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Michel Chipot

Abstract. This paper is concerned with the existence of solutions for

a class of intermediate local-nonlocal boundary value problems of the fol-
lowing type:

(IP) −div

[
a

(  
Ω(x,r)

u(y) dy

)
∇u

]
= f(x, u,∇u) in Ω, u ∈ H1

0 (Ω),

where Ω is a bounded domain of RN , a : R → R is a continuous function,

f : Ω × R × RN is a given function, r > 0 is a fixed number, Ω(x, r) =
Ω ∩ B(x, r), where B(x, r) = {y ∈ RN : |y − x| < r}. Here | · | is the
Euclidian norm, 

Ω(x,r)
u(y) dy =

1

meas(Ω(x, r))

ˆ
Ω(x,r)

u(y) dy

and meas(X) denotes the Lebesgue measure of a measurable set X ⊂ RN .
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1. Introduction

In this work we will be concerned with the intermediate class of local-nonlocal

elliptic problems

(IP) −div

(
a

( 
Ω(x,r)

u(y) dy

)
∇u
)

= f(x, u,∇u) in Ω, u ∈ H1
0 (Ω),

where Ω ⊂ RN , N ≥ 1, is a bounded domain, a : R→ R is a continuous function,

r > 0 is a fixed real number,

Ω(x, r) := Ω ∩B(x, r), with B(x, r) := {y ∈ RN ; |y − x| < r}.

Here | · | is the usual Euclidian norm of RN and 
Ω(x,r)

u(y) dy =
1

meas(Ω(x, r))

ˆ
Ω(x,r)

u(y) dy,

where meas(Ω(x, r)) is the Lebesgue measure of the set Ω(x, r).

Note that (IP) is a class of interpolating problems between the purely local

problems

(L) −div(a(u(x))∇u) = f(x, u,∇u) in Ω, u ∈ H1
0 (Ω),

and the nonlocal problems

(NL) −div

(
a

( 
Ω

u(x) dx

)
∇u
)

= f(x, u,∇u) in Ω, u ∈ H1
0 (Ω).

Note that in our case, we are considering a nonlocal quantity
ffl

Ω(x,r)
u(y) dy

which is calculated locally in neighbourhoods of the form Ω(x, r).

Remark 1.1. Although we are working in the space H1
0 (Ω), we may treat

problem (IP) in the space H1
0 (Ω; Γ0), where Γ0 ⊂ ∂Ω is a part of ∂Ω of positive

measure, that is, u = 0 on Γ0 and ∂u
∂ν = 0 on ∂Ω \ Γ0. See, for example [5].

The purely nonlocal counterpart of problem (IP) is problem (NL), it has

been studied by several authors, see e.g. [9], [8] and [7] among others. Equations

like (NL) appear in several phenomena. For instance, u = u(x) may represent a

density of population (for instance of bacteria) subject to spreading and because

we are considering homogeneous Dirichlet boundary condition (u ∈ H1
0 (Ω)) it

means that the domain Ω is surrounded by inhospitable environment. Contrary

to the local model in which the crowding effect of the population u at x depends

only on the value of the population in the same point, model (NL) considers

the case in which the crowding effect depends on the total population in Ω. In

the present model (IP), the crowding effect depends also on the value of the

population in neighbourhoods of x. According to [6], see also [1], such a model

seems to be more realistic.

In the present paper, we use mainly Galerkin’s method in order to approach

problem (IP). For this, our approach relies on a variant of the Brouwer Fixed



On a Class of Intermediate Local-Nonlocal Elliptic Problems 499

Point Theorem which will be quoted below. Its proof may be found in Lions [12,

p. 53].

Proposition 1.2. Suppose that F : Rm → Rm is a continuous function such

that (F (ξ), ξ) ≥ 0 on |ξ| = r, where ( · , · ) is the usual inner product in Rm and

| · | its corresponding norm. Then there exists ξ0 ∈ Br(0) such that F (ξ0) = 0.

This paper is organized as follows. In Section 2, we consider the existence

of solution for a class of pseudo-linear problems, while in Section 3 we prove

the existence of solution for a large class of nonlinearities involving a convective

term.

2. A pseudo-linear problem

In order to illustrate the method, we first study a simpler case, namely, the

pseudo-linear version of problem (IP). More precisely, for each f ∈ H−1(Ω), we

search weak solutions of the problem

(PL) −div

(
a

( 
Ω(x,r)

u(y) dy

)
∇u
)

= f(x) in Ω, u ∈ H1
0 (Ω).

Here H1
0 (Ω) is understood as the closure of D(Ω) in H1(Ω) and is supposed to

be equipped with the Dirichlet norm ‖u‖ = (
´

Ω
|∇u|2)1/2. H−1(Ω) denotes the

dual space of H1
0 (Ω) and 〈 · , ·〉 will denote the duality bracket between these

spaces.

We will suppose

(H1) a is continuous and there exists λ > 0 such that a(s) ≥ λ > 0 for all

s ∈ R.

Moreover, we will say that Ω is regular, if there is τ > 0 such that

(2.1) meas (Ω(x, r)) ≥ τ = τ(r) > 0, for all x ∈ Ω.

Note that this is the case for a smooth domain.

Our main result in this section is the following:

Theorem 2.1. If a satisfies (H1) and if

(a) a is bounded, or

(b) Ω is regular,

then for each f ∈ H−1(Ω), problem (PL) possesses a weak solution u ∈ H1
0 (Ω).

Proof. Since the operator

Lu = −div

(
a

( 
Ω(x,r)

u(y) dy

)
∇u
)

has no variational structure, we will attack problem (PL) by using a Galerkin

method. For that, let B = {e1, e2, . . .} be a Hilbertian basis of H1
0 (Ω) satisfying



500 C.O. Alves — F.J.S.A. Corrêa — M. Chipot

((ei, ej)) = δij , where (( · , · )) is the usual inner product in H1
0 (Ω) and δij is the

Kroenecker symbol. Setting Vm := [e1, . . . , em], the span of the set {e1, . . . , em},
for each u ∈ Vm there is ξ = (ξ1, . . . , ξm) ∈ Rm such that u =

m∑
j=1

ξjej . Thus

‖u‖ = |ξ|, where

‖u‖ =

(ˆ
Ω

|∇u|2
)1/2

and |ξ| =
( m∑
j=1

ξ2
j

)1/2

.

Consequently, Vm and Rm are isometrically isomorphic finite dimensional vector

spaces. Unless stated explicitly otherwise, we identify u↔ ξ, u ∈ Vm, ξ ∈ Rm.

Let F : Rm → Rm, F = (F1, . . . , Fm) be given by

Fi(ξ) =

ˆ
Ω

a

( 
Ω(x,r)

u(y) dy

)
∇u · ∇ei − 〈f, ei〉, i = 1, . . . ,m,

so that

Fi(ξ)ξi =

ˆ
Ω

a

(  
Ω(x,r)

u(y) dy

)
∇u · ∇(ξiei)− 〈f, (ξiei)〉, i = 1, . . . ,m.

Consequently,

((F (ξ), ξ)) =

ˆ
Ω

a

( 
Ω(x,r)

u(y) dy

)
|∇u|2 − 〈f, u〉, for all u ∈ Vm.

In view of assumption (H1), ((F (ξ), ξ)) ≥ λ‖u‖2−||f ||∗‖u‖, for all u in Vm, where

||f ||∗ denotes the strong dual norm of f . Then ((F (ξ), ξ)) > 0, if ‖u‖ > ||f ||∗/λ.

Therefore, there is um ∈ Vm with ‖um‖ ≤ ||f ||∗/λ such that F (um)=0, i.e.

0 = Fi(um) =

ˆ
Ω

a

( 
Ω(x,r)

um(y) dy

)
∇um∇ei −

ˆ
Ω

fei, for all i = 1, . . . ,m.

Hence,

(2.2)

ˆ
Ω

a

( 
Ω(x,r)

um(y) dy

)
∇um∇ϕ =

ˆ
Ω

fϕ, for all ϕ ∈ Vk, k ≤ m.

In what follows we fix k. From the boundedness of the real sequence (‖um‖), it

follows that there is a subsequence of (um), still labelled by m, such that um ⇀ u

in H1
0 (Ω) and um → u in L2(Ω). As um → u also in L1(Ω) and Ω is bounded,

we have∣∣∣∣ˆ
Ω(x,r)

um dy −
ˆ

Ω(x,r)

u dy

∣∣∣∣ ≤ ˆ
Ω(x,r)

|um − u| dy ≤
ˆ

Ω

|um − u| dy → 0,

uniformly for x ∈ Ω. In view of continuity of a it follows that

a

( 
Ω(x,r)

um dy

)
→ a

( 
Ω(x,r)

u dy

)
, for each x ∈ Ω.
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It is easy to see that in both cases (a) or (b), a(
ffl

Ω(x,r)
um dy) is bounded inde-

pendently of m. Thus by the Lebesgue theorem,

a

( 
Ω(x,r)

um(y) dy

)
∇ϕ→ a

( 
Ω(x,r)

u(y) dy

)
∇ϕ in L2(Ω).

As ∇um ⇀ ∇u in L2(Ω), taking the limit as m→ +∞ in (2.2), we getˆ
Ω

a

( 
Ω(x,r)

u(y) dy

)
∇u∇ϕ =

ˆ
Ω

fϕ, for all ϕ ∈ Vk.

Since k is arbitrary, we obtainˆ
Ω

a

(  
Ω(x,r)

u(y) dy

)
∇u∇ϕ =

ˆ
Ω

fϕ, for all ϕ ∈ H1
0 (Ω),

showing that u is a weak solution of problem (PL). �

Here, we would like to point out that one could use also the Schauder Fixed

Point Theorem in the spirit of [5] in order to get the existence result above.

However, as we have said before, the technique we developed here will be useful

in the second part of the paper.

3. A sublinear singular problem with a convective term

In this section, our main goal is to study a problem involving sublinear,

singular and convective terms. More precisely, we will be concerned with the

existence of positive solutions to the problem

(3.1)

−div

(
a

( 
Ω(x,r)

u(y) dy

)
∇u
)

= H(x)uα +
K(x)

uγ
+ L(x)|∇u|θ in Ω,

u ∈ H1
0 (Ω),

where H(x),K(x), L(x) ≥ 0, for all x ∈ Ω, are given functions whose properties

will be timely introduced and α, γ and θ are positive numbers suitably chosen.

Remark 3.1. We should remark that it would be more natural, before study-

ing problem (3.1), to attack problems like
−div

(
a

( 
Ω(x,r)

u(y) dy

)
∇u
)

= a(x)uα + b(x)uβ in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where a and b are given functions and α, β > 0 are real numbers. Note that

if 0 < α < 1 and b ≡ 0 we have a typical sublinear problem. If a ≡ 0 and

1 < β ≤ 2∗ we are in the presence of a superlinear problem. If both a, b are not

simultaneously vanishing and 0 < α < 1 < β ≤ 2∗ we have a concave-convex

problem which was studied, for example, by Ambrosetti, Brezis and Cerami [2].

Due to some technical difficulties we were not able yet to deal with it.
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In order to approach problem (3.1), let us begin by considering the auxiliary

problem

(3.2)


−div

(
a

( 
Ω(x,r)

u(y) dy

)
∇u
)

= H(x)(u+)α +
K(x)

(|u|+ ε)γ
+ L(x)|∇u|θ in Ω,

u ∈ H1
0 (Ω),

where 0 < ε < 1 is a fixed number. We will pose the following assumptions:

(H2) 0 < α, γ < 1,

(H3) H,K,L ∈ L∞(Ω) and, for h0 > 0, H(x),K(x), L(x) ≥ h0 for almost

every x ∈ Ω,

(H4) 0 < θ < 1.

Theorem 3.2. Under the assumptions of Theorem 2.1 and (H1)–(H4), prob-

lem (3.2) possesses a positive solution.

Proof. As in the previous section, we introduce functions Fi(ξ), given

now by

Fi(ξ) =

ˆ
Ω

a

(  
Ω(x,r)

u(y) dy

)
∇u∇ei

−
ˆ

Ω

H(u+)αei −
ˆ

Ω

K

(|u|+ ε)γ
ei −

ˆ
Ω

L|∇u|θei,

for all i = 1, . . . ,m. Hence

((F (ξ), ξ)) =

ˆ
Ω

a

( 
Ω(x,r)

u(y) dy

)
|∇u|2

−
ˆ

Ω

H(u+)αu−
ˆ

Ω

K
u

(|u|+ ε)γ
−
ˆ

Ω

L|∇u|θu.

We recall that, as before, we are identifying u ∈ Vm with ξ ∈ Rm. As a(s) ≥
λ > 0 for all s ∈ R, we haveˆ

Ω

a

( 
Ω(x,r)

u(y) dy

)
|∇u|2 ≥ λ

ˆ
Ω

|∇u|2.

On the other hand, by the Sobolev continuous embedding and Poincaré inequal-

ity ˆ
Ω

H(u+)αu ≤ C‖H‖∞(|∇u|2)(α+1)/2 = C‖H‖∞‖u‖α+1

and ˆ
Ω

K
u

(|u|+ ε)γ
≤
ˆ

Ω

K|u|1−γ ≤ C‖K‖∞‖u‖1−γ ,

for some positive constant C, which is independent of ε. Here, we point out that,

at this stage, 0 < ε < 1 is fixed.
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In view of (H4), one has 0 < θ < 1 < (N + 2)/N ≤ 2 if N ≥ 2, that is, in

particular θ < 2. Thus∣∣∣∣ˆ
Ω

L|∇u|θu
∣∣∣∣ ≤ ‖L‖∞[ ˆ

Ω

(|∇u|θ)2/θ

]θ/2(ˆ
Ω

|u|2/(2−θ)
)(2−θ)/2

.

Since 0 < θ < (N + 2)/N , N ≥ 2, we also have 2/(2− θ) < 2∗ = 2N/(N − 2)

and so H1
0 (Ω) ↪→ L2/(2−θ)(Ω). So,∣∣∣∣ ˆ

Ω

L|∇u|θu
∣∣∣∣ ≤ ‖L‖∞‖u‖θ|u|2/(2−θ) ≤ C‖u‖θ+1.

The last inequalities imply that

((F (ξ), ξ)) ≥ λ‖u‖2 − C‖H‖∞‖u‖α+1 − C‖K‖∞‖u‖1−γ − C‖u‖θ+1.

In view of assumptions (H2)–(H4), we may find a real constant R > 0 such that

((F (ξ), ξ)) > 0 if ‖u‖ = |ξ| = R. Here it is important to observe that R does not

depend on m or ε. By the Brouwer Fixed Point Theorem, there is uε,m ∈ Vm
such that F (uε,m) = 0, ‖uε,m‖ ≤ R, m = 1, 2, . . ., that is, for all ϕ ∈ Vm,

ˆ
Ω

a

( 
Ω

uε,m(y) dy

)
∇um∇ϕ

=

ˆ
Ω

H(u+
ε,m)αϕ+

ˆ
Ω

K

(|uε,m|+ ε)γ
ϕ+

ˆ
Ω

L|∇uε,m|θϕ.

Hereafter, we will denote by um the function uε,m. Since ‖um‖ ≤ R for all

m ∈ N, there is uε ∈ H1
0 (Ω) such that, perhaps for some subsequence,

um ⇀ uε in H1
0 (Ω),

um → uε in Lq(Ω), 1 ≤ q < 2∗,

um(x) → uε(x) a.e. in Ω.

(We have a conflict of notation between um and uε but it should be no trouble).

We now fix 1 ≤ k < m and ϕ ∈ Vk. As in the previous section,ˆ
Ω

a

( 
Ω((x,r)

um(y) dy

)
∇um∇ϕ→

ˆ
Ω

a

( 
Ω((x,r)

uε(y) dy

)
∇uε∇ϕ,

for all ϕ ∈ Vk. At the expense of extracting a subsequence we can assume that

um → uε in Lq(Ω) and |um| ≤ h almost everywhere for some h ∈ Lq(Ω). Since

for q > 2, hαϕ ∈ L1(Ω), by the Lebesgue Dominated Convergence Theorem, for

each ϕ ∈ Vk we haveˆ
Ω

H(u+
m)αϕ→

ˆ
Ω

H(u+
ε )αϕ and

ˆ
Ω

K

(|um|+ ε)γ
ϕ→

ˆ
Ω

K

(|uε|+ ε)γ
ϕ.

Our next step is to pass to the limit in the gradient term. Since (um) is

bounded in H1
0 (Ω), it is easy to prove that (|∇um|θ) is bounded in L2/θ(Ω).
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Then, there is g ∈ L2/θ(Ω) such that

(3.3) L|∇um|θ ⇀ g in L2/θ(Ω),

or, equivalently,ˆ
Ω

L|∇um|θϕ→
ˆ

Ω

gϕ, for all ϕ ∈ L(2/θ)′(Ω),

where (2/θ)′ = 2/(2− θ) is the conjugate exponent of 2/θ. Furthermore,ˆ
Ω

L|∇um|θum =

ˆ
Ω

L|∇um|θuε +

ˆ
Ω

L|∇um|θ(um − uε).

In view of um → uε in L2/(2−θ)(Ω) (note that 2/(2− θ) < 2 < 2∗), we obtain∣∣∣∣ ˆ
Ω

L|∇um|θ(um − uε)
∣∣∣∣

≤ ‖L‖∞
(ˆ

Ω

(|∇um|θ)2/θ

)θ/2(ˆ
Ω

|um − uε|2/(2−θ)
)(2−θ)/2

≤ C‖um − uε‖L2/(2−θ) → 0.

Consequently, ˆ
Ω

L|∇um|θum →
ˆ

Ω

guε.

Fixing ej , we obtain, for 1 ≤ j ≤ k,

ˆ
Ω

a

( 
Ω(x,r)

um(y) dy

)
∇um∇ej

=

ˆ
Ω

H(u+
m)αej +

ˆ
Ω

K

(|um|+ ε)γ
ej +

ˆ
Ω

L|∇um|θ ej .

Taking limits as m→ +∞, we getˆ
Ω

a

( 
Ω(x,r)

uε(y) dy

)
∇uε∇ej =

ˆ
Ω

H(u+
ε )αej +

ˆ
Ω

K

(|uε|+ ε)γ
ej +

ˆ
Ω

Lgej .

Since k is arbitrary, the last equality becomesˆ
Ω

a

( 
Ω(x,r)

uε(y) dy

)
∇uε∇ϕ =

ˆ
Ω

H(u+
ε )αϕ+

ˆ
Ω

K

(|uε|+ ε)γ
ϕ+

ˆ
Ω

Lgϕ

for all ϕ ∈ H1
0 (Ω). Hence, uε is a weak solution of the problem

−div

(
a

( 
Ω(x,r)

uε(y) dy

)
∇uε

)
= H(u+

ε )α +
K

(|uε|+ ε)γ
+ Lg

in Ω, uε ∈ H1
0 (Ω). Since a,H,K and g are nonnegative functions, the maximum

principle (see [11, Theorem 8.1, p. 179] or [10, Theorem 1.14, p. 47]) ensures that

uε ≥ 0, and so, uε is a solution to

−div

(
a

( 
Ω(x,r)

uε(y) dy

)
∇uε

)
= H(x)uαε +

K(x)

(uε + ε)γ
+ L(x)g
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in Ω, uε ∈ H1
0 (Ω). Therefore,

(3.4)

ˆ
Ω

a

( 
Ω(x,r)

uε(y) dy

)
|∇uε|2 =

ˆ
Ω

Huα+1
ε +

ˆ
Ω

K

(uε + ε)γ
uε +

ˆ
Ω

Lguε.

On the other hand, we know that
ˆ

Ω

a

(  
Ω(x,r)

um(y) dy

)
|∇um|2

=

ˆ
Ω

H(u+
m)α+1 +

ˆ
Ω

K

(|um|+ ε)γ
um +

ˆ
Ω

L|∇um|θum.

Hence

(3.5)

ˆ
Ω

a

( 
Ω(x,r)

um(y) dy

)
|∇um|2 →

ˆ
Ω

Huα+1
ε +

ˆ
Ω

K

(uε + ε)γ
+

ˆ
Ω

Lguε.

From (3.4) and (3.5),ˆ
Ω

a

( 
Ω(x,r)

um(y) dy

)
|∇um|2 →

ˆ
Ω

a

( 
Ω(x,r)

uε

)
|∇uε|2.

Arguing as in Section 1, one has that a(
ffl

Ω(x,r)
um dy) is bounded independently

of m and

(3.6) a

( 
Ω(x,r)

um(y) dy

)
→ a

( 
Ω(x,r)

uε(y) dy

)
, for all x ∈ Ω.

Henceˆ
Ω

|∇(um − uε)|2 ≤
1

λ

ˆ
Ω

a

( 
Ω(x,r)

um(y) dy

)
|∇um − uε|2

=
1

λ

ˆ
Ω

a

(  
Ω(x,r)

um(y) dy

)
{|∇um|2 − 2∇um · ∇uε + |∇uε|2} → 0,

i.e.

(3.7) um → uε in H1
0 (Ω).

The above limit implies that up to a subsequence

(3.8) L|∇um|θ ⇀ L|∇uε|θ in L2/θ(Ω).

To see that, note first that fromˆ
Ω

(|∇um| − |∇uε|)2 ≤
ˆ

Ω

|∇um −∇uε|2

one derives that |∇um| → |∇uε| in L2(Ω). Thus, up to a subsequence one has

|∇um| → |∇uε| almost everywhere in Ω, |∇um| ≤ h for some h ∈ L2(Ω). This

implies that, for any ϕ ∈ L(2/θ)′(Ω), L|∇um|θϕ ≤ Lhθϕ with Lhθϕ ∈ L1(Ω).

Then (3.8) follows from the Lebesgue Dominated Convergence Theorem. Now,

we recall that for all j = 1, 2, . . .,ˆ
Ω

a

( 
Ω

um(y) dy

)
∇um∇ej =

ˆ
Ω

H(u+
m)αej+

ˆ
Ω

K

(|um|+ ε)γ
ej+

ˆ
Ω

L|∇um|θej .
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Gathering (3.6), (3.7), (3.8) and taking limits as m→ +∞ on both sides of the

last equality, we obtainˆ
Ω

a

( 
Ω

uε(y) dy

)
∇uε∇ej =

ˆ
Ω

H(u+
ε )αej +

ˆ
Ω

K

(uε + ε)γ
ej +

ˆ
Ω

L|∇uε|θej .

So, uε ∈ H1
0 (Ω) is a positive weak solution of auxiliary problem (3.2). �

Now, we are ready to prove the main result of this section

Theorem 3.3. Under the same assumptions as in Theorem 3.2, problem

(3.1) possesses a weak positive solution.

Proof. First of all we note that that we will use the notation introduced in

the previous sections. Thus, we recall that ‖um‖ ≤ R for all m = 1, 2, . . ., and

R does not depend on ε. Hence ‖uε‖ ≤ lim inf ‖um‖ ≤ R. Consequently, fixing

εn = 1/n and vn := uεn , for some subsequence still denoted by n, there exists

v ∈ H1
0 (Ω) satisfying

vn ⇀ v in H1
0 (Ω),

vn → v in Lq(Ω), 1 ≤ q < 2∗,

vn(x) → v(x) a.e. in Ω.

Let us consider the function

M(t) = h0t
α +

h0

(t+ 1)γ
, for t ≥ 0,

where h0 is defined in assumption (H3). Thus, there is m0 > 0 such that M(t) ≥
m0 > 0 for all t ≥ 0. Noticing that

H(x)vαn +
K(x)

(vn + εn)γ
+ L|∇vn|θ ≥ h0v

α
n +

h0

(vn + εn)γ
≥ m0,

for all n ∈ N, we obtain

−div

(
a

( 
Ω(x,r)

vn(y) dy

)
∇vn

)
≥ m0 in Ω, for all n ∈ N.

Let ωn > 0 be the unique solution of the problem

−div

(
a

( 
Ω(x,r)

vn(y) dy

)
∇wn

)
= m0 in Ω, wn ∈ H1

0 (Ω).

Note that, for each n ∈ N, a(
ffl

Ω(x,r)
vn(y) dy) is a positive function, which belongs

to C(Ω), this implies positivity of wn. Consequently,

−div

(
a

( 
Ω(x,r)

vn(y) dy

)
∇vn

)
≥ −div

(
a

( 
Ω(x,r)

vn(y) dy

)
∇wn

)
,

i.e. ˆ
Ω

a

( 
Ω(x,r)

vn(y) dy

)
∇vn∇ϕ ≥

ˆ
Ω

a

( 
Ω(x,r)

vn

)
∇wn∇ϕ,
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for all ϕ ∈ H1
0 (Ω), ϕ ≥ 0. This implies, by the aforementioned maximum

principle, that

(3.9) vn ≥ wn in Ω.

Since ˆ
Ω

a

( 
Ω(x,r)

vn(y) dy

)
∇wn∇ϕ =

ˆ
Ω

m0ϕ, for all ϕ ∈ H1
0 (Ω),

we have λ‖wn‖2 ≤ C‖wn‖ and so, ‖wn‖ ≤ C for all n ∈ N. As before, there is

w ∈ H1
0 (Ω) such that wn ⇀ w in H1

0 (Ω) and

−div

(
a

( 
Ω(x,r)

v(y) dy

)
∇w
)

= m0 in Ω, w ∈ H1
0 (Ω).

Consequently, w > 0 in Ω and, thanks to the elliptic regularity, w ∈ C(Ω). In

view of (3.9), if n→∞, we obtain

(3.10) v(x) ≥ w(x) > 0 a.e. in Ω.

We now claim that up to a subsequence ∇vn(x)→ ∇v(x) almost everywhere

in Ω. Indeed, given Ω′ b Ω, there is φ ∈ C∞0 (Ω) such that φ(x) = 1 for all

x ∈ Ω′.

Repeating the arguments of the proof of the previous theorem and using

(3.10) to control the singular term, we deduce also that for some g ∈ L2/θ(Ω)

(see (3.3))
ˆ

Ω

a

(  
Ω

v(y) dy

)
∇v∇ψ =

ˆ
Ω

Hvαψ +

ˆ
Ω

K

vγ
ψ +

ˆ
Ω

gψ,

for all ψ ∈ H1
0 (Ω) with compact support. Taking ψ = vφ leads to

ˆ
Ω

a

( 
Ω

v(y) dy

)
|∇v|2φ+ a

( 
Ω

v(y) dy

)
∇v∇φv

=

ˆ
Ω

Hvαvφ+

ˆ
Ω

K

vγ
vφ+

ˆ
Ω

gvφ,

Now, taking vnφ as a test function in the equation satisfied by vn, one gets

ˆ
Ω

a

( 
Ω

vn(y) dy

)
|∇vn|2φ+ a

( 
Ω

vn(y) dy

)
∇vn∇φv

=

ˆ
Ω

Hvαnvnφ+

ˆ
Ω

K

vγn
vnφ+

ˆ
Ω

|∇vn|θvnφ.

Taking the limit in n, we deduce easily arguing as in the proof of Theorem 3.2

that

(3.11)

ˆ
Ω

a

( 
Ω

vn(y) dy

)
|∇vn|2φ→

ˆ
Ω

a

( 
Ω

v(y) dy

)
|∇v|2φ.
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We have also

(3.12)

ˆ
Ω′
|∇(vn − v)|2 ≤ 1

λ

ˆ
Ω

a

( 
Ω(x,r)

vn(y) dy

)
|∇vn − v|2φ

and

ˆ
Ω

a

( 
Ω(x,r)

vn(y) dy

)
|∇vn − v|2φ

=

ˆ
Ω

a

( 
Ω(x,r)

vn(y) dy

)(
|∇vn|2 − 2∇vn.∇v + |∇v|2

)
φ.

From (3.11) and (3.12), taking the limit in n, we deduce |∇vn − ∇v| → 0 in

L2(Ω′). Hence, for some subsequence, ∇vn(x) → ∇v(x) almost everywhere

in Ω′.

Since Ω =
∞⋃
j=1

Ωj with Ωj = {x ∈ Ω : d(x, ∂Ω) ≥ 1/j}, the above study

implies that ∇vn(x) → ∇v(x) almost everywhere in Ωj , consequently, for some

subsequence, ∇vn(x)→ ∇v(x) almost everywhere in Ω.

Now, gathering this with the boundedness of (|∇vn|θ) in L2/θ(Ω) we can

conclude as below (3.8) that the weak limit of (|∇vn|θ) in L2/θ(Ω) is |∇v|θ,
that is, ˆ

Ω

|∇vn|θψ →
ˆ

Ω

|∇v|θψ, for all ψ ∈ L2/θ(Ω).

Using this, we derive easily that v verifies

(3.13)

ˆ
Ω

a

( 
Ω

v(y) dy

)
∇v∇ψ

=

ˆ
Ω

Hvαψ +

ˆ
Ω

K

vγ
ψ +

ˆ
Ω

L|∇v|θψ, for all ψ ∈ C∞0 (Ω).

From the above equality, there is C > 0 such that∣∣∣∣ˆ
Ω

Kψ

vγ

∣∣∣∣ ≤ C‖ψ‖, for all ψ ∈ C∞0 (Ω).

Combining the density of C∞0 (Ω) in H1
0 (Ω) with the last inequality, we derive

that ∣∣∣∣ˆ
Ω

Kw

vγ

∣∣∣∣ ≤ C‖w‖, for all w ∈ H1
0 (Ω).

Then, if w ∈ H1
0 (Ω) and (ψn) ⊂ C∞0 (Ω) verify ψn → w in H1

0 (Ω), we can infer

that

lim
n→∞

ˆ
Ω

Kψn
vγ

=

ˆ
Ω

Kw

vγ
.



On a Class of Intermediate Local-Nonlocal Elliptic Problems 509

The last limit combined with equality (3.13) and the Sobolev embedding gives

ˆ
Ω

a

( 
Ω

v(y) dy

)
∇v∇ψ

=

ˆ
Ω

Hvαψ +

ˆ
Ω

K

vγ
ψ +

ˆ
Ω

L|∇v|θψ, for all ψ ∈ H1
0 (Ω),

showing that v is a solution of problem (3.1). �
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