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Abstract. The motion of incompressible magnetohydrodynamics (mhd)
in a domain bounded by a free surface and coupled through it with external
electromagnetic field is considered. Transmission conditions for electric cur-
rents and magnetic fields are prescribed on the free surface. Although we
show the idea of a proof of local existence by the method of successive ap-
proximations, we are not going to prove neither local nor global existence of
solutions. The existence of solutions of the linearized problems (the Stokes
system for velocity and pressure and the linear transmission problem for the
electromagnetic fields) is the main step in the proof of existence to the con-
sidered problem. This can be done either by the Faedo–Galerkin method or
by the technique of regularizer. We concentrate our considerations to the
Faedo–Galerkin method. For this we need an existence of a fundamental
basis. We have to find the basis for the Stokes system and mhd system.
We concentrate our considerations on the mhd system because this for the
Stokes system is well known. We have to emphasize that the considered
mhd system is obtained after linearization and transformation to the initial
domains by applying the Lagrangian coordinates. This is the main aim of
this paper.
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1. Introduction

We consider a free boundary problem for magnetohydrodynamic motions in

a domain
1

Ωt interacted through free surface St with an electromagnetic field

located in
2

Ωt. In
1

Ωt the magnetohydrodynamic motion is described by the
system of equations

Picture 1

(1.1)

v,t + v · ∇v − divT(v, p)− µ1

1

H · ∇
1

H +
1

2
µ1∇

1

H
2 = f,

div v = 0, µ1

1

H ,t = −rot
1

E,

rot
1

H = σ1(
1

E + µ1v ×
1

H), div
1

H = 0,

where v = v(x, t) = (v1(x, t), v2(x, t), v3(x, t)) ∈ R3 is the velocity of the fluid,

p = p(x, t) ∈ R is the pressure,
1

H(x, t) =
( 1

H1(x, t),
1

H2(x, t),
1

H3(x, t)
)
∈ R3

is the magnetic field,
1

E =
1

E(x, t) =
( 1

E1(x, t),
1

E1(x, t),
1

E3(x, t)
)
∈ R3 is the

electric field, f = f(x, t) = (f1(x, t), f2(x, t), f3(x, t)) ∈ R is the external force
field per unit mass, x = (x1, x2, x3) are the Cartesian coordinates. Moreover, µ1

is the constant magnetic permeability and σ1 the constant electric conductivity.
By T(v, p), we denote the stress tensor of the form

(1.2) T(v, p) = νD(v)− pI,

where ν is positive viscosity coefficient, I is the unit matrix and D(v) is the
dilatation tensor of the form

(1.3) D(v) = {vi,xj + vj,xi}i,j=1,2,3.
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For system (1.1) the following initial and boundary conditions are prescribed

(1.4)
n · T(v, p) + µ1n · T(

1

H) = p0n on St,

v|t=0 = v(0),
1

H
∣∣
t=0

=
1

H(0),
1

Ωt
∣∣
t=0

=
1

Ω0, St|t=0 = S0,

where n is the unit outward to
1

Ωt and normal to St vector,

(1.5) T(
1

H) =

{
1

Hi

1

Hj −
1

2

1

H
2δij

}
i,j=1,2,3

.

Finally, (1.4)1 implies the following compatibility conditions

n0 · D(v(0)) · τα0 + µ1n0 ·
1

H(0)τα0 ·
1

H(0) = 0,

α = 1, 2, n0 = n|t=0, τα0 = τα|t=0.

In
2

Ωt we have a motionless dielectric gas under the constant pressure p0. There-
fore, we have only an electromagnetic field described by the following system of
equations

(1.6) µ2

2

H ,t = −rot
2

E, σ2

2

E = rot
2

H, div
2

H = 0.

For system (1.6) the following system of initial and boundary conditions is pre-
scribed

(1.7)
2

H
∣∣
t=0

=
2

H(0),
2

Ωt
∣∣
t=0

=
2

Ω0,
2

H
∣∣
B

= 0.

The homogeneous boundary condition on B is assumed for simplicity only.
We can prescribe here either a magnetic field or an electric current. Electromag-

netic fields in domains
1

Ωt and
2

Ωt, respectively, are coupled through St by the
following transmission conditions

(1.8)

1

E · τα =
2

E · τα|St ,

n× τα ·
1

H = n× τα ·
2

H
∣∣
St
, α = 1, 2,

µ1

1

H · n = µ2

2

H · n|St ,

where τ1, τ2, n is an orthonormal system of vectors in a neighbourhood of St
such that n|St is normal to St and τ1, τ2|St are tangent to St.

Now we explain the physical meaning of the transmission conditions (1.8).

The currents are defined by ji = σi
i

E, i = 1, 2. Therefore (1.8)1 means that the
jump of the tangent components of currents is described, by the equality

1

σ1
j1 · τα =

1

σ1
j2 · τα, α = 1, 2, on St, for σ1 6= σ2.

Conditions (1.8)2 means that tangent components of magnetic field are contin-
uous passing through St. To describe (1.8)3 we recall the magnetic induction
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i

B = µi
i

H, i = 1, 2. Since div
i

B = 0 in
i

Ωt we derive (1.8)3. It means that the
normal component of the magnetic induction is continuous on St. Hence there
is no jump of the magnetic induction flux.

To prove existence of solutions to problem (1.1)–(1.8) we transform it into
two problems: problem for the fluid motion and problem for the electromagnetic

field. Therefore, for given
1

H we have the problem for (v, p):

(1.9)

vt + v · ∇v − divT(v, p) = f + µ1divT
( 1

H
)

in
1

Ωt,

div v = 0 in
1

Ωt,

n · T(v, p) = p0n− µ1 · T
( 1

H
)

on St,

v|t=0 = v(0) in Ω0.

Next, for given v, the electromagnetic field is determined by the problem

(1.10)

µ1

1

H ,t = −rot
1

E, rot
1

H = σ1

( 1

E + µ1v ×
1

H
)
, in

1

Ωt,

µ2

2

H ,t = −rot
2

E, σ2

2

E = rot
2

H, in
2

Ωt,

1

H|t=0 =
1

H(0), div
1

H(0) = 0, in
1

Ω0,

2

H|t=0 =
2

H(0), div
2

H(0) = 0, in
2

Ω0,

2

H|B = 0,

1

E · τα =
2

E · τα, n× τα ·
1

H = n× τα ·
2

H, α = 1, 2,

µ1

1

H · n = µ2

2

H · n, on St.

Since (1.9), (1.10) are free boundary problems; the natural way to treat them is

passing to the Lagrangian coordinates (see [24]). Therefore domains
1

Ωt,
2

Ωt and
St are determined by the velocity v of the fluid. However, equations (1.10) are
not in the form appropriate for the use of the Lagrangian coordinates. More-

over, in
2

Ωt there is no motion, so there is no velocity guaranteeing existence of

Lagrangian coordinates. Therefore, we construct an artificial velocity
2
v in

2

Ωt as
a solution to problem (3.2). Moreover, to the field equations (1.10)1,2,

(1.11) µi
i

Ht = −rot
i

E, i = 1, 2,

we add the term µi
i
v · ∇

i

H, i = 1, 2, to both sides of (1.11), so we have

(1.12) µi
( i
Ht +

i
v · ∇

i

H
)

= −rot
i

E + µi ·
i
v · ∇

i

H, i = 1, 2.

These equations can be formulated in the Lagrangian coordinates and the term
on the r.h.s. of (1.12) is of the lower order. Therefore the natural way to show the
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existence of solutions to (1.9), (1.10) is the method of successive approximations
described in Section 3. In this paper we are not going to prove existence of
solutions to problem (1.9), (1.10) (the result is shown in [8], [18], [19]). Our aim
is a justification of the energy method used in [8], [9] to prove the existence of
solutions to problem (1.9), (1.10). The existence is proved by using the Faedo–
Galerkin method applied to linearized problem (1.9), (1.10) formulated in the
fixed initial domains. Problems (3.21) and (3.27) are exactly such problems. In
Sections 4 and 5 the existence of the fundamental bases necessary for applying
the Faedo–Galerkin method are shown. Hence to formulate the main results we
recall problem (3.21) and (3.27). To solve the eigenvalue problem for (3.21) we
examine the elliptic problem (see (5.13))

(1.13)

µi
i

ψ +
1

σi
rot2

i

ψ = λ
i

ψ, in
i

Ω0, i = 1, 2,

1

σ1
rot

i

ψ · τα =
1

σ2
rot

2

ψ · τα + g · τα, α = 1, 2, on S0,

1

ψ · n× τα =
2

ψ · n× τα, α = 1, 2,

2

ψ
∣∣
B

= 0,

and, for problem (3.27), the problem

(1.14)

νϕ− divT(ϕ, q) = λϕ in Ω0,

divϕ = g in Ω0,

n · T(ϕ, q) = h on S0,

where λ is an eigenvalue and µ1, µ2, ν are positive numbers.

Theorem 1.1. There exists eigenvalues and eigenfunctions for problems
(1.13) and (1.14).

Proof. In [23] Temam proved existence of eigenvalues and eigenfuctions to
problem (1.14). The same properties for problem (1.13) are proved in Section 5.�

Hence the paper is organized in the following way. In Section 2 a notation
and some auxiliary results are introduced. In Section 3 the method of successive
approximations is formulated. In Sections 4 and 5 the existence of fundamental
basis to problems (3.27) and (3.21) is proved, respectively.

The existence of the fundamental basis for the Faedo–Galerkin for problem
(3.27) is presented in Definition 4.1 and for problem (3.21) in Lemmas 5.2, 5.3.

Having the existence of weak solutions to the linearized problems by the
Faedo–Galerkin method, the existence of solutions to nonlinear problems (1.9),
(1.10) is proved by the method of successive approximations described in Sec-
tion 3 in [8]. Global existence is proved in [9] for sufficiently small initial data.
The existence of local solutions to (1.9), (1.10) is proved in [8] by the energy
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method. To examine problem (1.10) it is necessary to use the transmission con-
ditions (1.8). In Lemma 2.5 transmission conditions (1.8) are generalized to the
form (2.16) and then the fundamental energy identity takes the form (2.17).
Transmission condition (2.16) implies relations between tangent components of
the magnetic fields. To show Lemma 2.3, which gives estimate for solutions to
problem (2.6), we also need a transmission condition for the normal component
of the magnetic fields (see (2.6)3). To relax condition (2.6)3 we see that equations
(2.18), (2.19) are invariant with respect to the homotetia transformation

(1.15)
i

H ′ = bi
i

H,
i

E′ = bi
i

E, i = 1, 2,

where bi, i = 1, 2, are constants. Then the transmission condition (2.16) for
tangent components of magnetic fields and the homotetia transformation (1.15)
imply that the following transmission condition for magnetic fields is admissible

(1.16) α1

1

H = α2

2

H on St,

where α1, α2 are arbitrary constants.
The transmission condition (1.16) in the case α1 = α2 = 1 simplifies very

strongly the proof of local and global estimates in [8, 9], respectively. However,
condition (1.16) implies a jump of tangent components of the electric field which
is described by relations (1.15)2 and (2.25)1. But, (1.16) realizes only in the en-
ergy equality (2.17). We have to emphasize that this paper plays a fundamental
role in the proof of local existence of solutions to problem (1.1)–(1.8) in [8]. The
idea of the proof in [8] is based on the following steps. In the first, by applying
linearization described in Section 3, the existence of weak solutions is proved by
the Faedo–Galerkin method, so the existence of the fundamental basis presented
in this paper is crucial. Next by the standard technique the regularity of weak
solutions is increased. Finally, by the method of successive approximations the
existence of local solutions is proved.

However the Maxwell equations form a symmetric hyperbolic system the
analitical treatment is difficult because they are expressed in the form of the ro-
tation operators. Bykhovsky in [1] derived many analitical results for solutions
to elliptic rot-div systems. Magnetohydrodynamics (mhd) is a coupling of the
Navier–Stokes equations with the Maxwell equations under neglecting the dis-
placement currents and taking into account the electrical conduction. The mhd
equations can be found in [15, Chapter 8].

The first result on solvability of a transmission problem for mhd system was
proved by Ladyzhenskaya and Solonnikov in [14]. In this paper fixed domain
were considered. The first results on existence of solutions to problem (1.1)–
(1.10) were shown by Kacprzyk [5]–[7]. The free boundary problems to mhd
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system were also considered by Padula–Solonnikov [16], Frolova–Solonnikov [4]
and Frolova [3].

In these papers the external magnetic field satisfies the elliptic system

(1.17) rot
2

H = 0, div
2

H = 0.

However, transmission condition (1.4) is different because it contains additionally
the surface tension.

Hence, on the one hand the problem considered in [16], [4], [3] is simpler than
problem (1.1)–(1.10) but, on the other hand, is more complicated because the
surface tension is taken into account. Moreover, in papers [16], [4], [3] the passing
from the free boundary to a problem with the fixed boundary is made by using
the Hanzawa transformation. This is an essential difference with respect to [5]–
[9], where the Lagrangian coordinates were used. Finally, in [18], [19] problem
(1.1)–(1.10) was considered by Shibata–Zajączkowski in the Lp-approach using
also the Lagrangian coordinates.

The paper is organized in the following form. In Section 2 we introduce some
notation and the Lagrangian coordinates. Next we prove Lemma 2.3 necessary
for showing existence of eigenvalues and eigenfunctions to problem (5.7). In
Lemma 2.5 the existence of very general transmission conditions is shown. In
Section 3 the idea of the proof of local existence by the method of successive
approximations is presented. In Section 4 the existence of the fundamental
basis to the Stokes system is presented. In this case the results of [23] are
used. Finally, in Section 5, the existence of eigenfunctions and eigenvalues to
problem (5.7) is shown. The problem follows from (1.10) by transformation to the
Lagrangian coordinates, linearization and the elliptic problem by an appropriate

Laplace transformation. Therefore, we do not need that function
i

ψ, i = 1, 2,
appearing in (5.7) are divergence free. Next it is shown that natural space H(Ω)

for problem (5.7) defined by (5.10) is equivalent to spaceH(Ω) (defined by (5.12))
on solutions to problem (5.7) (see Lemma 5.1). Next the existence of full system
of eigenvectors is proved (see Lemma 5.2).

Remark 1.2. In this paper the following transmission condition for the mag-
netic field is considered

(1.18)
1

H =
2

H on St.

This condition is motivated by one of the following two physical restrictions

(a) µ1 = µ2.

(b) µ1

1

Hτ = µ2

2

Hτ on St.

Since in this paper the main technique to derive estimates for the magnetic
fields is energy type estimate (2.17) we need transmission condition (2.16)2 for
the tangent components of magnetic fields.
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Assuming (b) and using that µ1

1

Hn = µ2

2

Hn we get by homotetia transfor-
mation (1.17) transmission condition (1.18).

2. Notation and auxiliary results

First we introduce notation employed in this paper. We do not distinguish
between norms of scalar and vector-valued functions. Let ω be a vector, ω =

(ω1, . . . , ωn). Then

|ω| =
( n∑
i=1

|ωi|2
)1/2

.

Let

Lp(Ω) =

{
u :

∫
Ω

|u|p dx <∞
}
, p ∈ [1,∞].

By V 0
2 (ΩT ) we denote a space of functions with the finite norm

‖u‖V 0
2 (ΩT ) = ‖u‖L∞(0,T ;L2(Ω)) + ‖u‖L2(0,T ;H1(Ω)).

We shall use the notation

H l(Ω) =

{
u :

∑
|α|≤l

‖Dα
xu‖L2(Ω) <∞

}
,

where Dα
x = ∂α1

x1
∂α2
x2
∂α3
x3

, |α| = α1+α2+α3, αi ∈ N0, i = 1, 2, 3 and N0 = N∪{0},
Ω ⊂ R3.

By c we denote a generic constant which changes its value from formula to
formula. Similarly we denote by ϕ a generic function which is always positive
and increasing.

To examine free boundary problems in hydrodynamics we use the Lagrangian
coordinates which are the initial data to the following Cauchy problem

(2.1)
dx

dt
= v(x, t), x|t=0 = ξ ∈

1

Ω0.

Therefore,

(2.2) x = xv(ξ, t) ≡ ξ +

∫ t

0

v(ξ, s) ds,

where v(ξ, t) = v(xv(ξ, t), t). To define the Lagrangian coordinates in
2

Ωt we need

Lemma 2.1 (see [20]). Let X(
1

Ωt) be some Sobolev space. Let v ∈ X(
1

Ωt) be

a divegence free. Then there exists an extension v′ of v on
1

Ωt ∪
2

Ωt such that v′

is divergence free, v′| 1
Ωt

= v and there exists a constant c such that

(2.3) ‖v′‖
X
(

1
Ωt∪

2
Ωt

) ≤ c‖v‖
X
(

1
Ωt

).
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We make the extension more precisely using Lemma 2.4 to problem (3.2). In
view of the definition of Lagrangian coordinates we have

1

Ωt =
{
x ∈ R3 : x = xv(ξ, t), ξ ∈

1

Ω0

}
, St = {x ∈ R3 : x = xv(ξ, t), ξ ∈ S0},

1

Ωt ∪
2

Ωt =
{
x ∈ R3 : x = xv′(ξ, t), ξ ∈

1

Ω0 ∪
2

Ω0

}
.

To formulate our problem in the Lagrangian coordinates we need the notation

(2.4)
∇v =

∂ξk
∂x

∂

∂ξk
, Dvu = ∇vu+ (∇vu)T ,

Tv(u, p) = Dv(u)− pI, div vv = ∂xiξk∂ξkvi = ∇v · v,

where the summation over the repeated indices is assumed, ξ = ξ(x, t) is the
inverse transformation to x = xv(ξ, t). From [24], [22] we have

Lemma 2.2. Let Ω ⊂ R3 be a given bounded domain. Let v ∈ L2(Ω) be such
that

(2.5) EΩ(v) =

∫
Ω

(vj,xi + vi,xj )
2 dx.

Then there exists a constant c such that

‖v‖2H1(Ω) ≤
(
EΩ(v) + ‖v‖2L2(Ω)

)
.

Let us consider the set of functions

(2.6) div
i

H = 0 in
i

Ω0, i = 1, 2,
1

H =
2

H on S0,
2

H|B = 0.

Lemma 2.3. Assume that rot
i

H ∈ L2

( i
Ω0

)
, i = 1, 2, and S0 ∈ H3−1/2. Then,

for functions from the set (2.6) such that
i

H ∈ H1
( i
Ω0

)
, i = 1, 2, the estimate

holds

(2.7)
2∑
i=1

∥∥ i

H
∥∥
H1
(
i
Ω0

) ≤ c 2∑
i=1

∥∥rot
i

H
∥∥
L2

(
i
Ω0

).
Proof. Note that without loss of generality we may assume that functions

satisfying (2.6) are regular. This can be made by using mollifiers. Indeed if Ω0 is
a Lipschitz domain then it can be decomposed in a finite set of star-shape sets.
Therefore we can use standard approximation method to approximate arbitrary
H1-function by a sequence of smooth one. Then to prove the lemma we introduce
the identity (see [1])

(2.8)
∫
i
Ω

(
rot

i

H
)2
dx =

∫
i
Ω

∣∣∇ i

H
∣∣2 dx−∫

S

[( i
H×rot

i

H
)
·
i
n+

3∑
k=1

i

Hk∇
i

Hk ·
i
n

]
dS,

where i = 1, 2,
i
n is the unit outward vector to

i

Ω normal to S and index 0 in
i

Ω

and S is dropped.
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To prove (2.7) we have to examine the boundary term in (2.8). According to
homotetia transformation (1.15) and Lemma 2.5 we can make such transmission
conditions that H is continuous passing the free boundary S. Moreover, the
tangent components of electric field E are also continuous passing S. Therefore,
to examine the boundary term in (2.8) we introduce a partition of unity ζ(k)

such that S ⊂
⋃
k

supp ζ(k). In each supp ζ(k) we introduce local coordinates

and perform transformation making S(k) = S ∩ supp ζ(k) flat. We denote it by
Ŝ(k). Assume that coordinates are such that Ŝ(k) is the plane x3 = 0. Then
n = (0, 0, 1) and the transformed vector H is H = (H1, H2, H3). Then

n×H = (−H2, H1, 0),

rotH = (H2,x3
−H3,x2

,−H1,x3
+H3,x1

, H1,x2
−H2,x1

).

Hence

I ≡n×H · rotH +HiHi,x3

= −H2(H2,x3
−H3,x2

) +H1(−H1,x3
+H3,x1

)

+H1H1,x3
+H2H2,x3

+H3H3,x3

=H1H3,x1
+H2H3,x2

+H3H3,x3

where H3,x3
= −H1,x1

−H2,x2
. It follows that I is continuous passing S.

In virtue of the performed transformations we get the additional term

I1 =
∑
k

akijHiHj

expressed in local coordinates which is also continuous on S. Then, from (2.8),
we have

(2.9)
2∑
i=1

∥∥∇ i

H
∥∥2

L2

(
i
Ω
) ≤ c 2∑

i=1

∥∥rot
i

H
∥∥2

L2

(
i
Ω
).

Hence (2.9) holds for regular functions. Then, by the density argument, (2.9)

holds also for
i

H ∈ H1
( i
Ω
)
, i = 1, 2.

Finally, we obtain an estimate for
2∑
i=1

∥∥ i

H
∥∥2

L2

(
i
Ω
). For simplicity we introduce

the notation:
i
g = rot

i

H, i = 1, 2.

Applying the Poincaré inequality in
2

Ω and using that
2

H
∣∣
B

= 0 we have

(2.10)
∥∥ 2

H
∥∥
L2

(
2
Ω
) ≤ c∥∥∇ 2

H
∥∥
L2

(
2
Ω
) ≤ c 2∑

i=1

∥∥ ig∥∥
L2

(
i
Ω
).

Hence, we have the estimate

(2.11)
∥∥ 2

H
∥∥
H1
(

2
Ω
) ≤ c 2∑

i=1

∥∥ ig∥∥
L2

(
i
Ω
).
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Since
2

H ∈ H1
( 2

Ω
)
the trace of

2

H on S belongs to H1/2(S). By the transmission
conditions (2.6)2 we have

(2.12)
∥∥ 1

H
∥∥
H1/2(S)

≤ c
∥∥ 2

H
∥∥
H1/2(S)

≤ c
2∑
i=1

∥∥ ig∥∥
L2

(
i
Ω
).

Applying again the Poincaré inequality in
1

Ω we derive

(2.13)
∥∥ 1

H
∥∥
L2

(
1
Ω
) ≤ c(∥∥∇ 1

H
∥∥
L2

(
1
Ω
) +

∥∥ 1

H
∥∥
L2(S)

)
≤ c

2∑
i=1

∥∥ ig∥∥
L2

(
i
Ω
).

From (2.9), (2.10) and (2.13) we obtain estimate (2.7). �

Let us consider the Stokes problem in a bounded domain Ω ⊂ R3 with
boundary S

(2.14)

ω,t − divT(ω, q) = f in ΩT = Ω× (0, T ),

divω = 0 in ΩT ,

ω = b on ST = S × (0, T ),

ω|t=0 = ω0 in Ω.

Lemma 2.4 (see [20]). Assume that f ∈ Lp(Ω
T ), b ∈ W

2−1/p,1−1/2p
p (ST ),

ω0 ∈ W 2−2/p
p (Ω), p ∈ (1,∞), S ∈ C2. Then there exists a solution to problem

(2.14) such that ω ∈W 2,1
p (ΩT ), ∇q ∈ Lp(ΩT ) and the estimate holds

(2.15) ‖ω‖W 2,1
p (ΩT ) + ‖∇q‖Lp(ΩT )

≤ c(‖f‖Lp(ΩT ) + ‖b‖
W

2−1/p,1−1/2p
p (ST )

+ ‖ω0‖W 2−2/p
p (Ω)

).

Now we justify the transmission condition from (1.10) To obtain the energy
type estimate for solutions to problem (1.10) we need

Lemma 2.5. Assume the following transmission conditions on St

(2.16) aν11

1

E · τα = aν12

2

E · τα, aν21 n× τα ·
1

H = aν22 n× τα ·
2

H,

where α = 1, 2, ν1 + ν2 = 1, 0 ≤ νi ≤ 1, i = 1, 2, a1, a2 are positive constants.
Then the following equality holds

(2.17)
2∑
i=1

[
aiµi

∫
i
Ωt

i

H ,t ·
i

H dx+ ai

∫
i
Ωt

i

E · rot
i

H dx

]
= 0.

Proof. We write equations (1.10)1,2 in the form

µ1

1

H ,t = −rot
1

E,
1

E =
1

σ1
rot

1

H − µ1v ×
1

H, div
1

H = 0 in
1

Ωt,(2.18)

µ2

2

H ,t = −rot
2

E,
2

E =
1

σ2
rot

2

H, div
2

H = 0 in
2

Ωt.(2.19)
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From (2.18) and (2.19) we have

(2.20)
2∑
i=1

∫
i
Ωt

aiµi
i

H ,t ·
i

H dx+

2∑
i=1

∫
i
Ωt

airot
i

E ·
i

H dx = 0.

To obtain any energy type estimate we have to integrate by parts in the second
term. Moreover, we need that any boundary term on St does not appear. For
this we shall need the transmission condition (2.16).

Let us recall the identity

(2.21)
∫

Ωt

rotH · ψ dx =

∫
Ωt

H · rotψ dx−
∫
St

n×H · ψ dSt,

where n is the unit exterior vector to Ωt and normal to St. From (2.21) we have∫
1
Ωt

rot
1

E ·
1

H dx =

∫
1
Ωt

1

E · rot
1

H dx−
∫
St

1
n×

1

E ·
1

H dSt,(2.22) ∫
2
Ωt

rot
2

E ·
2

H dx =

∫
2
Ωt

2

E · rot
2

H dx−
∫
St

2
n×

2

E ·
2

H dSt,(2.23)

where
i
n is exterior to

i

Ωt and
1
n = −

2
n. Using (2.22) and (2.23) in (2.20) we

derive

(2.24)
2∑
i=1

∫
i
Ωt

aiµi
i

H ,t ·Hidx+

2∑
i=1

∫
i
Ωt

ai
i

E · rot
i

H dx

−
∫
St

(
a1

1
n×

1

E ·
1

H − a2

1
n×

2

E ·
2

H
)
dSt = 0.

The boundary term must vanish because otherwise (2.24) does not imply any

estimate. The boundary term only contains tangent components of
i

E and
i

H,
i = 1, 2. Let τ1, τ2, n be an orthonormal system of vectors (see [11, Chapter 2,
Section 18]). Then we have the expansion

(2.25)
i

E =

2∑
α=1

i

E · τατα +
i

E · nn, i = 1, 2,

where n =
1
n. Then the boundary term in (2.24) equals

I = −
2∑

α=1

∫
St

[
a1

1

E · ταn× τα ·
1

H − a2

2

E · ταn× τα ·
2

H
]
dSt.

Hence, the transmission condition (2.16) implies that I vanishes.
In the case a1 = a2 = 1, transmission conditions (2.16) assume the form

(1.10)6. �
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Let us consider the problem

(2.26)

vt − divT(v, q) = f in ΩT ,

div v = 0 in ΩT ,

n · T(v, q) = g on ST ,

v|t=0 = v0 in Ω.

Lemma 2.6 (see [21]). Assume that f ∈ Lp(ΩT ), g ∈ W 1−1/p,1/2−1/2p
p (ST ),

v0 ∈ W 2−2/p
p (Ω), p ∈ (1,∞), S ∈ C2. Then there exists a solution to problem

(2.26) such that v ∈W 2,1
p (ΩT ), ∇q ∈ Lp(ΩT ) and the estimate holds

(2.27) ‖v‖W 2,1
p (ΩT ) + ‖∇q‖Lp(ΩT )

≤ c(‖f‖Lp(ΩT ) + ‖g‖
W

1−1/p,1/2−1/2p
p (ST )

+ ‖v0‖W 2−2/p
p (Ω)

).

3. Method of successive approximations

Let vn = vn(x, t) be given, x ∈
1

Ωt.

Definition 3.1. The Lagrangian coordinates in
1

Ω0 are the initial data to
the Cauchy problem

(3.1)
dx

dt
= vn(x, t), x|t=0 = ξ ∈

1

Ω0.

Hence domain
1

Ωnt is defined by

1

Ωnt =

{
x ∈ R3 : x = x(n)(ξ, t) = ξ +

∫ t

0

vn(ξ, t′)dt′, ξ ∈
1

Ω0

}
,

where vn(ξ, t) = vn(x(n)(ξ, t), t).

In free boundary problems in hydrodynamics the free boundary is built up
from the same fluid particles because vn|Snt is tangent to Snt and

Snt = {x ∈ R3 : x = x(n)(ξ, t), ξ ∈ S0}.

To formulate problem (1.10) in the Lagrangian coordinates we have to introduce

them in the domain
2

Ω0. Since there is no velocity in
2

Ωt we have to introduce it
artificially (see Lemma 2.1).
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Definition 3.2. Let us denote
1
vn = vn in

1

Ωt and define
2
vn in

2

Ωt as a solution
to the nonstationary Stokes system

(3.2)

2
vn,t − divT(

2
vn, qn) = 0 in

2

Ωt,

div
2
vn = 0 in

2

Ωt,

2
vn
∣∣
St

=
1
vn
∣∣
St
,

2
vn
∣∣
B

= 0,

2
vn
∣∣
t=0

=
2
v(0) in

2

Ω0,

where qn plays a role of a pressure but it is not important for any estimate for
2
vn.

The initial data
2
v(0) is an extension of

1
v(0) through the fixed given boundary S0,

because
2
v(0)

∣∣
S0

=
1
v(0)

∣∣
S0
. The extension can be made by applying Lemma 2.1.

The existence of solutions to (3.2) follows from Lemma 2.4.

Now, we introduce the Lagrangian coordinates
1

ξ,
2

ξ as the initial data to the
problems

(3.3)
d
i
x

dt
=

i
vn(x, t), xi|t=0 =

i

ξ ∈
i

Ω0, i = 1, 2.

Then

(3.4)
i

Ωnt =

{
i
x ∈ R3 :

i
x =

i
x(n)(

i

ξ, t) =
i

ξ +

∫ t

0

i
vn(

i
x, t′) dt′

=
i

ξ +

∫ t

0

i
vn(

i

ξ, t′)dt′,
i

ξ ∈
i

Ω0

}
,

where
i
vn(

i

ξ, t) =
i
vn(

i
x(n)(

i

ξ, t), t),
i

ξ ∈
i

Ω0, i = 1, 2.

Formulation of the method of successive approximations. Let v in
problem (1.10) be given. We set v = vn. To emphasize that vn describes the

motion in
1

Ωt we write vn =
1
vn. Then, by Definition 3.2, we have

2
vn in

2

Ωt.
Passing to the Lagrangian coordinates expressed by (3.3), (3.4) we can write

problem (1.10) as a problem for
i

Hn, i = 1, 2, in the form

(3.5)
µ1

1

Hnt + rot 1
vn

[
1

σ1

(
rot 1

vn

1

Hn − µ1

1
vn ×

1

Hn

)]
= µ1

1
vn · ∇1

vn

1

Hn,

div 1
vn

1

Hn = 0

in
1

Ω0 × (0, t),
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(3.6)
µ2

2

Hnt + rot 2
vn

[
1

σ2
rot 2

vn

2

H

]
= µ2

2
vn · ∇2

vn

2

Hn,

div 2
vn

2

Hn = 0,

in
2

Ω0 × (0, t),

(3.7)
1

σ1

(
rot 1

vn

1

Hn − µ1

1
vn ×

1

Hn

)
· τvnα =

1

σ2
rot 2

vn

2

Hn · τvnα,

α = 1, 2, on S0 × (0, t),

nvn × τvnα ·
( 1

H −
2

H
)

= 0, α = 1, 2, on S0 × (0, t),(3.8)

µ1nvn ·
1

Hn = µ2nvn ·
2

Hn on S0 × (0, t),(3.9)
2

Hn

∣∣
B

= 0 on B × (0, t),(3.10)
i

H
∣∣
t=0

=
i

H(0), in
i

Ω0, i = 1, 2,(3.11)

where

∇vn =
∂ξ

∂x(n)

∣∣∣∣
x(n)=x(n)(ξ,t)

· ∇ξ

and any operator with index vn means that it contains the transformed gra-

dient ∇vn . Moreover,
1
vn =

2
vn = vn on S0.

For vn given we have
i
vn, i = 1, 2, and also domains

i

Ωnt, i = 1, 2, by for-
mulations (3.4). Hence, by the Lagrangian coordinates, problem (3.5)–(3.11) for

quantities
i

Hn, i = 1, 2, is formulated in the fixed (independent of time) domains
i

Ω0, i = 1, 2.
We have to emphasize that terms on the r.h.s. of (3.5)1 and (3.6)1 follow

from expressing problem (1.10) in the Lagrangian coordinates. This means that
the Lagrangian coordinates for problem (1.10) are introduced artificially. But,
they are introduced because the formulation of a free boundary problem for the
fluid mechanics equations in these coordinates is very natural and simple. The
main point is that the derived problem is formulated in a fixed initial domain.

For given
i
vn, i = 1, 2, problem (3.5)–(3.11) for variable H

i

n, i = 1, 2, is
linear. However, to prove the existence of solutions we have to use the method
of successive approximations. For this purpose we write problem (3.5)–(3.11) in
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the form

(3.12) µ1

1

Hnt +
1

σ1
rot 2

ξ

1

Hn =
1

σ1

(
rot 2

ξ

1

Hn − rot 2
1
vn

1

Hn

)
+ µ1rot 1

vn

(1
vn ×

1

Hn

)
+ µ1

1
vn · ∇1

vn

1

Hn ≡
1

f,

in
1

Ω0 × (0, t),

div ξ
1

Hn = div ξ
1

H − div 1
vn

1

H ≡
1
g,(3.13)

µ2

2

Hnt +
1

σ2
rot 2

ξ

2

Hn =
1

σ2

(
rot 2

ξ

2

Hn − rot 2
2
vn

2

Hn

)
+ µ2

2
vn · ∇2

vn

2

Hn ≡
2

f,(3.14)

in
2

Ω0 × (0, t),

div ξ
2

Hn = div ξ
2

Hn − div 2
vn

2

Hn ≡
2
g,(3.15) (

1

σ1
rot ξ

1

Hn −
1

σ2
rot ξ

2

Hn

)
· τα =

1

σ1

(
rot ξ

1

Hn · τα − rot 1
vn

1

Hn · τvnα
)

(3.16)

− 1

σ2
(rot ξ

2

Hn · τα − rot 2
vn

2

Hn · τvnα) +
µ1

σ1

1
vn ×

1

Hn · τvnα ≡ gα,

for α = 1, 2, on S0 × (0, t),

(3.17) n× τα ·
( 1

Hn −
2

Hn

)
= (n× τα − nvn × τvnα) ·

( 1

Hn −
2

Hn

)
≡ kα,

for α = 1, 2, on S0 × (0, t),

(3.18) µ1n ·
1

Hn − µ2n ·
2

Hn = µ1(n− nvn) ·
1

Hn − µ2(n− nvn) ·
2

H ≡ l

on S0 × (0, t),

2

Hn

∣∣∣
B

= 0 on B × (0, t),(3.19)

i

Hn

∣∣∣
t=0

=
i

H(0) in
i

Ω0, i = 1, 2.(3.20)

For given
1
vn,

2
vn we prove the existence of solutions to problem (3.12)–(3.20)

in two steps.
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First we consider the problem with constant coefficients

(3.21)

µi
i

Hnt +
1

σi
rot 2

ξ

i

Hn =
i

f, div ξ
i

Hn =
i
g in

i

Ω0 × (0, t), i = 1, 2,(
1

σ1
rot ξ

1

Hn −
1

σ2
rot ξ

2

Hn

)
· τα = gα, α = 1, 2, on S0 × (0, t),

(n× τα) · (
1

Hn −
2

Hn) = kα, α = 1, 2, on S0 × (0, t),

µ1n ·
1

Hn = µ2n ·
2

Hn on S0 × (0, t),

2

Hn = 0 on B × (0, t),

i

Hn

∣∣∣
t=0

=
i

H(0) in
i

Ω0, i = 1, 2.

The existence of solutions to (3.21) can be shown either by applying the Faedo-
Galerkin method (see [8]) or by the technique of regularizer (see [18], [19]). To use
the Faedo–Galerkin method we need the fundamental basis for problem (3.21).
Existence of such fundamental basis will be shown in Section 5.

Having the existence of solutions to problem (3.21) with an appropriate reg-
ularity of the r.h.s. functions we show the existence of solutions to problem
(3.12)–(3.20) by the method of successive approximations for sufficiently small

time. For this we replace in the r.h.s. functions of (3.12)–(3.20)
i

Hn by
i

H
(m)
n ,

m ∈ N, and in the l.h.s. functions by
i

H
(m+1)
n . Then problem (3.12)–(3.20)

implies the mapping

(3.22)
( 1

H(m+1)
n ,

2

H(m+1)
n

)
= Φ

( 1

H(m)
n ,

2

H(m)
n

)
,

which for a sufficiently small time and regular
1
vn,

2
vn has a fixed point implied by

the method of successive approximations. In this way the existence of solutions
to problem (3.12)–(3.20) is proved and the following functional dependence holds

(3.23)
( 1

Hn,
2

Hn

)
= F (vn),

where we used that
1
vn = vn and

2
vn is described by problem (3.2).

The functional dependence (3.23) is expressed by the following estimate

(3.24)
2∑
i=1

∥∥∥ i

Hn

∥∥∥
1,
i
Ωt0

≤ ϕ
(
‖vn‖

2,
1
Ωt0

)
,

where the norms ‖ · ‖
1,
i
Ωt0

, ‖ · ‖
2,

1
Ωt0

,
i

Ωt0 =
i

Ω0 × (0, t), i = 1, 2, are found in [8],

[18], [19] and ϕ is an increasing positive function.
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To calculate the next step vn+1 in the method of successive approximations
applied to problem (1.1)–(1.8) we use problem (1.9). Expressing (1.9) in the
Lagrangian coordinates we have

(3.25)

vn+1,t − div vnTvn(vn+1, pn+1) = f + µ1div vnT(
1

Hn) in
1

Ω
t
0,

div vnvn+1 = 0 in
1

Ω
t
0,

nvn · Tvn(vn+1, pn+1) = p0nvn − µ1nvnT(
1

Hn) on St0,

vn+1|t=0 = v(0) in
1

Ω0,

where we used the simplified notation vn =
1
vn, vn+1 =

1
vn+1. Moreover, vn

and
1

Hn are given, where vn describes prescribed n-th step in the method of

successive approximations and
1

Hn depends on vn by formula (3.23).
To prove the existence of solutions to problem (3.25) we formulate it in the

form

(3.26)

vn+1,t− div ξTξ
(
vn+1, pn+1

)
= −

(
div ξTξ(vn+1, pn+1)

− div vnTvn(vn+1, pn+1)) + µ1div vnT
( 1

Hn

)
+ f ≡ f0 in

1

Ω
t
0,

div ξvn+1 = div ξvn+1 − div vnvn+1 ≡ g0 in
1

Ω
t
0,

nξTξ(vn+1, pn+1) = nξTξ(vn+1, pn+1)

−nvnTvn(vn+1, pn+1) + p0nvn − µ1nvn · T(
1

Hn) ≡ k0 on St0,

vn+1|t=0 = v(0) in
1

Ω0.

To describe the way of proving the existence of solutions to problem (3.26)
we repeat the approach applied to problem (3.12)–(3.20). Therefore, we first
consider the problem

(3.27)

vn+1,t − div ξTξ(vn+1, pn+1) = f0,

div ξvn+1 = g0,

nξ · Tξ(vn+1, pn+1) = k0,

vn+1|t=0 = v(0).

The existence of solutions to problem (3.27) can be proved either by the Faedo–
Galerkin method (see Section 4) or by the technique of regularizer (see Lem-
ma 2.6). Having the existence of solutions to problem (3.27) we prove existence
of solutions to (3.26) by the method of successive approximations such that the
r.h.s. functions depend on v(m)

n+1, p
(m)
n+1 and the l.h.s. on v(m+1)

n+1 , p(m+1)
n+1 . Hence
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(3.26) implies the mapping

(3.28)
(
v

(m+1)
n+1 , p

(m+1)
n+1

)
= Φ

(
v

(m)
n+1, p

(m)
n+1

)
,

where m ∈ N. Hence for sufficiently small time and given vn the mapping (3.28)
has a fixed point which is a solution to problem (3.26) for given vn. Then we
get the functional dependence

(3.29) vn+1 = F (vn).

Hence, again, by the method of successive approximations and assumption that
v0 is some extension of the initial data we show for sufficiently small time an
existence of the fixed point to mapping (3.29). In this way we show the existence
of solutions to problem (1.1)–(1.8).

4. The existence of solutions to problem (3.27)

For simplicity we write problem (3.27) in the form

(4.1)

vt − div ξTξ(v, p) = f0,

div ξv = g0,

nξ · Tξ(v, p) = k0,

v|t=0 = v(0).

We construct a function G satisfying the problem

(4.2) div ξG = g0, G|S0
= 0.

Applying the Bogovskĭı operator B solutions to (4.2) can be written in the form

(4.3) G = B ∗ g0.

Introducing the new function

(4.4) u = v −G

we see that (u, p) is a solution to the problem

(4.5)

u,t − div ξTξ(u, p) = −G,t + div ξD(G) + f0 ≡ F,

div u = 0,

nξ · Tξ(u, p) = −nξDξ(G) + k0 ≡ H,

u|t=0 = v(0)−G|t=0 ≡ u(0).
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Simplifying (4.5) yields

(4.6)

u,t − div ξTξ(u, p) = F in
1

Ω
T
0 ,

div u = 0 in
1

Ω
T
0 ,

nξ · Tξ(u, p) = H on ST0

u|t=0 = u(0) in
1

Ω0.

For needs of [8] we solve the problem using the Faedo–Galerkin method. The
Faedo-Galerkin method implies the existence of solutions to problem (4.6) in the
L2-approach.

Definition 4.1. By a weak solution to problem (4.6) we mean any solution
to the integral identity

(4.7)
∫

1
ΩT0

u,t ·η dx dt+
∫

1
ΩT0

D(u) ·D(η) dx dt =

∫
ST0

H ·η dS0 dt+

∫
1
ΩT0

F ·η dx dt,

where BT = B × [0, T ], which holds for any η ∈ L2

(
0, T ;H1

( 1

Ω0

)
∩ V

( 1

Ω0

))
,

where the time derivative is understandable in the weak sense and the following
spaces are introduced

ϑ =
{
u ∈ C∞

( 1

Ω0

)
: div u = 0

}
, V = closure of ϑ in W 1

2

( 1

Ω0

)
.

Since V is separable there exists a sequence of linearly-independent elements
ϕ1, . . . , ϕm, . . ., which is a base in V . The existence of the fundamental base for
Stokes system (4.6) is proved in [23].

Therefore, we are looking for approximate solutions to (4.7) in the form

(4.8)

um =

m∑
i=1

cim(t)ϕi(x),

m∑
i=1

ċim

∫
1
Ω0

ϕi · ϕl dx+

m∑
i=1

cim

∫
1
Ω0

D(ϕi) · D(ϕl) dx

=

∫
S0

H · ϕl dS0 +

∫
1
Ω0

F · ϕl dx,

l = 1, . . . ,m, um|t=0 = um(0) and ċim = cim,t.
Since ϕ1, . . . , ϕm are linearly independent then det

∫
1
Ω
ϕi ·ϕj dx 6= 0. There-

fore, (4.8) implies the following linear system with constant coefficients and time
dependent r.h.s. We express it in the form

(4.9) ċim +

m∑
j=1

αijcjm =

m∑
j=1

βijKj , i = 1, . . . ,m, cim|t=0 = cim(0),
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where

Kj =

∫
S0

H · ϕj dS +

∫
1
Ω0

F · ϕj dx, um(0) =

m∑
i=1

cim(0)ϕi.

Lemma 4.2. Assume that H∈L2(0, T ;L2(S0)), F ∈L2

(
0, T ;L2

( 1

Ω0

))
, u(0) ∈

L2(
1

Ω0). Then there exists a weak solution to problem (4.6) such that u ∈ V 0
2 (

1

ΩT0 )

and the estimate holds

(4.10) ‖u‖
V 0
2 (

1
ΩT0 )
≤ c
(
‖F‖

L2

(
1
ΩT0

) + ‖H‖L2(ST0 ) + ‖u(0)‖
L2

(
1
Ω0

)).
Proof. Since (4.9) is a system of linear ordinary differential equations the

existence of solutions is well known. To prove the existence of weak solutions in

V 0
2 (

1

ΩT0 ) we multiply (4.8) by clm and sum over l from 1 to m. Integrating the
result with respect to time we get

(4.11) ‖um‖
V 0
2

(
1
ΩT0

) ≤ c(‖F‖
L2

(
1
ΩT0

) + ‖H‖L2(ST0 ) + ‖u(0)‖
L2

(
1
Ω0

)),
where we used that ‖um(0)‖

L2

(
1
Ω0

) ≤ ‖u(0)‖
L2

(
1
Ω0

). Using the weak convergence

in L2

(
0, T ;H1

( 1

Ω0

))
and weak star convergence in L∞

(
0, T ;L2

( 1

Ω0

))
we show

that the limit function belongs to V 0
2

( 1

ΩT0
)
and estimate (4.10) holds. �

5. The existence of solutions to problem (3.21)

Dropping the index n in (3.21) we write it in the simple form

(5.1)

µi
i

Ht +
1

σi
rot2ξ

i

H =
i

f, divξ
i

H =
i
g in

i

Ω
t
0, i = 1, 2,(

1

σ1
rotξ

1

H −
1

σ2
rotξ

2

H

)
· τα = gα, α = 1, 2, on St0,

n× τα ·
( 1

H −
2

H
)

= kα, α = 1, 2, on St0,

µ1n ·
1

H − µ2n ·
1

H = l on St0,
2

H
∣∣
B

= 0 on Bt,
i

H
∣∣
t=0

=
i

H(0) in
i

Ω0, i = 1, 2,

where
i

H was replaced by
i

H, i = 1, 2.
To prove the existence of solutions to problem (5.1) by Faedo–Galerkin

method we need a weak formulation to problem (5.1). For this purpose we mul-

tiply (5.1) by
i

ψ, a sufficiently regular function, and integrate over
i

Ω0, i = 1, 2.
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Then we have

(5.2)
2∑
i=1

∫
i
Ω0

(
µi

i

Ht +
1

σi
rot2

ξ

i

H

)
·
i

ψ dξ =

2∑
i=1

∫
i
Ω0

i

f ·
i

ψ dξ.

Integration by parts yields

(5.3)
2∑
i=1

∫
i
Ω0

(
µi

i

Ht ·
i

ψ dξ +
1

σi
rotξ

i

H · rot
i

ψ

)
dξ

−
2∑
i=1

∫
S0

1

σi

i
n× rot

i

H ·
i

ψ dS0 =

2∑
i=1

∫
i
Ω0

i

f ·
i

ψ dξ,

where
i
n is the unit vector normal to S0 which is exterior to

i

Ω0. Therefore

choosing n =
1
n we get that

2
n = −n. Then the boundary term in (5.3) takes the

form

I = −
∫
S0

1

σ1
n× rot

1

H ·
1

ψ dξ +

∫
S0

1

σ2
n× rot

2

H ·
2

ψ dξ.

In the integrals of I only the tangent coordinates of
1

ψ and
2

ψ appear. Therefore,
using the decomposition

i

ψ =

2∑
α=1

i

ψ · τατα + ψ · nn

the expression I takes the form

I =

2∑
α=1

[
−
∫
S0

1

σ1
n× rot

1

H · τα
1

ψ · τα dS0 +

∫
S0

1

σ2
n× rot

2

H · τα
2

ψ · τα dS0

]
.

In view of the transmission conditions (1.8) we have

(5.4)
1

Eτα =
2

Eτα ,
1

Hτα =
2

Hτα , α = 1, 2, on S0.

Recalling that

1

Eτα =

(
1

σ1
rot

1

H − µ1v ×
1

H

)
· τα,

2

Eτα =
1

σ2
rot

2

H · τα

we obtain

(5.5) I = −
2∑

α=1

∫
S0

µ1τα × n · v ×
1

Hψ · τα dS0

where we used that ψ · τα =
1

ψ · τα =
2

ψ · τα, α = 1, 2, on S0.
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Replacing the boundary term in (5.3) by (5.5) we derive the following integral
identity

(5.6)
2∑
i=1

∫
i
Ω0

(
µi

i

Ht ·
i

ψ +
1

σi
rotξ

i

H · rotξ
i

ψ

)
dξ

=

2∑
i=1

∫
i
Ω0

i

f ·
i

ψ dξ +

2∑
α=1

∫
S0

µ1τα × n · v ×
1

Hψ · τα dS0.

To show the existence of weak solutions to problem (5.1) satisfying the inte-
gral identity (5.6) we need the existence of a fundamental basis. For this purpose
we consider the elliptic problem

(5.7)

µ1

1

ψ + rot

(
1

σ1
rot

1

ψ

)
=

1

f in
1

Ω0,

µ2

2

ψ + rot

(
1

σ2
rot

2

ψ

)
=

2

f in
2

Ω0,(
1

σ1
rot

1

ψ

)
· τα =

1

σ2
rot

2

ψ · τα + gα ≡ g · τα, α = 1, 2, on S0,

1

ψ · n× τα =
2

ψ · n× τα, α = 1, 2,
1

ψ · n =
2

ψ · n on S0,

2

ψ|B = 0.

From (5.7)1,2 we have µi div
i

ψ = div
i

f , i = 1, 2. Hence, for
i

f is divergence free,

we get that
i

ψ is also divergence free.
Using the Fredholm theorems we are going to construct eigenfunctions to the

eigenvalue problem for (5.7). In this way we find a fundamental base necessary
for showing the existence of weak solutions to the integral identity (5.6) by the
Faedo–Galerkin method.

To derive the integral identity for solutions to problem (5.7) we multiply

(5.7)1 by
1

φ, (5.7)2 by
2

φ, integrate the results over
i

Ω0, i = 1, 2, respectively, add

and use boundary conditions (5.7)3,4. Assume that
i

f is divergence free i = 1, 2.
Then we have

Z(ψ, φ) ≡
2∑
i=1

∫
i
Ω0

(
µi

i

ψ ·
i

φ+
1

σi
rot

i

ψ · rot
i

φ
)
dx(5.8)

=

2∑
i=1

∫
i
Ω0

i

f ·
i

φdx+

2∑
α=1

∫
S0

τα × n · gϕ · τα dS0,

where ψ =
( 1

ψ,
2

ψ
)
, φ =

(1

φ,
2

φ
)
,
i

ψ,
i

φ, i = 1, 2,
1

ψ
∣∣
S0

=
2

ψ
∣∣
S0
,

1

φ
∣∣
S0

=
2

φ|S0 = ϕ are
divergence free and satisfy boundary conditions (5.7)3,4. Let us introduce the
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notation

(5.9) (ψ, φ)
L2

(
i
Ω0

) =

∫
i
Ω0

ψ · φdx, (ψ, φ)L2(Ω) =

2∑
i=1

∫
i
Ω0

i

ψ(x) ·
i

φ(x) dx,

where Ω =
1

Ω0 ×
2

Ω0. Moreover, we define

(5.10) (ψ, φ)H(Ω) =

2∑
i=1

µi

( i
ψ,

i

φ
)
L2

(
i
Ω0

) +
1

σi

(
rot

i

ψ, rot
i

φ
)
L2

(
i
Ω0

),
where ψ, φ satisfy (2.6).

In view of the above notation, identity (5.8) can be described in the following
short form

(5.11) Z(ψ, φ) ≡ (ψ, φ)H(Ω) = (f, φ)L2(Ω) + (g, φ)L2(S0),

where the last term on the r.h.s. of (5.11) has the form of the last term on the
r.h.s. of (5.8).

To apply the Fredholm theorems we need to have that (ψ,ψ)H(Ω) is equivalent
to the norm

‖ψ‖2H(Ω) = (ψ,ψ)H(Ω)(5.12)

=

2∑
i=1

∥∥∥ iψ∥∥∥2

H1
(
i
Ω0

) =

2∑
i=1

( i
ψ,

i

ψ
)
L2

(
i
Ω0

) +
(
∇
i

ψ,∇
i

ψ
)
L2

(
i
Ω
),

where ψ satisfies (2.6). H(Ω) is the closure of smooth functions satisfying (2.6)
in the norm

‖ψ‖H(Ω) =

2∑
i=1

(∫
i
Ω0

(∣∣ iψ∣∣2 +
∣∣∇ i

ψ
∣∣2) dx)1/2

In the next lemma we derive a weak formulation of problem (5.7).

Lemma 5.1. Assume that
i

f is divergence free, rot
i

ψ ∈ L2

( i
Ω0

)
, i = 1, 2 and

satisfy boundary and transmission conditions
1

ψ =
2

ψ on S0,
2

ψ|B = 0. Then the
norms (ψ,ψ)H(Ω) and (ψ,ψ)H(Ω) are equivalent. Moreover, the integral identities
(5.11) and (ψ, φ)H(Ω) = (f, φ)L2(Ω) + (g, φ)L2(S0) are equivalent.

Proof. The first part of assertion is obvious and based on Lemma 2.3.
Therefore we will concentrate on the proof of the second part. To prove the

lemma we are looking for functions ψ =
( 1

ψ,
2

ψ
)
as weak solutions to the problem

µi
i

ψ +
1

σi
rot 2

i

ψ =
i

f, in
i

Ω0, i = 1, 2,(5.13)

1

σ1
rot

1

ψ · τα =
1

σ2
rot

2

ψ · τα + g · τα, α = 1, 2, on S0,(5.14)
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1

ψ · n× τα =
2

ψ · n× τα, α = 1, 2,
1

ψ · n =
2

ψ · n on S0,(5.15)
2

ψ|B = 0,(5.16)

where rot 2 = rot rot.
Multiplying (5.13) by

i

ψ, integrating over
i

Ω0, i = 1, 2, adding the results and
integrating by parts, we obtain

(5.17)
2∑
i=1

(
µi

∫
i
Ω0

∣∣ iψ∣∣2 dx+
1

σi

∫
i
Ω0

∣∣rot
i

ψ
∣∣2 dx)

+

2∑
α=1

∫
S0

(
1

σ1
rot

1

ψ · τα
1

ψ · (n× τα)− 1

σ2
rot

2

ψ · τα
2

ψ · n× τα
)
dS0

=
2∑
i=1

∫
i
Ω0

i

f ·
i

ψ dx,

where boundary conditions on B were used.
In view of transmission conditions (5.14)–(5.15) equality (5.17) yields

(5.18)
2∑
i=1

(
µi

∫
i
Ω0

∣∣ iψ∣∣2 dx+
1

σi

∫
i
Ω0

∣∣rot
i

ψ
∣∣2 dx)

=

2∑
i=1

∫
i
Ω0

i

f ·
i

ψ dx+

2∑
α=1

∫
S0

g · ταψ · n× τα dS0.

Applying the Hölder and Young inequalities to the r.h.s. of (5.18) implies

(5.19)
2∑
i=1

(
µi

∫
i
Ω0

∣∣ iψ∣∣2 dx+
1

σi

∫
i
Ω0

∣∣rot
i

ψ
∣∣2 dx)

≤
2∑
i=1

(
ε
∥∥ iψ∥∥2

H1
(
i
Ω0

) + c
/
ε
∥∥ if∥∥2

L2

(
i
Ω0

) + c
/
ε
∥∥g · τ i∥∥2

L2(S0)

)
.

To apply Lemma 2.3 we consider the set

(5.20)

div
i

ψ = 0 in
i

Ω0, i = 1, 2,

1

ψτ =
2

ψτ ,
1

ψn =
2

ψn on S0,

2

ψ
∣∣
B

= 0,

where rot
i

ψ ∈ L2

( i
Ω0

)
.

The second transmission condition in (5.20)2 follows from local integration of
equations in (5.20)1. Then using (2.7) in (5.19) and utilizing that ε is sufficiently
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small we have

(5.21)
2∑
i=1

∥∥ iψ∥∥2

H1
(
i
Ω0

) ≤ c 2∑
i=1

(∥∥ if∥∥2

L2

(
i
Ω0

) + ‖g · τ i‖2L2(S0)

)
.

Hence, the first Fredholm theorem implies existence of weak solutions to prob-
lem (5.13)–(5.16). Comparing (5.18) and (5.21) we have equivalence of norms
(ψ,ψ)H(Ω) and (ψ,ψ)H(Ω). �

Next, we express (5.11) in the form

(5.22) (ψ, φ)H(Ω) = (f, φ)L2(Ω) + (g, φ)L2(S0).

By the Riesz theorem, the r.h.s. of (5.22) is expressed in the form

(5.23) (f, φ)L2(Ω) + (g, φ)L2(S0) = (F, φ)H(Ω).

Therefore, (5.22) takes the form

(5.24) (ψ, φ)H(Ω) = (F, φ)H(Ω),

which holds for any φ ∈ H(Ω). Hence, (5.24) implies the following functional
equation

(5.25) ψ = F.

Since we are interested in a construction of eigenfunctions to problem (5.7)
we consider the following eigenvalue problem

(5.26) Zψ = λψ,

where λ is a parameter and Z describes the equations in (5.7)1,2. Then, instead
of (5.8), we have

(5.27) Z(ψ, φ) ≡
2∑
i=1

∫
i
Ω0

(
µi

i

ψ
i

φ+
1

σi
rot

i

ψ · rot
i

φ

)
dx = −λ

2∑
i=1

∫
i
Ω0

i

ψ ·
i

φdx.

Similarly as (5.25) we obtain the functional equation

(5.28) ψ = λBψ,

where

(Bψ, φ)H(Ω) = −
2∑
i=1

∫
i
Ω0

i

ψ ·
i

φdx.

Operator B is self-symmetric and negative because

(Bψ, φ)H(Ω) = (ψ,Bφ)H(Ω) and(Bψ,ψ)H(Ω) < 0.

Operator B is compactly continuous symmetric operator. Hence, for any eigen-
value λ, corresponds at least one nontrivial solution to the homogeneous problem

(5.29) ψ = λBψ.

Hence, we have
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Lemma 5.2. The eigenfunctions to problem (5.29) compose a dense set of
functions in H(Ω). The functions can be chosen as basic functions for the Faedo–
Galerkin method.

Lemma 5.3. For given r.h.s. of (5.6) and in view of Lemmas 5.1 and 5.2 the
existence of solutions to (5.6) can be made by the Faedo–Galerkin method.

Remark 5.4. The considerations in this Section were performed in the set
of divergence free functions. This was forced by Lemma 2.3, where (2.6) was
examined. However, in each step of the method of successive approximations
we can not expect divergence free functions (velocity, magnetic field in the La-
grangian coordinates). Therefore, (2.6) must be replaced by the following one.
(The below considerations hold for µ1 6= µ2 but according to Lemma 2.3 we need
only that µ1 = µ2.)

(5.30)

div
i
u =

i

h in
i

Ω0, i = 1, 2,

1
uτ =

2
uτ , µ1

1
un = µ2

2
un on S0,

2
u
∣∣
B

= 0.

To use Lemma 2.3 we construct functions
i
ϕ, i = 1, 2, satisfying the problem

(5.31)

∆
i
ϕ =

i

h in
i

Ω0, i = 1, 2,

1
ϕ =

2
ϕ, µ1n · ∇

1
ϕ = µ2n · ∇

2
ϕ on S0,

n · ∇
2
ϕ
∣∣
B

= 0,∫
i
Ω0

i
ϕdx = 0, i = 1, 2.

To show the existence of solutions to problem (5.31) we have to find an energy

estimate and apply the Fredholm theorem. Therefore, we multiply (5.31)1 by
i
ϕ

and integrate over
i

Ωt. After adding we get

2∑
i=1

∫
i
Ω0

µi∆
i
ϕ
i
ϕdx =

2∑
i=1

∫
i
Ω0

µi
i

h
i
ϕdx.

Integration by parts yields

(5.32)
2∑
i=1

∫
i
Ω0

µi
∣∣∇ i
ϕ
∣∣2 dx+

∫
S0

(
µ1n · ∇

1
ϕ

1
ϕ− µ2n · ∇

2
ϕ

2
ϕ
)
dS0

= −
2∑
i=1

∫
i
Ω0

µi
i

h
i
ϕdx.
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In view of (5.31)2 the boundary term in (5.32) vanishes. Then (5.31)4 and the
Poincaré inequality give

(5.33)
2∑
i=1

∥∥ iϕ∥∥
H1
(
i
Ω0

) ≤ c 2∑
i=1

∥∥ ih∥∥
L2

(
i
Ω0

).
Then the Fredholm theorem gives existence of solutions to problem (5.31) under

assumption that
i

h ∈ L2

( i
Ω0

)
, i = 1, 2.

Introducing the new functions

(5.34)
i
v =

i
u−∇

i
ϕ, i = 1, 2,

we see that
1
v,

2
v are functions satisfying (2.6).

Remark 5.5. We have to emphasize that considerations in Section 5 imply
the existence of eigenvalues and eigenfunctions to problem (5.7) expressed in

the Lagrangian coordinates and considered in the fixed initial domains
i

Ω0 for
i = 1, 2. In this section we do not care about the proof of existence of solutions
to the free boundary problem (1.9), (1.10). The idea of such a proof is shown
in Section 3. Since v and H expressed in the Lagrangian coordinates are not
divergence free in these coordinates we need Lemma 2.3 and Remark 5.4 to show
equivalence between norms of spacesH(Ω) andH(Ω). The spaceH(Ω) is natural
for formulation of weak solutions to problem (5.7) (see (5.8)). But space H(Ω)

is necessary to show that operator B is compact.

Remark 5.6. The request of one of the referees was to show the role of the
Dirichlet boundary condition on B. For this purpose we consider the simplified
problem

(5.35)

rot 2
i

ψ = λ
i

ψ, in
i

Ω0, i = 1, 2,

transmission conditions on S0,

2

ψ
∣∣
B

= 0.

For λ 6= 0, (5.35) implies that div
i

ψ = 0, i = 1, 2. To examine the eigenvalue

problem to (5.35) we need the weak formulation. Multiply (5.35)1 by
i

ψ, integrate

over
i

Ω, sum over i and use transmission and boundary conditions. Then we have

(5.36)
2∑
i=1

∥∥rot
i

ψ
∥∥
L2

(
i
Ω0

) = λ

2∑
i=1

∥∥ iψ‖
L2

(
i
Ω0

)
To apply the Fredholm theorem showing existence of eigenvalues and eigenvectors

we need to prove that
2∑
i=1

∥∥rot
i

ψ
∥∥
L2

(
i
Ω0

) is equivalent to 2∑
i=1

∥∥ iψ∥∥
H1
(
i
Ω0

). For this
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we need Lemma 2.3. In the first part of the proof of Lemma 2.3 we have the
equivalence

2∑
i=1

∥∥rot
i

ψ
∥∥2

L2

(
i
Ω0

) ∼ 2∑
i=1

∥∥∇ i

ψ
∥∥2

L2

(
i
Ω0

).
Applying the Poincaré inequality which is possible in the case of the homogeneous
Dirichlet boundary conditions on B we show in the second part of the proof of
Lemma 2.3 the equivalence

2∑
i=1

∥∥∇ i

ψ
∥∥2

L2

(
i
Ω0

) ∼ 2∑
i=1

∥∥ iψ∥∥2

H1
(
i
Ω0

).
Then (5.36) takes the form

(5.37)
2∑
i=1

∥∥ iψ∥∥2

H1
(
i
Ω0

) ≤ cλ 2∑
i=1

∥∥ iψ∥∥
L2

(
i
Ω0

).
This estimate yields that operator B introduced in (5.28) is compact, so the
Fredholm theorem works.

In Section 5 we have considered a more general system (5.7), where
i

ψ, i =

1, 2, are not divergence free. In this case in order to apply Lemma 2.3 we need
Remark 5.4.
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