Theorem 3.1 we construct a sequence of
admissible policies for the queueing systems and show in Theorem 5.2 that the admissible policies are ε-optimal
for the value functions as n→∞.
Recall the diffusion scaled process X̂n , Ẑn and Q̂n from (7) and their relation (8)

X̂n
i (t)� X̂n

i (0)+ `n
i t + µn

i

∫ t

0
(X̂n

i )−(s)ds −
∑
j: j,i

µn
i j

∫ t

0
Ẑn

i j(s)ds − γn
i

∫ t

0
Q̂n

i (s)ds

+ M̂n
A, i(t) − M̂n

S, i(t) −
∑
j: j,i

M̂n
S, i j(t) − M̂n

R, i(t), (53)

where `n � (`n
1 , . . . , `

n
d )T is defined as

`n
i :� 1√

n
(λn

i − µn
i n)�

λn
i − nλi√

n
−
√

n(µn
i − µi),

and (see (9))

M̂n
A, i(t) :�

1√
n
(An

i (λn
i t) − λn

i t), M̂n
S, i(t) :�

1√
n

(
Sn

i

(
µn

i

∫ t

0
Zn

i (s)ds
)
− µn

i

∫ t

0
Zn

i (s)ds
)
,

M̂n
S, i j(t) :�

1√
n

(
Sn

i j

(
µn

i

∫ t

0
Zn

i j(s)ds
)
− µn

i

∫ t

0
Zn

i j(s)ds
)
, M̂n

R, i(t) :�
1√
n

(
Rn

i

(
γn

i

∫ t

0
Qn

i (s)ds
)
− γn

i

∫ t

0
Qn

i (s)ds
)
,

are square integrable martingales w.r.t. the filtration {F n
t } with quadratic variations,

〈M̂n
A, i〉(t) :�

1
n
λn

i t , 〈M̂n
S, i〉(t) :�

1
n
µn

i

∫ t

0
Zn

i (s), 〈M̂n
S, i j〉(t) :�

1
n
µn

i

∫ t

0
Zn

i j(s)ds , 〈M̂n
R, i〉(t) :�

1
n
γn

i

∫ t

0
Qn

i (s)ds .

Also recall Ûn(t) from (12) where we have Ẑn
i j � Ûi j(X̂n

j )−. We also have Û(t) ∈M(X̂n(t)) a.s. for all t ≥ 0. Define
bn : �d ×M→�d as

bn
i (x , u)� `n

i + µ
n
i x−i −

∑
j: j,i

µn
i j ui j x

−
j − γn

i q(x , u),

where
qi(x , u)� x+

i −
∑
j: j,i

ui j x
−
j .
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By 5n we denote the set of all admissible controls. The following result establishes uniform stability of the
queueing systems.

Lemma 5.1. There exists n0 ≥ 1, such that for any k ≥ 1,

sup
n≥n0

sup
Z∈5n

lim sup
T→∞

1
T
Ɛ

[∫ T

0
|X̂n(t)|k dt

]
<∞. (54)

Proof. Without loss of generality, we take k ≥ 2. Let ϕ(x) :� |x |k . Recall that ∆ f (t) denotes jump of a function
f : �+→ � at time t. Components of X̂n jumps due to the jumps of their martingale parts. Since the optional
quadratic variation between martingales that corresponds to different components is 0 (see Pang et al. 2007,
Lemma 9.1) no two component jumps at the same time. Now applying Itô’s formula on ϕ (see Kallenberg 2002,
Theorem 26.7) we obtain from (53) that

Ɛ[ϕ(X̂n(t))]� Ɛ[ϕ(X̂n(0))]+ Ɛ

[∫ t

0
bn(X̂n(s), Ûn(s)) · ∇ϕ(X̂n(s))ds

]
+

1
2

d∑
i�1

Ɛ

[∫ t

0
Θi(Ẑn(s), Q̂n) · ∂iiϕ(X̂n(s))ds

]
+ Ɛ

∑
s≤t

[
∆ϕ(X̂(s)) −

d∑
i�1
∂iϕ(X̂(s−))∆X̂n

i (s) − 1
2 〈∆X̂n(s),D2ϕ(X̂n(s−))∆X̂n(s)〉

]
, (55)

where D2ϕ denotes Hessian of ϕ and,

Θi(z , y) :� 1
n
λn

i +
1√
n
µn

i zn
i + µ

n
i +

1√
n

∑
j: j,i

zi j +
1√
n
γn

i yi .

Using (2) we can choose n large enough so that mini(µN
i ∧ γn

i ) > 0. An argument similar to (32)–(33) shows that
for some positive constants κ1, κ2, independent of n, we have

bn(X̂n(t), Ûn(t)) · ∇ϕ(X̂n(t)) ≤ κ1 − κ2 |X̂n(t)|k , a.s., for all t ≥ 0. (56)

Also from (6) we obtain Ẑn
i � (X̂n

i )− for all i. Thus for all t ≥ 0, we have

|Θi(Ẑn(t), Q̂n(t)) · ∂iiϕ(X̂n(t))| ≤ κ3(1+ |X̂n(t)|k−1), for all i ∈ {1, . . . , d}, (57)

for some constant κ3 and all large n, where we use (5). We observe that |∆X̂n(t)| ≤ 1/
√

n for all t. Hence a
straightforward calculation gives us[
∆ϕ(X̂(s)) −

d∑
i�1
∂iϕ(X̂(s−))∆X̂n

i (s) − 1
2 〈∆X̂n(s),D2ϕ(X̂n(s−))∆X̂n(s)〉

]
≤ κ4√

n
(1+ |X̂n(s−)|k−2)

d∑
i�1
(∆X̂n

i (s))2. (58)

Since ∑
s≤t(∆X̂n

i (s))2 :� [X̂n
i ](t) where [X̂n

i ] is the optional quadratic variation, we get from (58) that

Ɛ
∑
s≤t

[
∆ϕ(X̂(s)) −

d∑
i�1
∂iϕ(X̂(s−))∆X̂n

i (s) − 1
2 〈∆X̂n(s),D2ϕ(X̂n(s−))∆X̂n(s)〉

]
≤ κ4√

n

d∑
i�1

Ɛ

[∫ t

0
Θi(Ẑn(s), Q̂n)(1+ |X̂n

i (s)|k−2)ds
]
≤ κ5√

n

(
t + Ɛ

[∫ t

0
|X̂n(s)|k−1ds

] )
, (59)

for some constant κ5, where we use the fact that [X̂n
i ]− 〈X̂n

i 〉 is also a martingale. Therefore combining (55)–(57),
and (59) we obtain constants κ6, κ7 > 0, independent of 5n , such that

Ɛ[ϕ(X̂n(t))]� Ɛ[ϕ(X̂n(0))]+ κ6t − κ7Ɛ

[∫ t

0
|X̂n(s)|ds

]
,

for all large n. Since {X̂n(0)} is bounded, we obtain (54) from the above display. �
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For any n ≥ 1 and (X̂n , Ûn) satisfying (8) and (12) we define mean-empirical measures ξn
t ∈ P(�d ×M) as

follows: For Borel A ∈B(�d), B ∈M,

ξn
t (A× B) :� 1

t
Ɛ

[∫ t

0
1A×B(X̂n(s), Ûn(s))ds

]
, t > 0. (60)

Let
Θ̃n

i :� 1
n
λn

i +
1√
n
µn

i x−i + µ
n
i +

1√
n

∑
j: j,i

ui j x
−
j +

1√
n
γn

i qi(x , u),

where q is given by (20). From (2) we have Θ̃n
i → 2λi , as n→∞, uniformly on compacts.

Lemma 5.2. Consider n ≥ n0, where n0 is given by Lemma 5.1. For Ûn ∈5n , we define ξn
t as in (60). Then the collection

{ξn , t > 0} is tight, as t→∞, and if πn is a sub-sequential limit of {ξn , t > 0}, then we have∫
�d×M

1Mc (x)(u)πn(dx ,du)� 0.

Proof. From (54) we obtain that

lim sup
T→∞

∫
�d×M
|x |kξn

T(dx ,du) <∞,

for any k ≥ 1. This implies that {ξn , t > 0} is tight. Let πn be a sub-sequential limit and ξn
tl
→πn as tl→∞. Since

Ûn(X̂n(s)) ∈M(X̂n(s)) for all s, we have from (60) that∫
�d×M

1Mc (x)(u)ξn
t (dx ,du)� 0, ∀ t > 0. (61)

We note that (x , u) 7→ 1Mc (x)(u) is a lower-semicontinuous function. Thus there exists a sequence of bounded,
continuous functions g j such that g j(x , u)↗ 1Mc (x)(u) as j→∞ (Krantz 2001, Proposition 2.1.2). Therefore (61)
gives ∫

�d×M
g j(x , u)πn(dx ,du)� lim

tl→∞

∫
�d×M

g j(x , u)ξn
tl
(dx ,du)� 0.

Now let j→∞, to complete the proof. �

Now we establish asymptotic lower-bound of the value functions V̂n .

Theorem 5.1. As n→∞, V̂n(X̂n(0)) ≥ %∗, where %∗ is given by (27).

Proof. Consider a sequence Zn ∈5n and let {ξn
t } be the associated mean-empirical measures as defined in (60).

From (5.2) we obtain that for n ≥ n0, the collection {ξn
t } is tight. Let πn be a subsequential limit of {ξn

t } as
t→∞. Taking k > m in Lemma 5.1, we obtain that

sup
n≥n0

∫
�d×M

r̃(x , u)πn(dx ,du) <∞, and, sup
n≥n0

∫
�d×M
|x |kπn(dx ,du) <∞. (62)

Thus from (62) we see that the sequence {πn : n ≥ 1} is also a tight sequence. Let π be a sub-sequential limit
of {πn : n ≥ 1} as n→∞. We show that π ∈ G where G is given by (34). Consider f ∈ C2

c(�d) and apply Itô’s
formula in (53) to obtain

Ɛ[ f (X̂n(t))]� Ɛ[ f (X̂n(0))]+ Ɛ

[∫ t

0
bn(X̂n(s), Ûn(s)) · ∇ f (X̂n(s))ds

]
+

1
2

d∑
i�1

Ɛ

[∫ t

0
Θ̃n

i (X̂n(s), Ûn(s)) · ∂ii f (X̂n(s))ds
]

+ Ɛ
∑
s≤t

[
∆ f (X̂(s)) −

d∑
i�1
∂i f (X̂(s−))∆X̂n

i (s) − 1
2 〈∆X̂n(s),D2 f (X̂n(s−))∆X̂n(s)〉

]
,
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and therefore dividing by t, we get

Ɛ[ f (X̂n(t))]
t

�
Ɛ[ f (X̂n(0))]

t
+

∫
�d×M

bn(x , u) · ∇ f (x)ξn
t (dx ,du)

+
1
2

d∑
i�1

∫
�d×M

Θ̃n
i (x , u) · ∂ii f (x)ξn

t (dx ,du)

· 1
t
Ɛ
∑
s≤t

[
∆ f (X̂(s)) −

d∑
i�1
∂i f (X̂(s−))∆X̂n

i (s) − 1
2 〈∆X̂n(s),D2 f (X̂n(s−))∆X̂n(s)〉

]
.

Now let t→∞, and use a similar argument as in (59) to obtain∫
�d×M

(
1
2

d∑
i�1
Θ̃n

i (x , u) · ∂ii f (x)+ bn(x , u) · ∇ f (x)
)
πn(dx ,d(u))�¯

(
1√
n

)
. (63)

therefore letting n→∞, in (63) and using locally uniform convergence property of Θ̃n , bn we get∫
�d×M

Lu f (x)π(dx ,d(u))� 0,

where Lu is given by (24). Therefore to show π ∈ G it remains to prove that∫
�d×M

1Mc (x)(u)π(dx ,du)� 0.

But this follows using the second part of Lemma 5.2 and lower semicontinuity of the map. We also have

lim inf
n→∞

∫
�d×M

r̃(x , u)πn(dx ,du) ≥
∫
�d×M

r̃(x , u)π(dx ,du).

Hence using Theorem 4.1, we conclude that

lim inf
n→∞

lim sup
T→∞

1
T
Ɛ

[∫ T

0
r(Q̂n(s))ds

]
≥ %∗. �

Next we proceed to prove the asymptotic upper bound. The idea is to construct a sequence of admissible
policies that achieves %∗. One main obstacle with such construction is that the minimizer of the HJB (29) might
not be continuous, in general. Therefore we use the perturbed HJB (28). Let u: �d→M be a continuous function
and u(x) ∈M(x) for all x. Using u we construct an admissible policy for every n as follows. Recall that bac
denotes the largest integer small or equal to a ∈ �. For Xn(t) ∈ �d

+
, we define,

Zn
i (t) :� Xn(t) ∧ n , Zn

ki(t) :� buki(X̂n(t))(Xn
i (t) − n)−c , i , k ,

where X̂n denotes the scaled version of Xn under diffusion settings. We also define

Qn
i (t)� Xn

i (t) −Zn
i (t) −

∑
j: j,i

Zn
i j(t), for i ∈ {1, . . . , d}.

We check that for i ∈ {1, . . . , d}

Zn
i (t)+

∑
k: k,i

Zn
ki(t) ≤ Xn(t) ∧ n +

∑
k: k,i

uki(X̂n(t))(Xn
i (t) − n)− ≤ Xn(t) ∧ n + (Xn

i (t) − n)− ≤ n ,

and ∑
j: j,i

Zn
i j(t) ≤

∑
j: j,i

ui j(X̂n(t))(Xn
j (t) − n)− �

√
n

∑
j: j,i

ui j(X̂n(t))(X̂n
j (t))− ≤ (Xn

i (t) − n)+.

Therefore Zn ∈5 for all n. It is easy to see that

|Ẑn
i j − ui j(X̂n

j ) (X̂n
j )− | ≤

1√
n
, for all i , j.
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Theorem 5.2. We have
lim sup

n→∞
V̂n(X̂n(0)) ≤ %∗ ,

where %∗ is given by (27).

Proof. Since %ε↘ %∗ , as ε→ 0, it is enough to show that there exists a sequence of admissible policy Zn ∈ 5n

satisfying
lim sup

n→∞
J(X̂n(0), Ẑn) ≤ %ε , (64)

where J(X̂n(0), Ẑn) is defined in (14). Let uε be the minimizing selector of (28). Now we construct a sequence
of policy Zn as above given uε. We define empirical measures ξ̃n

t ∈P(�d) as

ξ̃n
t (A) :�

1
t
Ɛx

[∫ t

0
1A(X̂n(s))ds

]
, t > 0.

From Lemma 5.1 we see that {ξ̃n
t } is tight as t→∞, and collection of the sub sequential limits of {ξ̃n

t }, denoted
by {µ̃n}, is also tight. Let µ̃ be a sub-sequential limit of {µ̃n}. We claim that∫

�d

(
1
2

d∑
i , j�1

ai j∂ii f (x)+ b(x , uε(x)) · ∇ f (x)
)
µ̃(dx)� 0, ∀ f ∈C2

c(�d). (65)

In fact, the claim follows from a similar argument as in Theorem 5.1. (65) shows that µ̃ is the unique invariant
measure corresponds to the Markov control uε. Thus to complete the proof we only need to show that

lim
n→∞

J(X̂n(0), Ẑn)�
∫
�d

r̃(x , uε(x))µ̃(dx).

In view of Lemma 5.1, to show (64) it is enough to show that for any ψ ∈Cc(�d), we have

lim
n→∞

∫
�d
ψ(x)r̃(x , un(x))µ̃n(dx)�

∫
�d
ψ(x)r̃(x , uε(x))µ̃(dx), (66)

where
un

i j(x)x−j �
1√
n
b
√

nuε(x)x−j c , for i , j.

Since µ̃n→ µ̃ and | r̃(x , un(x)) − r̃(x , uε(x))| → 0, as n→∞, uniformly on compacts, (66) follows. �

We conclude the article with two important remarks.

Remark 5.1. It is evident from the arguments that one can replace r(Q̂n) by r(Q̂n) + h(Ẑn) for some convex
function h: M→�+ that lies in Cpol(�d). Since Zn contains information about the idle times and the customers
in service, one may want to minimize the cumulative idle time by associating such cost. For instance, if the
service rate µn

i j (the rate at which class-i customers are served at station j) is very small then it is logical to add
a cost of type h(Ẑn) with a high payoff associated to Zn

i j .

Remark 5.2. One might also put additional constrains on the service mechanism so that certain class of cus-
tomers do not get served by some pools. The arguments of this article still go through in that case. Note that
under such constrains we have i9 j for some i , j with i , j. The only required change in such case is to restrict
the corresponding entries of the matrices in M to 0 whenever i9 j for i , j.
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