
Topological Methods in Nonlinear Analysis
Volume 50, No. 1, 2017, 65–87

DOI: 10.12775/TMNA.2017.012

c© 2017 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University

ALMOST PERIODIC SOLUTIONS

OF EVOLUTION EQUATIONS

Jean-François Couchouron — Mikhail Kamenskĭı

Sergey Ponomarev

Abstract. We state existence theorems for almost periodic solutions of
evolution problems, namely, quasi-autonomous problems and more gener-

ally, time dependent evolution equations. We apply these theorems firstly,

to a boundary value quasilinear hyperbolic equation of first order, and sec-
ondly, to a boundary value quasi-parabolic equation.

1. Introduction

In this paper we draw general conditions of existence for almost periodic

solutions of evolution problems in a real Banach space X.

Firstly, we prove (in Section 3) the existence of almost periodic solutions of

the following quasi-autonomous evolution problem:

QP(f)
du

dt
(t) ∈ Au(t) + f(t), t ∈ R,

where f : R → X is an almost periodic function and A : X → X a multivalued

nonlinear densely defined operator such that A+ωI is, for some ω > 0, dissipative

with compact resolvent.
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Secondly, we extend (in Section 4) this existence result for almost periodic

solutions to abstract evolution equations (EV) governed by suitable families

(A(t))t∈R of nonlinear multivalued operators from X to X

(EV)
du

dt
(t) ∈ A(t)u, t ∈ R.

Finally, these theoretical results are applied to two examples of boundary

value problems (Sections 5 and 6).

A continuous function f : R → X is said to be almost periodic if for each

ε > 0, the set of almost ε periods is relatively dense in R. An almost ε period of

f is a real number p satisfying

(1.1) sup
t∈R
‖f(t+ p)− f(t)‖ ≤ ε.

A subset D ⊂ R is said to be relatively dense if there exists an l > 0 such that

any interval [a, a+ l] has a nonempty intersection with D.

An equivalent definition is that a continuous function f is almost periodic if

and only if the set of translated functions Tsf : t 7→ f(s + t) is precompact in

Cb(R, X), the set of bounded functions from R to X endowed with the supremum

norm.

Evidently, a periodic function is an almost periodic function. Almost periodic

functions arise naturally in vibrating phenomena (as superposition of harmonics

with frequencies that are not all multiple of the same fundamental frequency).

The existence theorems given in this paper complement for instance the

existence of almost periodic trajectories given in the autonomous case, in [12] or

in [1] and [2] (where X is additionally assumed to be a Hilbert space), associated

with autonomous equations u̇(t) = Au(t), t ∈ R+, generating suitable semi-

groups of contractions. More generally, in this paper, we shall consider time

dependent problems involving evolution operators S(s, t).

It was underlined in [13] that in the quasi-autonomous case QP(f), the exis-

tence of almost periodic solutions is an open problem. We provide an answer to

this question when A+ωI is, for some ω > 0, dissipative with compact resolvent.

Similar problems were studied by many researchers (see for example [4], [19],

[17], [14] and [3]). The closest one is [4]. But there the conditions are formulated

in terms of Yosida’s approximation, so it seems to be difficult to apply the result

of [4] to problems, which we consider in the present paper. In the present paper,

conditions are imposed on the operator itself.

We generalize also, in particular, the existence result for almost periodic

solutions obtained in [20] in the non-autonomous case, to the special case where

the state space X is a Hilbert space and the operator (t, u) 7→ A(t, u) is uniformly

continuous in u and (−ω)-dissipative in t, with ω > 0.
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The present approach is based on nonlinear methods in semi-groups theory:

more precisely, two fundamental ingredients are used, namely, on the one hand,

integral inequalities involving the evolution operator S(s, t) associated with suit-

able time-dependent families (A(t))t∈R, as introduced in [8] and [7], and on the

other hand, a general compactness result deduced from [6].

Examples studied in the two last sections underline the relevance of the

abstract framework drawn out in Sections 3 and 4. In Section 6, dedicated to

the boundary value quasi-parabolic equation, we will need technical arguments

from the topological degree method developed in [16]. It is well known that

these methods are not applicable to almost periodic problems (see [18]) but we

use them only to prove that the corresponding operator is m-dissipative. Section

2 contains useful notations and preliminaries.

2. Notations and preliminaries

Let J ⊂ R be an interval. We denote by Cb(J,X) the Banach space of

bounded continuous functions from R to X endowed with the supremum norm

‖ · ‖∞. The symbol I stands for the identity map on X. Let us start with some

definitions.

Definition 2.1 (Evolution operator). Let Γ = {(s, t) ∈ R2 : s ≤ t} and

denote by C(X,X) the set of continuous functions from X to X. Then a map

S : Γ → C(X,X) is said to be an evolution operator on X if the following two

conditions hold:

(a) For any fixed x ∈ X, the function S( · , · )x is continuous on Γ.

(b) For all (t, s), (s, r) ∈ Γ, we have S(s, t) ◦S(r, s) = S(r, t) and S(t, t) = I.

Definition 2.2 (Complete trajectory. Solution of (EV)). The continuous

function u : R→ X is said to be a complete trajectory for the evolution operator

S if, for all s, t ∈ R, we have

s ≤ t ⇒ u(t) = S(s, t)u(s).

If S is the evolution operator associated with (A(t))t∈R (see Definition 2.3 below),

such a complete trajectory u is called a solution of (EV).

Let (A(t))t∈R be a family of multivalued m-dissipative operators on X. Let

u0 ∈ X and J = [a, b) with −∞ < a ≤ b ≤ +∞, a subinterval of R. Let us

denote by EV(J, u0) the evolution problem

(2.1)


du

dt
(t) ∈ A(t)u for t ∈ J,

u(a) = u0.

The concept of solution of EV([a, b), u0) should always be considered (and in

particular in the quasi-autonomuos case) as a mild solution (see for instance [8],
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[6], [9], [10]). Such a solution is a continuous (uniform on compact subintervals

of J) limit of time-implicit discrete schemes. In this paper, regularity assump-

tions on the time dependence will allow to restrict to the case of constant path

subdivisions in the discrete schemes. In particular, such a solution is unique. In

addition, if J ′ = [c, d] (with c ≤ d) is a compact subinterval of J = [a, b), and u

is a solution of EV(J, u0), then the restriction u|J′ is a solution of EV(J ′, u(c)).

Definition 2.3 (Associated evolution operator). The evolution operator

S(s, t)u0 associated with (A(t))t∈R is defined as the value at t ≥ s of the unique

solution u of EV([s, t], u0).

With assumptions given further, for s < t, the evolution operator S(s, t) will

can be described as

S(s, t)u0 = lim
n

n∏
i=1

J(t−s)/n

(
s+ i

t− s
n

)
u0, u0 ∈ X,

where, we have set Jλ(t) = (I − λA(t))−1. In the quasi-autonomous case

A(t)u = Au+ f(t), t ∈ R, u ∈ X,

the evolution equation (EV) will be denoted by QP(f) and the quasi-autonomous

problem

(2.2)


du

dt
(t) ∈ Au+ f(t) for t ∈ J = [a, b),

u(a) = u0.

will be denoted by QP(f, J, u0).

Let us recall that a multivalued operator A on X is dissipative if −A is

accretive, namely, for all (u, ξu(s)) ∈ A(s), (v, ξv(s)) ∈ A(s),

(2.3) −[u− v,−ξu(s) + ξv(t)] ≤ 0,

where, the bracket (see [9] for instance), is defined, for u, v ∈ X, as

[u, v] = lim
λ↓0

‖u+ λv‖ − ‖u‖
λ

.

An operator A on X is m-dissipative if A is dissipative and R(I − λA) = X for

all λ > 0. It is well known that QP(f, J, u0) has a unique solution for all u0 ∈ X,

when A is m-dissipative.

In the sequel, the following definition (adapted from [6]) is needed.

Definition 2.4 (The set W ). Notation θ ∈ W will mean that for some l,

there is a finite number of continuous functions gk : R → X, for k = 1, . . . , l,

satisfying

θ(s, t) =

l∑
k=1

‖gk(t)− gk(s)‖, s, t ∈ R.
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This set W is a subset of the set W defined in [6]. Let θ ∈ W . Then we

introduce the following three properties (see [6]).

(i) For ω > 0 given, each operator A(t) + ωI is a nonlinear densely defined

multivalued m-dissipative operator on X.

(ii) For all s, t ∈ R+ and all (u, ξu(s)) ∈ A(s), (v, ξv(t)) ∈ A(t),

(2.4) −[u− v,−ξu(s) + ξv(t)] ≤ θ(s, t)− ω‖u− v‖.

(iii) For all λ > 0 and all bounded subsets K ⊆ X, the set

(2.5)
⋃
t≥0

(I − λA(t))−1(K)

is relatively compact.

Definition 2.5 (Conditions C(θ, ω) and CK(θ, ω)). Let ω > 0. We say

that (A(t))t∈R satisfies C(θ, ω) if conditions (i), (ii) hold. We say that (A(t))t∈R
satisfies CK(θ, ω) if conditions (i), (ii) and (iii) hold.

Proposition 2.6 (Condition CK, quasi-autonomous case). In the quasi-

autonomous case A(t)u = Au+ f(t), condition CK(θ, ω) holds with

θ(s, t) := ‖f(s)− f(t)‖, s, t ∈ R,

if the following three properties hold :

(a) A+ ωI is densely defined, m-dissipative with ω > 0;

(b) for each λ > 0, the operator Jλ = (I − λA)−1 with λ > 0 is compact;

(c) f ∈ Cb(R, X).

Proof (see [6]). Relations (i) and (ii) of CK(θ, ω) follow immediately from

assumptions. Claim (iii) of CK(θ, ω) is provided by the equivalence

(v = (I − λA(t))−1w) ⇔ (v = (I − λA)−1(w + λf(t))).

and the fact that {λf(t) : t ∈ R+} is bounded. �

Let us recall now Bénilan’s integral inequalities for mild solutions in the

quasi-autonomous case, when A + ωI is densely defined, m-dissipative and f ∈
Lloc(R, X). Let u be a solution of QP(f, [s, T ], u0) and v be a solution of

QP(g, [τ + s, τ + T ], v0) for a given τ ∈ R; then we have for t ∈ [s, T ),

‖u(t)−v(t+τ)‖ ≤ e−ω(t−s)‖u0−v0‖+e−ω(t−s)
∫ t−s

0

eωσ‖f(σ+s)−Tτg(σ+s)‖ dσ,

where Tτ is the translation operator defined in Introduction.

In particular, with (w0, ŵ0) ∈ A, taking g(t) := −ŵ0, we obtain

(2.6) ‖u(t)−w0‖ ≤ e−ω(t−s)‖u0 −w0‖+ e−ω(t−s)
∫ t−s

0

eωσ‖f(σ+ s) + ŵ0‖ dσ.

Therefore if f is bounded, it follows from the last inequality (according to ω > 0,

T → +∞) that u is bounded on [s,+∞[.
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3. The quasi-autonomous case

We restrict our attention to the quasi-autonomous case QP(f). We assume

that

• A+ ωI is nonlinear densely defined, m-dissipative for some ω > 0.

• For all λ > 0, the operator Jλ = (I − λA)−1 is compact.

• f : R→ X is almost periodic.

Theorem 3.1 (Existence of an almost periodic solution). Under the above

assumptions, the quasi-autonomous equation QP(f) possesses an almost periodic

solution.

The proof of Theorem 3.1 will result from the following auxiliary results.

Proposition 3.2 (Initial sequence). There is a strictly increasing sequence

of positive real numbers (rk)k, satisfying lim
k
rk = +∞ and for all k ∈ N, the real

number rk is a 1/2k almost period of f , namely

(3.1) ‖f − Trk(f)‖∞ ≤
1

2k
.

Proof. The proof follows by induction using the almost periodic assumption

on f . �

Proposition 3.3 (Suitable shift). Fix u0 ∈ X. Let u(t) = S(0, t)u0 for

t ≥ 0 be the solution of QP(0,+∞, u0) and let (rk)k be the sequence built in

Proposition 3.2. There is a strictly increasing sequence of positive real numbers

(pk)k, satisfying:

(a) (pk)k is a subsequence of (rk)k;

(b) (u(pk −m))k is convergent in X for all m ∈ N, with the convention that

u(pk −m) = u0 if pk −m < 0.

Lemma 3.4 (Precompactness of the positive orbit). Let u(t) = S(0, t)u0 for

t ≥ 0 be the solution of QP(0,+∞, u0). Then, u(R+) is precompact in X.

Proof of Lemma 3.4. The lemma a consequence of Theorem 4.1 in [6].

Nevertheless, we give here a sketch of the proof.

Let us show that for all u0 ∈ X, the pointed family (A+f(t), u0)t≥0 satisfies

BV(θ, ω, ω, 0), (notation explained below) with θ(s, t) := ‖f(t)− f(s)‖ for s, t ∈
[0,+∞[. Let (u0n)n be a sequence satisfying lim

n
u0n = u0 and u0n ∈ D(A). As

claimed in the previous section, the family (A+ f(t))t∈R fulfills CK(θ, ω) with

θ(s, t) := ‖f(t)− f(s)‖.

Now, for all n ∈ N, let us introduce the continuous function fn : [0,+∞[, which is

affine on each interval [k/(n+ 1), (k + 1)/(n+ 1)] with k ∈ N, with nodal values

fn

(
k

n+ 1

)
:= f

(
k

n+ 1

)
, k ∈ N.
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Since the almost periodic function f is uniformly continuous, each function fn
(for n sufficiently large) is Lipschitz on [0,+∞[. Setting

(3.2) εn := sup
|t−s|≤1/(n+1)

‖f(t)− f(s)‖ and ηn(t) := ‖f(t)− fn(t)‖,

we obtain for t ≥ 0, with k/(n+ 1) ≤ t < (k + 1)/(n+ 1),

ηn(t) ≤
∥∥∥∥f(t)− f

(
k

n+ 1

)∥∥∥∥+

∥∥∥∥f( k

n+ 1

)
− fn(t)

∥∥∥∥
≤ εn + (n+ 1)

∥∥∥∥f(k + 1

n+ 1

)
− f

(
k

n+ 1

)∥∥∥∥(t− k

n+ 1

)
≤ 2εn.

Thus

(3.3) lim
n

sup
t≥0

ηn(t) = 0.

For each n ∈ N, let us define for s, t ≥ 0,

(3.4) An(t) := A+ fn(t), θn(s, t) := ‖fn(t)− fn(s)‖.

Then the family (An(t), u0n)t≥0 satisfies BV(θn, ω, ω), namely the following defi-

nition.

Definition 3.5 (Condition BV(θn, ω, ω)). The family (An(t), u0n)t≥0 satis-

fies BV(θn, ω, ω) if the following four conditions are fulfilled:

(a) C(θn, ω) (see Definition 2.5),

(b) for any û0n ∈ Au0,

(3.5) lim sup
h↓0

1

h
‖un(h)− u0n‖ ≤ ‖û0n‖ < +∞,

(c)

(3.6) θn(0+, 0) = lim sup
h↓0

1

h

∫ h

0

θn(τ, 0) dτ < +∞,

(d)

(3.7) Vn = sup
t≥0

lim sup e−ωt

h↓0

∫ t

0

eωτ
θn(τ + h, τ)

h
dτ < +∞.

Indeed, (3.5) is provided by (2.6); (3.6) holds (by continuity and definition

of θn) with θn(0+, 0) = 0; (3.7) holds with Vn := Ln/ω, where Ln is a Lipschitz

constant of fn.

Now, condition BV(θ, ω, ω, 0) (see [6]) holds for (A+ f(t), u0)t≥0.

Definition 3.6 (Condition BV(θ, ω, ω, 0)). We say that BV(θ, ω, ω, 0) holds

for (A(t), u0)t≥0 if there is a sequence (An( · ), x0n, θn)n fulfilling the following

conditions:
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(a) For each n, the pointed family (An( · ), u0n) satisfies BV(θn, ω, ω) and

CK(θn, ω), and lim
n
u0n = u0.

(b) There is a sequence of functions (ηn)n such that

(3.8) − [u− v,−ξu(s) + ξnv (t)] ≤ θ(s, t) + ηn(s) + ηn(t)− ω‖u− v‖

and lim
n
Nω,R(ηn) = 0,

for all (u, ξu(s)) ∈ A(s), (v, ξnv (t)) ∈ An(t) and all s, t ∈ R+.

Indeed, according to Proposition 2.6, condition CK(θn, ω) holds for the family

(A+ fn(t))t≥0 introduced in (3.4). Thanks to (3.3), relation (3.8) is verified by

functions ηn introduced in (3.2). Therefore, the sequence (A + fn( · ), u0n, θn)n
is a BV(θ, ω, ω, 0) approximation of (A + f(t), u0)t≥0 in the sense given in [6].

Consequently, the claim preceding Definition 3.6 is shown to be true. Thus

Theorem 4.1 in [6] can be applied: we can now conclude that u(R+) is precompact

in X, ending the proof of Lemma 3.4. �

Remark 3.7 (On BV and compactness conditions). When the family

(A(t), u0)t≥0 of m-dissipative operators densely defined fulfills BV(θ, ω, ω),

BV(θ, ω, ω, 0) holds automatically for (A(t), u0n)n with u0n ∈ D(A(0)) such that

lim
n
u0n = u0 and ηn ≡ 0.

In addition, (3.7) holds for instance if θn(s, t) = ‖fn(t)−fn(s)‖ with fn Lipschitz.

Conditions BV and the compactness condition (2.5) on the resolvent are used

in this paper only to insure the relative compactness of the positive orbit of

solutions of (EV). In [4], no such condition is invoked, but almost periodicity of

t 7→ Jλ(t)x is required for all x ∈ X.

Proof of Proposition 3.3 (Diagonal process). By the above Lemma 3.4,

u(R+) is precompact in X. Consequently, for all m ∈ N, a strictly increasing

sequence (σm(j))j of real numbers such that (u(σm(j) − q))k is convergent in

X for all q ∈ {0, 1, . . . ,m} can be found by induction. With this goal, we

will take as (σq(j))j a suitable subsequence of (σq−1(j))j , with the initialization

(σ−1(k))k := (rk)k. Now the diagonal sequence (σk(k))k := (pk)k fulfills the

announced conditions (a) and (b) of Proposition 3.3. �

Proposition 3.8 (Existence of a precompact complete trajectory). Let u(t)

= S(t, 0)u0 for t ≥ 0 be a positive trajectory. There is a precompact trajectory

which is complete for S.

Proof. (a) Let (pk)k be the sequence of Proposition 3.3. We are going

to prove that there is a function w ∈ C(R, X) such that the sequence (Tpku)k
converges uniformly to w on all compact subsets of R. For all m ∈ N set Im :=

[−m,+∞[ and put vk(t) := u(pk + t), for t ≥ −pk.
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Let m ∈ N. For t ∈ Im and i, j ∈ N with pi ≥ m and pj ≥ m, we have

‖vi(t)− vj(t)‖ = ‖S(0, t+ pi)u
0 − S(0, t+ pj)u

0‖

= ‖S(0, t+m+ pi −m)u0 − S(0, t+m+ pj −m)u0‖

≤‖S(pi −m, t+m+ pi −m) ◦ S(0, pi −m)u0

− S(pj −m, t+m+ pj −m) ◦ S(0, pj −m)u0‖

≤‖S(pi −m, (t+m) + pi −m)u(pi −m)

− S(pj −m, (t+m) + pj −m)u(pj −m)‖

≤ e−ω(t+m)‖u(pi −m)− u(pj −m)‖

+ e−ω(t+m)

∫ t+m

0

eωs‖f(pi −m+ s)− f(pj −m+ s)‖ ds

≤ e−ω(t+m)‖u(pi −m)− u(pj −m)‖

+ e−ω(t+m)

∫ t+m

0

eωs‖Tpif(−m+ s)− Tpjf(−m+ s)‖ ds

≤ e−ω(t+m)‖vi(−m)− vj(−m)‖

+ e−ω(t+m)

∫ t+m

0

eωs(‖Tpif(−m+ s)− f(−m+ s)‖

+ ‖f(−m+ s)− Tpjf(−m+ s)‖) ds

≤ e−ω(t+m)‖vi(−m)− vj(−m)‖+

(
1

2i
+

1

2j

)
1− e−ω(t+m)

ω
.

We used Bénilan’s inequalities and relation (3.1) (in view of pk≥rk).

These computations and Proposition 3.3 imply that (vk)k is a Cauchy se-

quence in Cb(Im, X). Therefore, for all m ∈ N, the sequence (vk)k converges

towards some wm in Cb(Im, X). Since wm(t) = wp(t) whenever m ≤ p and

t ∈ Im, we can define w : R → X as w(t) := wm(t), for t ∈ R, where m := m(t)

is any positive integer satisfying t ≥ −m.

(b) Let τ, t ∈ R with τ ≤ t. By using the continuity of x 7→ S(τ, t)x, we

obtain

w(t) = lim
k
S(0, t+ pk)u0 = lim

k
S(τ + pk, t+ pk) ◦ S(0, τ + pk)u0(3.9)

= lim
k
S(τ + pk, t+ pk)(vk(τ)).

But, thanks to Bénilan’s inequalities, we have

‖S(τ + pk, t + pk)vk(τ)− S(τ, t)w(τ)‖ ≤ e−ω(t−τ)‖vk(τ)− w(τ)‖(3.10)

+ e−ω(t−τ)
∫ t−τ

0

eωs‖Tpkf(τ + s)− f(τ + s)‖ ds

≤ e−ω(t−τ)
(
‖vk(τ)− w(τ)‖+

1

2k
1− e−ω(t−τ)

ω

)
.
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Since by definition we have w(τ) = lim
k
vk(τ), using (3.9) and (3.10), we then

obtain

S(τ, t)w(τ) = w(t)
(

= lim
k
S(τ + pk, t+ pk)(vk(τ))

)
.

Therefore w is a solution of the quasi-autonomous equation QP(f).

(c) Invoking Lemma 3.4 and the inclusion w(R) ⊂ u(R+), we can claim that

the trajectory w(R) is relatively compact (or equivalently precompact). �

End of proof of Theorem 3.1. Let us consider the function w built in

Proposition 3.8. It remains to prove that w is an almost periodic function. Let

ε > 0 and p ∈ R. Set

M := sup
s∈R
‖w(s)‖, δp := ‖Tpf − f‖∞.

Fix α > 0 (sufficiently large) such that 4Me−ωα < ε and with τ ∈ R, put

t := τ − α. We have

‖Tp(w)(τ) − w(τ)‖ = ‖S(t+ p, t+ p+ α)w(t+ p)− S(t, t+ α)w(t)‖

≤ e−ωα‖w(t+ p)− w(t)‖+ e−ωα
∫ α

0

eωs‖Tpf(s+ t)− f(s+ t)‖ ds

≤ 2Me−ωα + δp
1− e−ωα

ω
≤ ε

2
+ δp

1

ω
.

Thus, each η almost period p of f , such that η := εω/2, is an ε almost period

of w. Consequently, the set of ε almost periods of w is relatively dense in R.

Thus w is almost periodic, ending the proof of Theorem 3.1. �

4. A generalization

We are going to generalize the problem of existence of almost periodic so-

lutions to more general families of operators than the previous ones. In this

section we consider the evolution problem (EV), where, the family (A(t))t∈R
satisfies assumption H(θ, ω), constituted by the following two conditions:

• CK(θ, ω), with ω > 0.

• The function θ is defined for some l by

(4.1) θ(s, t) =

l∑
k=1

‖gk(s)− gk(t)‖,

with gk : R→ X almost periodic and Lipschitz for all k = 1, . . . , l.

Then we have the following existence theorem.

Theorem 4.1 (Existence result). Under assumption H(θ, ω), there exists an

almost periodic solution of (EV).
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Proof. The proof is analogous to the proof in the previous section. Indeed,

the operator evolution S(s, t) associated with (A(t))t∈R enjoys the same proper-

ties that the evolution operator of the quasi-autonomous case. Indeed, first we

have inequalities analogous to the Bénilan’s translation inequality, namely, if u

is the solution of EV([s, T ], u0) and v is the solution of EV([τ + s, τ +T ], v0), for

a given τ ∈ R, then we have for t ∈ [s, T ) (see [6] or [8] or [7])

‖u(t)− v(t+ τ)‖ ≤ e−ω(t−s)‖u0 − v0‖+ e−ω(t−s)
∫ t−s

0

eωσθ(σ + s, σ + s+ τ) dσ.

Precompactness of the positive orbit stated in Lemma 3.1 follows from [6]

in the same way: indeed, H(θ, ω) is exactly what we have used in this lemma

for checking the requirements of Theorem 4.1 in [6]. Thanks to the Lipschitz

assumption (see Remark 3.7) on gk, condition BV is satisfied with An(t) = A(t)

for all n. Moreover, the new expression (4.1) for θ is not an obstruction for

building suitable sequences of positive integers (rk)k and (pk)k as in the quasi-

autonomous case: indeed, under the assumption that each gk is almost periodic,

f := (g1, . . . , gl) : R→ X l is almost periodic (see [11]) and thus, for each ε > 0,

the set of common (to all gk) ε periods is relatively dense in R. �

5. A quasilinear hyperbolic equation

In order to show the relevance of the general framework defined in the pre-

vious section, let us now consider the following quasilinear hyperbolic boundary

value problem, set up for instance, in [10] (in the case when the time interval is

bounded):

(BVP1) =

vt = −ϕ(v)x − ωv for (t, x) ∈ R× [0, 1],

v(t, 0) = g(t) for t ∈ R.

Under suitable assumptions, we are going to prove the existence of an almost

periodic solution of this problem.

Assumption (HBVP1). The function g is here assumed to be almost pe-

riodic on R, and ϕ to be (continuous) strictly increasing with ϕ(R) = R, such

that ϕ ◦ g is Lipschitz on R.

Take X = L1([0, 1]) endowed with its usual norm denoted by ‖ · ‖1. Set

S′ := [0, 1]. Define for all t, the family (A(t))t∈R as follows:A(t)v = −ϕ(v)x − ωv,
D(A(t)) = {v ∈ X : v(0) = g(t) and ϕ(v) is absolutely continuous on S′}.
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We will prove further that for v ∈ D(A(s)) and w ∈ D(A(t)), we have

−[v − w,−A(s)v +A(t)w](5.1)

= |ϕ(g(s))− ϕ(g(t))| − |ϕ(v(1))− ϕ(w(1))| − ω
∫ 1

0

|v(x)− w(x)| dx

≤ |ϕ(g(s))− ϕ(g(t))| − ω
∫ 1

0

|v(x)− w(x)| dx.

As it was claimed in [10], A(t) + ωI is, for almost all t ≥ 0, m-dissipative with

dense domain.

Let us show that condition CK(θ, ω) holds for (A(t))t∈R, with

(5.2) θ(s, t) = |ϕ(g(t))− ϕ(g(s))| = ‖ϕ(g(t))− ϕ(g(s))‖1.

We underline that for fixed s, t, the function |ϕ(g(t)) − ϕ(g(s))| is constant in

x ∈ [0, 1], justifying the last equality.

(a) First in order to prove (5.1), we are going to use the computation of the

bracket in X = L1([0, 1]), namely

[u, v] = max
u∗∈J(u)

∫ 1

0

u∗v dx,

where u, v ∈ X and the multivalued duality map operator J is the sign operator

defined as

J(u) = {u∗ ∈ L∞([0, 1]) : |u∗| ≤ 1, u∗u = |u|}.

Set u := v − w and y := ϕ(v) − ϕ(w). We have J(u) = J(y) since ϕ is strictly

increasing. We then obtain

[u, (ϕ(v)− ϕ(w))x] = max
u∗∈J(u)

∫ 1

0

u∗(ϕ(v)− ϕ(w))x dx

= max
u∗∈J(y)

∫ 1

0

u∗yx dx =

∫ 1

0

d

dx
|y| dx = |y(1)| − |y(0)|.

We have used that |y| is absolutely continuous since y is; in particular, we have

d

dx
|y| = dy

dx
= 0

almost everywhere on the set {y = 0} (in other words the set {v = w}). Now it

is easy to prove (5.1).

(b) Let us prove the precompactness condition on the resolvent operators.

Consider the dissipative operator B(t) := A(t) + ωI. First, let us remark that

for λ > 0,

(v = (I − λA(t))−1u) ⇔ (v = (I − λB(t))−1(u− λωv)).
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Consequently, since (I + λA(t))−1 is contractive, we have to prove that for each

bounded subset K ⊂ X, the set⋃
t∈R

(I − λB(t))−1(K)

is relatively compact. With this goal in sight, let K ⊂ X be a bounded set. The

relationship

v = (I − λB(t))−1(u), u ∈ K,

is equivalent to the following one:v + λϕ(v)′ = u for u ∈ K,
v(0) = g(t) for ϕ(v) ∈ AC(S′),

where AC(S′) denotes the set of absolutely continuous functions on S′.

Set w := ϕ(v). We obtainw′ +
1

λ
ϕ−1(w) =

u

λ
,

w(0) = ϕ(g(t)),

Since the operator w 7→ ϕ−1(w)/λ is m-accretive continuous on R, the above

equation has a unique (continuous) mild solution w, (which is a strong solution

and is) given by

(5.3) w(x) = ϕ(g(t))−
∫ x

0

1

λ
ϕ−1(w)(ξ) dξ +

∫ x

0

u(ξ)

λ
dξ,

for x ∈ S′. Denote by W0 ⊂ X the set of functions w satisfying (5.3) with u ∈ K.

We only need to prove that the set V := {v = ϕ−1(w) : w ∈W0} is precompact

in X. This will be done in four steps.

(i) V is bounded in X, since dissipativity of B(t) gives ‖v‖1 ≤ ‖u‖1.

(ii) Owing to (5.3), a consequence of (i) is that

(5.4) ‖w‖∞ ≤ C +
2

λ
‖u‖1 := L,

where we have set C := max(|ϕ(−‖g‖∞)|, |ϕ(‖g‖∞)|). Therefore W0 is bounded

in X.

(iii) Putting

z(ξ) := − 1

λ
ϕ−1(w)(ξ) +

u(ξ)

λ
,

we obtain for any h ∈ R,

‖Thw − w‖1 ≤
∫ 1

0

∫ |h|
0

|z(x+ ξ)| dξ dx,

where, we have set w(ξ) = 0 for ξ /∈ S′. As a consequence

lim
h→0

sup
w∈W0

‖Thw − w‖1 = 0,
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which proves that W0 is relatively compact because it is bounded.

(iv) The map Ψ: W0 → X defined as Ψ(w) := ϕ−1(w) is continuous on the

compact subset W0. Let us prove it by contradiction. Suppose that Ψ is not

continuous at w∗ ∈W0. Then, there exist ε > 0 and a sequence (wn)n with

(5.5) wn ∈W0, lim
n
‖wn − w∗‖1 = 0, ‖ϕ−1(wn)− ϕ−1(w∗)‖1 ≥ ε.

These conditions imply that there is a subsequence (wnk
)k such that

lim
n
wnk

(x) = w∗(x) a.a. x ∈ S′.

Invoking (5.4), we finally deduce

lim
n

Ψ(wnk
)(x) = Ψ(w∗(x)) a.a. x ∈ S′ and |Ψ(wnk

)(x)| ≤ L a.a. x ∈ S′.

As L is an integrable function on S, the Lebesgue dominated convergence theo-

rem yields

lim
n
‖Ψ(wnk

)−Ψ(w∗)‖1 = 0,

which contradicts (5.5).

In conclusion, Ψ is continuous and thus V = Ψ(W0) ⊂ Ψ(W0) is relatively

compact. In this, verification of CK(θ, ω) is fully completed. In addition, because

g is almost periodic, ϕ ◦ g is almost periodic in R (see Proposition 4.2.5. in

[12]) and, consequently, ϕ ◦ g as a function t 7→ ϕ ◦ g(t), with values in X (by

assimilating the constant ϕ ◦ g(t) with the corresponding constant function in

X), is almost periodic. We then conclude that assumption H(θ, ω) is checked

and applying Theorem 4.1 we can claim that there is an almost periodic solution

of (BVP1). �

6. A quasi-parabolic equation

Consider now the following quasiparabolic equation with boundary value

problem:

(BVP2) =


vt = ϕ(v)xx − ωv for (t, x) ∈ R× [0, 1],

(ϕ(v))x(t, 0) = g0(t) for t ∈ R,
(ϕ(v))x(t, 1) = g1(t) for t ∈ R.

Let us remark that this boundary value problem is different from Example 4.9

in [15, p. 112] since the boundary conditions do not coincide.

We are going to show that in this application, condition H(θ, ω) holds again

(with suitable assumptions on the data) and then that there exists an almost

periodic solution.
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Assumption (HBVP2). We assume that g0 and g1 are almost periodic

and Lipschitz on R, and ϕ ∈ C2(R) is strictly increasing with ϕ(R) = R. Set

S′ = [0, 1] and consider here again X = L1(S′). Define for all t, the family

(A(t))t∈R as follows:
A(t)v = ϕ(v)xx − ωv,
D(A(t)) = {v ∈ X : (ϕ(v))x(0) = g0(t), (ϕ(v))x(1) = g1(t)

and ϕ(v)x is absolutely continuous on S′}.

Let us introduce the function

(6.1) θ(s, t) := |g1(s)− g1(t)|+ |g0(s)− g0(t)|, s, t ∈ R.

Taking into account (5.2) and assumption (HBVP2), we remark that θ satisfies

(4.1). So, in order to check H(θ, ω), we just need to prove that CK(θ, ω) holds.

Step 1. The bracket condition. Let us begin by establishing the following

estimate:

−[u− v,−A(s)u+A(t)v] ≤ θ(t, s)− ω‖u− v‖1.

Let u ∈ D(A(s)), v ∈ D(A(t)) and λ > 0. Then for every monotone increasing

Lipschitz continuous function p : R → R satisfying |p| ≤ 1 with p(0) = 0, we

have∫ 1

0

(ϕ(u)− ϕ(v))′′p(ϕ(u)− ϕ(v)) dx

= (ϕ(u)− ϕ(v))′p(ϕ(u)− ϕ(v))
∣∣1
0
−
∫ 1

0

[ϕ(u)′ − ϕ(v)′t]2p′(ϕ(u)− ϕ(v)) dx

≤ |g1(s)− g1(t)||p(ϕ(u(1))− ϕ(v(1)))|+ |g0(s)− g0(t)||p(ϕ(u(0))− ϕ(v(0)))|

≤ |g1(s)− g1(t)|+ |g0(s)− g0(t)|.

Since |p| ≤ 1, we obtain∫ 1

0

|u− v − λ(A(s)u−A(t)v)| dx

=

∫ 1

0

|(1 + λω)(u− v)− λ(ϕ(u)′′ − ϕ(v)′′)| dx

≥
∫ 1

0

(1 + λω)(u− v)p(ϕ(u)− ϕ(v)) dx

− λ
∫ 1

0

(ϕ(u)′′ − ϕ(v)′′)p(ϕ(u)− ϕ(v)) dx

≥ (1 + λω)

∫ 1

0

(u− v)p(ϕ(u)− ϕ(v)) dx− λθ(s, t).
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Replacing p by pn defined by

pn(s) :=

ns if |s| ≤ 1/n,

sign s if |s| > 1/n,

and letting n→∞, since (u− v)pn(ϕ(u)− ϕ(v))→ |u− v|, we obtain

‖u− v − λ(A(s)u−A(t)v)‖1 ≥ ‖u− v‖1 + λ(ω‖u− v‖1 − θ(s, t))

or

λ−1(‖u− v − λ(A(s)u−A(t)v)‖1 − ‖u− v‖1) ≥ ω‖u− v‖1 − θ(s, t).

Thus

−[v − u,−A(s)v +A(t)u] ≤ θ(t, s)− ω‖v − u‖1.

Step 2. The m-dissipativity condition. Let B(t) := A(t) + ωI, as in the

example of Section 5, let us now prove that B(t) is m-dissipative. Since B(t) is

dissipative, we need just to prove that

(6.2) R(I − λB(t)) = L1(S′),

for all λ > 0. It is actually sufficient (see Miyadera [15, p. 22]) to show that (6.2)

holds at least for a certain λ > 0.

So set λ = 1. As in the previous section, we denote by AC(S′) the set of

absolutely continuous functions on S′ = [0, 1]. Let an arbitrary H ∈ L1(S′) be

given. In order to solve u − B(t)u = H, we introduce v = ϕ(u) and look for

a function v which satisfies vx ∈ AC(S′) and

(6.3)


−v′′ + ϕ−1(v) = H,

v′(0) = g0(t),

v′(1) = g1(t).

The function

(6.4) k(x) :=
1

2
(x2g1(t)− (1− x)2g0(t))

obviously satisfies the zero boundary conditions. Then v is a solution of (6.3) if

and only if z := v − k satisfies the following linear boundary value problem:

(6.5)


−z′′ + ϕ−1(z) = h,

z′(0) = 0,

z′(1) = 0

with h := H + g0 − g1.
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Let us introduce A0 = A0(t) the (linear) operator A(t) with zero boundary

conditions (this operator does not depend on t) and B0 = A0 + ωI. If z is

a solution of (6.5), set z := ϕ(w). The dissipativity of A0 gives

(6.6) ‖ϕ−1(z)‖1 = ‖w‖1 ≤ ‖w−0+1 ·(A0w−A00)‖1 = ‖ϕ−1(z)−z′′‖1 = ‖h‖1.

With the help of Index Theory let us now establish that (6.5) has a solution.

Recall that Index Theory is not applicable to almost periodic problems and we

use it only to prove that the operator A(t) is maximal for each t. Let us recall

the following known properties (see [16]).

Proposition 6.1 (Abstract linear decomposition). Let L : L1(S′)→ L1(S′)

be a linear operator with domain D(L). Let P : L1(S′) → L1(S′) be a linear

projection operator satisfying ImP = kerL. Then:

(a) the restriction operator LP : D(L) ∩ kerP → ImL, given as

LP (z) = L(z), for all z ∈ D(L) ∩ kerP,

is a linear isomorphism;

(b) the operator KP : ImL→ D(L) ∩ kerP , given as

KP := L−1P , for all z ∈ ImL,

satisfies KP ◦ Lz := z − Pz for all z ∈ D(L).

Proposition 6.2 (Linear Fredholm operator of zero index). Let L : D(L)→
L1(S′) be a linear Fredholm operator of zero index such that ImL is a closed

subspace of L1(S′). Then:

(a) there exist linear continuous projection operators P,Q : L1(S′)→ L1(S′)

satisfying ImP = kerL and ImL = kerQ;

(b) the canonical projection Π: L1(S′)→ L1(S′)/ImL, given by

Πy = y + ImL,

is a continuous linear operator;

(c) there exists a continuous linear isomorphism Λ: cokerL→ kerL;

(d) the equation Lx = y, for y ∈ L1(S′), is equivalent to

(I − P )x = (ΛΠ +KP,Q)y,

where I is the identity in L1(S′) and the operator KP,Q : L1(S′)→ L1(S′)

is given by the relation

KP,Q(y) = KP (y −Qy).

In our application, we are concerned with the case

(6.7)

Lz = z′′,

D(L) = {z ∈ L1(S′) : z′′ ∈ L1(S′), z′(0) = z′(1) = 0}.
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It is well known that L is a Fredholm operator of zero index. One can find in

the literature a proof of this fact in the case of L2(S′) but not in L1(S′). Let us

give a sketch of proof for the L1 case.

(6.7) implies Lz = 0 if and only if z ≡ const. Hence dim kerL = 1.

Let us show that L1(S′) = ImL ⊕ kerL. We can represent an arbitrary

z ∈ L1(S′) as z = z1 + z2 where z1 ∈ kerL and z2 ∈ ImL with z1 ≡
∫ 1

0
v dx and

z2 = z − z1. Routine computations show that

ImL =

{
h ∈ L1(S′) :

∫ 1

0

h(s) ds = 0

}
.

Hence ImL ∩ kerL = {0} and dim cokerL = 1. Thus, in our case

Pz = Qz =

∫ 1

0

z(s) ds

and

Λz =

∫ 1

0

z(s) ds with z ∈ cokerL.

Consider the equation y −Qy = Lz (z ∈ D(L) ∩ kerP ), namely

y −
∫ 1

0

y(s) ds = z′′ with z′(0) = z′(1) = 0,

where z ∈ D(L) ∩ kerP . Solving the last one, we obtain the following form for

the operator: KP,Q : L1(S′)→ L1(S′):

KP,Q(y)(t) =

∫ 1

0

(
max(t, s)− t2 + s2

2
− 1

3

)
y(s) ds,

establishing its compactness. For V ⊂ L1(S′), set Coin(L,F, V ) := {z ∈ V :

Lz = F (z)}. The following theorem is proved in [16] .

Theorem 6.3 (Degree theory). Let U be an open bounded subset of L1(S′).

Let F : U → L1(S′) be such that the maps ΠF and KP,QF are compact and the

following conditions are fulfilled:

(a) Lz 6= µF (z) for all µ ∈ (0, 1], z ∈ D(L) ∩ ∂U ;

(b) 0 6= ΠF (z) for all z ∈ kerL ∩ ∂U ;

(c) degkerL(ΛΠF |UkerL
, UkerL) 6= 0, where the symbol degkerL means the

topological degree evaluated in the space kerL and UkerL = U ∩ kerL.

Then we have ∅ 6= Coin(L,F, U) ⊂ U ∩D(L).

We apply this theorem with the operator L given in (6.7) and F defined by

F (z) = ϕ−1(z)− h.

The choice of U will be done further.

Let us already notice that, in view of the definitions, the conclusion of the

theorem, namely Coin(L,F, U), implies that (6.5) has a (unique) solution.
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Let us check in our application condition (a) of Theorem 6.3. Suppose that

there exists zµ ∈ D(L) such that we have

Lzµ = z′′µ = µF (z) = µ(ϕ−1(z)− h).

Then, according to (6.6),

‖ϕ−1(zµ)‖1 ≤ ‖h‖1,

the following inequalities hold:

|z′µ(x)| ≤
∫ 1

0

|z′′µ(s)| ds = µ

∫ 1

0

|ϕ−1(z)− h| ds ≤ 2‖h‖1,(6.8)

|zµ(x)| ≤
∣∣∣∣zµ(0) +

∫ x

0

z′µ(s) ds

∣∣∣∣ ≤ |zµ(0)|+ 2‖h‖1.(6.9)

The set {zµ(0) : µ ∈ (0, 1]} ⊂ R is bounded. Indeed, by contradiction,

without loss of generality, suppose zµ(0)→ +∞. As far as max
x∈[0,1]

|z′µ(x)| ≤ 2‖h‖1,

we have min
x∈[0,1]

zµ → +∞. As ϕ is strictly monotonous, we obtain

ϕ−1
(

min
x∈[0,1]

zµ

)
→ +∞,

in contradiction with

(6.10) ‖h‖1 ≥ ‖ϕ−1(zµ)‖1 =

∫ 1

0

ϕ−1(zµ(s)) ds ≥ ϕ−1
(

min
x∈[0,1]

zµ(x)
)
.

Let us now choose R > sup
µ∈(0,1]

{zµ(0)}+ 2‖h‖1 and set

(6.11) U = {z ∈ L1(S′) : ‖z‖1 < R}.

Note that any function z ∈ D(L) such that Lz = µF (z) satisfies (6.9) and,

as a consequence, ‖z‖1 < R. Hence Lz 6= µF (z), for every µ ∈ (0, 1] and

z ∈ D(L) ∩ ∂U .

Now we are going to prove condition (b) of Theorem 6.3, where Π is defined by

Π: L1(S′)→ L1(S′)/ImL, Πy = y + ImL.

The compactness of ΠF is obvious. As kerL ∩ ImL = {0}, so

ΠF (z) =

∫ 1

0

F (z(s)) ds+ ImL.

Pick R ∈ R1 such that |ϕ(R)| > ‖h‖1 and |ϕ(−R)| > ‖h‖1. Note that

(kerL ∩ ∂U) = {f1, f2} and

∫ 1

0

|f1| ds =

∫ 1

0

|f2| ds = R.

Then will have

0 <

∣∣∣∣ ∫ 1

0

|ϕ(fi)| ds− ‖h‖1
∣∣∣∣ ≤ ∣∣∣∣ ∫ 1

0

ϕ(fi)− h(s) ds

∣∣∣∣, i = 1, 2,
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i.e. ΠF (z) 6= 0 when z ∈ kerL ∩ ∂U . We have

ΛΠF (z) =

∫ 1

0

ϕ(z(s))− h(s) ds.

Arguing in a similar way, we can show that there exist R > 0 and z1, z2 ∈
∂U ∩kerL such that ΛΠF (z1) > 0 and ΛΠF (z2) < 0, where U is given in (6.11).

So the third condition of Theorem 6.3 is fulfilled.

Since all conditions of Theorem 6.3 are satisfied, the boundary value problem

(6.5) has a unique solution, hence (6.3) also has a unique solution. Therefore,

B(t) + ωI is m-dissipative.

Step 3. The compactness condition. Now suppose that K ⊂ L1(S′) is

an arbitrary bounded set and λ > 0. Then, for every h ∈ K, there exists

zh ∈ L1(S′), a solution of 
−λz′′ + ϕ−1(z) = h,

z′(0) = 0,

z′(1) = 0,

and the set V = {zh : h ∈ K} is relatively compact since (see Miyadera, p. 113)

we have

|z′h(x)| ≤ 2‖K‖, |zh(x)| ≤ C + 2‖K‖,

where C = sup{|zh(0)| : h ∈ K} (the existence of C can be established by using

(6.10)) and ‖K‖ = sup
h∈K
‖h‖1.

Let us define (see (6.4))

G :=
⋃
t∈R

V (t), with V (t) = V + {kt},

where, we have set

kt(x) =
1

2
(x2g1(t)− (1− x)2g0(t)).

The set G is clearly relatively compact. Then, as we have already shown in

the example in Section 5, the set ϕ−1(G) = (I − λB(t))−1(K) is also relatively

compact in X.

Step 4. The densely defined condition. Recall that ϕ is assumed strictly

monotone satisfying ϕ ∈ C2(R), ϕ(R) = R and ϕ(0) = 0. The corresponding

operator ϕ̃ : C(S′)→ C(S′) defined by

(ϕ̃y)(s) = ϕ(y(s)), y ∈ C(S′),

is thus bijective and continuous.

We are going to prove that the set

D(A(t)) := {u ∈ C(S′) : (ϕ(u))′(k) = gk(t), k ∈ {0, 1} and (ϕ ◦ u)′ ∈ AC(S′)}
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is dense in L1(S′). Since C2(S′) is dense in L1(S′), it is sufficient to show that for

every function y ∈ C2(S′) there exists a sequence (un)n of functions satisfying

{un} ⊂ D(A(t)), n ∈ N, and lim
n
‖y − un‖1 = 0.

Let y be an arbitrary function y ∈ C2(S′). We construct the approximative

sequence (un)n in the following way. Set v = ϕ ◦ y. Since v ∈ C2(S′), it follows

that v′ ∈ AC(S′). Set an = 1/n and bn = 1 − 1/n. Consider the following

sequence of functions (vn)n:

vn(s) =



v(an) +
1

2

(
v′(an)

(
s2

an
− an

)
− (an − s)2

an
g0(t)

)
if s ∈ [0, an),

v(s) if s ∈ [an, bn],

v(bn) +
1

2

[
v′(bn)

(
(s− 1)2

bn − 1
− (bn − 1)

)
− (s− bn)2

bn − 1
g1(t)

]
if s ∈ (bn, 1].

Obviously, each vn is continuous. Note that v′n(an) = v′(an) and v′n(bn) = v′(bn),

hence {vn} ⊂ C1(S′). We also have

v′n(0) =

(
v′(an)

s

an
+

(an − s)
an

g0(t)

)∣∣∣∣
s=0

= g0(t),

v′n(1) =

(
v′(bn)

s− 1

bn − 1
− (s− bn)

bn − 1
g1(t)

)∣∣∣∣
s=1

= g1(t).

Their derivatives are uniformly bounded in C(S′), i.e.

sup
n
‖v′n‖C(S′) < +∞.

Indeed, if s ∈ [0, an], we have

|v′n(s)| = |v′(an)ns+ (1− ns)g0(t)| ≤ ‖v′‖C(S′) + |g0(t)|,

and, if s ∈ [bn, 1], then

|v′n(s)| = |n(1− s)v′(bn) + n(s− bn)g1(t)| ≤ ‖v′‖C(S′) + |g1(t)|.

Note that

vn(0) = v(an)− 1

2

(
v′(an)

n
+
g0(t)

n

)
,

vn(1) = v(bn) +
1

2

(
v′(bn)

n
+
g1(t)

n

)
.

Thus, the set {vn : n ∈ N} is bounded in C(S′), i.e. there exists M > 0 such

that

(6.12) sup
n
‖vn‖C(S′) < M.

Since vn(s)→ v(s), we have (ϕ−1 ◦ vn)(s)→ y(s). From (6.12), we deduce

|ϕ−1 ◦ vn)(s)| ≤ max(|ϕ−1(−M)|, |ϕ−1(M)|).
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Then, the Lebesgue dominated convergence theorem gives

lim
n
‖y − ϕ−1 ◦ vn‖1 = 0.

The set {un : n ∈ N} = {ϕ−1(vn) : n ∈ N} is a subset of D(A(t)) since the

following conditions hold:

(1) un = ϕ−1(vn) ∈ C(S′),

(2) (ϕ ◦ un)′(0) = v′n(0) = g0(t) and (ϕ(un))′(1) = v′n(1) = g1(t),

(3) (ϕ ◦ un)′ = v′n ∈ AC(S′).

The density assertion is now proved. �

Remark 6.4. The condition ϕ ∈ C2(R) is only required to guarantee (ϕ◦y)′

in AC(S′) since it is not always true, as shown in the following example.

Example 6.5. Let ϕ be such that

ϕ′(x) =

x sin
1

x
+ 1 if x ∈ (0, 1],

1 if x = 0,

then ϕ is continuous and strictly monotone on S′ but we have (ϕ ◦ y)′ /∈ AC(S′)

with y(s) = s.
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