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WELL-POSEDNESS

FOR MIXED QUASI-VARIATIONAL-HEMIVARIATIONAL

INEQUALITIES

Zhenhai Liu — Shengda Zeng — Biao Zeng

Abstract. In this paper, we consider the well-posedness of mixed quasi-

variational-hemivariational inequalities ((MQVHVI) for short). By intro-
ducing a new concept of the α-η-monotone mappings, we establish sev-

eral metric characterizations and equivalent conditions of well-posedness

for (MQVHVI).

1. Introduction

As an important and useful generalization of variational inequalities, the the-

ory of hemivariational inequalities was firstly introduced by P.D. Panagiotopou-

los (cf. [30], [32]–[34]) as variational expressions for several classes of mechanical

problems with nonsmooth and nonconvex energy superpotentials. Because of

their important applications in mechanics and engineering, especially in non-

smooth analysis and optimization, hemivariational inequalities have extensively

been studied by many authors recently. For more related works, we refer to [3],

[5]–[7], [13], [18]–[26], [29], [30], [35], [40], [42] and the references therein.
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On the other hand, the classical concept of well-posedness for minimization

problems, which has been known as the Tykhonov well-posedness, is due to

Tykhonov [37], which requires the existence and uniqueness of solution to global

minimization problems and the convergence of every minimizing sequence toward

the unique solution. However, in many practical situations, the solution may be

not unique for an optimization problem. Thus, the concept of well-posedness

in the generalized sense was introduced, which means the existence of solutions

and the convergence of some subsequence of every minimizing sequence toward

a solution. The researched topic is important, because the well-posedness of the

problems plays a crucial role in numerical analysis and there is a need to study

the convergence of approximating sequences. So, many authors were devoted

to generalizing the concept of well-posedness of optimization problems (see [1],

[10]), variational inequalities (see [9], [11], [12], [27], [36]), fixed point problems

(see [17]), equilibrium problems (see [14], [16], [38], [39], [28]), inclusion problems

(see [8]), etc.

However, there are very few results on well-posedness for hemivariational

inequalities. Goeleven and Mentagui [13] firstly generalized the well-posedness

concept to hemivariational inequalities and presented some basic results con-

cerning the well-posed hemivariational inequalities. Recently Xiao et al. in [40],

and [41] considered the well-posedness for a class of variational-hemivariational

inequalities and obtained some equivalence results for well-posedness of hemivari-

ational inequalities. They gave some metric characterizations for the well-posed

variational-hemivariational inequalities.

Motivated by the aforementioned works, we shall investigate the well-posed-

ness of mixed quasi-variational-hemivariational inequalities. We establish several

metric characterizations and equivalent conditions of well-posedness for mixed

quasi-variational-hemivariational inequalities.

In the sequel, let K be a nonempty, closed and convex subset of a real

Banach space E with its dual E∗, F : K ⇒ E∗ and S : K ⇒ K be two set-

valued mappings. Let T : K → E∗ be a perturbation term, φ : K → R ∪ {+∞}
be a proper convex functional, η : E × E → E and f ∈ E∗. In this paper, we

shall deal with the following mixed quasi-variational-hemivariational inequality

((MQVHVI) for short):

Find u0 ∈ S(u0) and u∗0 ∈ F (u0) such that

〈u∗0, η(v, u0)〉+ 〈Tu0 − f, v − u0〉+ J◦(u0; v − u0) + φ(v)− φ(u0) ≥ 0,

for all v ∈ S(u0), where J◦(u; v) denotes the generalized directional derivative

of a locally Lipschitz functional J : E → R at u in the direction v.

Now, let us consider some special cases of problem (MQVHVI).

Case 1. If η(v, u) = v− u, T = 0, φ = 0, then (MQVHVI) is reduced to the

following generalized quasi-variational-hemivariational inequality:
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Find u ∈ S(u) and u∗ ∈ F (u) such that:

〈u∗ − f, v − u〉+ J◦(u; v − u) ≥ 0, for all v ∈ S(u),

which was considered by one of the present authors [20].

Case 2. If η(v, u) = v − u, T = 0, f = 0 and S(u) ≡ K for all u ∈ K, then

(MQVHVI) is reduced to the following variational-hemivariational inequality:

Find u ∈ K and u∗ ∈ F (u) such that:

〈u∗, v − u〉+ J◦(u; v − u) + φ(v)− φ(u) ≥ 0, for all v ∈ K.

Several existence results of solutions for this kind of variational-hemivariational

inequalities were obtained by Costea and Lupu [6] if F is monotone and lower

semicontinuous. For more special cases in this direction, we can see [42], [11]

and [2].

Case 3. If the operator F is a single-valued mapping, η(v, u) = v − u,

φ = 0 and S(u) ≡ K for all u ∈ K, then (MQVHVI) is reduced to the following

variational-hemivariational inequality:

Find u ∈ K such that:

〈Fu+ Tu− f, v − u〉+ J◦(u; v − u) ≥ 0, for all v ∈ K,

which was considered by Goeleven and Mentagui [13], Xiao et al. [40], [41]. For

other special cases of (MQVHVI) we refer to [12], [16] and the references therein.

Therefore, our results in this paper extend and generalize some well-known

results obtained by many authors (cf. [2], [6], [11]–[13], [16], [20], [40]–[42]) in

many directions. We emphasize that our results cannot be obtained straightfor-

wardly from the previous works.

This paper is organized as follows. In Section 2, we will recall some basic

preliminaries of hemivariational inequality, metric concepts and Mosco conver-

gent sequence. In Section 3, we will introduce α-η-monotone mappings and

well-posedness concepts for mixed quasi-variational-hemivariational inequality

problems. In Section 4, we shall obtain the equivalence results between the

well posedness, L-α-well-posedness and some corresponding metric characteriza-

tions. In Section 5, we shall discuss some characterizations of well-posedness

and L-α-well-posedness in the generalized sense for mixed quasi-variational-

hemivariational inequalities.

2. Preliminaries

In this section, we firstly recall some useful notions and results in nonsmooth

analysis and nonlinear analysis. A functional φ : E → R is called locally Lip-

schitz, if for every u ∈ E there exist a neighbourhood U of u and a constant
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Lu > 0 such that

|φ(v1)− φ(v2)| ≤ Lu‖v1 − v2‖, for all v1, v2 ∈ U.

Assume that φ : E → R is a locally Lipschitz functional in Banach space E, we

denote by φ◦(u; v) the generalized directional derivative of φ at u ∈ E in the

direction v ∈ E, that is

φ◦(u; v) = lim sup
ω→u,λ↓0

φ(ω + λv)− φ(ω)

λ
.

Definition 2.1. A functional φ : E → R is said to be:

(a) lower semicontinuous (l.s.c. for short) at u, if for every sequence {un}
in E converging to u,

φ(u) ≤ lim inf
n→∞

φ(un);

(b) upper semicontinuous (u.s.c. for short) at u, if for every sequence {un}
in E converging to u,

φ(u) ≥ lim sup
n→∞

φ(un).

A functional φ is said to be upper (resp. lower) semicontinuous on subset

K of E, if it is upper (resp. lower) semicontinuous at every point of K.

The next lemma provides some basic properties for the generalized directional

derivative and generalized gradient.

Lemma 2.2 ([4]). Let E be a real Banach space, u, v ∈ E and φ : E → R be

a locally Lipschitz functional defined in E. Then:

(a) the functional v 7→ φ◦(u; v) is finite, positively homogeneous, subadditive

and satisfies

|φ◦(u; v)| ≤ Lu‖v‖;
(b) φ◦(u; v) is upper semicontinuous on E × E as a function of (u, v);

(c) φ◦(u;−v) = (−φ)◦(u; v).

Definition 2.3. Let S be a nonempty subset of E. The measure, say µ, of

noncompactness for the set S is defined by

µ(S) := inf

{
ε > 0 : S =

n⋃
i=1

Si, diam(Si) < ε, i = 1, . . . , n

}
,

where diam(Si) means the diameter of the set Si.

Definition 2.4. Let A,B be nonempty subsets of E. The Hausdorff metric

H( · , · ) between A and B is defined by

H(A,B) := max{e(A,B), e(B,A)},

where e(A,B) := sup
a∈A

d(a,B) with d(a,B) := inf
b∈B
‖a− b‖.
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Remark 2.5. Let {An} be a sequence of nonempty subsets of E. We say that

An converges to A in the sense of Hausdorff metric if and only if H(An, A)→ 0.

It is easy to see that e(An, A) → 0 if and only if d(an, A) → 0 for all selections

an ∈ An.

Definition 2.6. A set-valued mapping F : X ⇒ Y (X, Y are Hausdorff

topological spaces) is said to be lower semicontinuous (Vietoris lower semicon-

tinuous) at u0 ∈ X (l.s.c. at u0 for short), if for every open set V ⊂ Y such that

F (u0)∩ V 6= ∅, we can find a neighbourhood Uu0
such that F (u)∩ V 6= ∅ for all

u ∈ Uu0
. If this is true at every u0 ∈ X, we say that F is lower semicontinuous

(l.s.c. for short).

Remark 2.7. It is clear from Definition 2.6 that the notion of lower semi-

continuity coincides with the usual notion of continuity of a mapping F between

two Hausdorff topological spaces when F is single-valued.

The following proposition gives a useful characterization of lower semiconti-

nuity.

Proposition 2.8. Given a set-valued mapping F : X ⇒ Y , the following

statements are equivalent:

(a) F is l.s.c.

(b) If u ∈ X, {uλ}λ∈J ⊂ X is a net in X such that uλ → u and u∗ ∈ F (u),

then for each λ ∈ J we can find u∗λ ∈ F (uλ) such that u∗λ → u∗ in Y .

We end this section with the Mosco convergence introduced in [31]. A subset

sequence {Hn} of E is said to be Mosco convergent to a set H if

H = lim inf
n→∞

Hn = w- lim sup
n→∞

Hn,

where lim inf
n→∞

Hn and w- lim sup
n→∞

Hn mean the Painlevé–Kuratowski strong limit

inferior and weak limit superior of {Hn}, respectively, that is

lim inf
n→∞

Hn = {u ∈ E : for each n ∈ N, ∃un ∈ Hn such that un → u},

w- lim sup
n→∞

Hn = {u ∈ E : for each k ∈ N,

∃nk ↑ +∞ and ynk
∈ Hnk

such that ynk
⇀ u},

where “⇀” means weak convergence.

If H = lim inf
n→∞

Hn, we call that the sequence {Hn} lower semi–Mosco con-

verges to H. Obviously, the lower semi–Mosco convergence of {Hn} to H implies

the closedness of the set H.

Remark 2.9. It is easy to see that a subset sequence {Hn} of E Mosco

converges to a set H implies that the sequence {Hn} also lower semi–Mosco

converges to the set H, but the converse is not true in general.
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3. Well-posedness of (MQVHVI) and generalized monotonicity

In this section, we introduce several classes of well-posedness for (MQVHVI)

and the concept of relaxed η − α-monotonicity.

Definition 3.1. A sequence {un} in K is an approximating sequence of

(MQVHVI) if

(a) there exists a sequence {u∗n} in E∗ with u∗n ∈ F (un) for all n ∈ N;

(b) there exists a nonnegative sequence {εn} with εn → 0 as n → ∞ such

that d(un, S(un)) ≤ εn and, for all v ∈ S(un) and for all n ∈ N,

〈u∗n, η(v, un)〉+ 〈Tun − f, v − un〉+ J◦(un; v − un) + φ(v)− φ(un)

≥ −εn‖v − un‖.

Definition 3.2. The problem (MQVHVI) is said to be strongly (respec-

tively, weakly) well-posed, if it has a unique solution u0 and every approximating

sequence {un} strongly (respectively, weakly) converges to u0.

Definition 3.3. The problem (MQVHVI) is said to be strongly (respec-

tively, weakly) well-posed in the generalized sense, if the solution set Γ is non-

empty and every approximating sequence {un} has a subsequence which strongly

(respectively, weakly) converges to some point of Γ.

Obviously, the strong well-posedness (in the generalized sense) implies the

weak well-posedness (in the generalized sense), but the converse is not true in

general.

Next, we introduce the concept of relaxed η − α-monotonicity.

Definition 3.4. Let η : K ×K → E, α : E → R and F : K ⇒ E∗. F is said

to be relaxed η − α-monotone, if for all u, v ∈ K

(3.1) 〈v∗ − u∗, η(v, u)〉 ≥ α(v − u), for all u∗ ∈ F (u) and for all v∗ ∈ F (v).

It is easy to see that the relaxed η − α−monotonicity implies the following

special cases:

(1) If η(v, u) = v−u for all u, v ∈ K and α(u) = m‖u‖2 for all u ∈ E,m > 0,

then (3.1) becomes

〈v∗ − u∗, v − u〉 ≥ m‖v − u‖2, for all u∗ ∈ F (u) and for all v∗ ∈ F (v),

which means that F is strongly monotone with constant m > 0.

(2) If η(v, u) = v − u for all u, v ∈ K and α(u) ≡ 0 for all u ∈ E, then (3.1)

becomes

〈v∗ − u∗, v − u〉 ≥ 0, for all u∗ ∈ F (u) and for all v∗ ∈ F (v),

which means that F is monotone.
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(3) If η(v, u) = v−u for all u, v ∈ K and α(u) = −m‖u‖2 for all u ∈ E,m > 0,

then (3.1) becomes

〈v∗ − u∗, v − u〉 ≥ −m‖v − u‖2, for all u∗ ∈ F (u) and for all v∗ ∈ F (v),

which means that F is relaxed monotone with constant m > 0.

(4) If η(v, u) = v − u for all u, v ∈ K, then (3.1) becomes

〈v∗ − u∗, v − u〉 ≥ α(v − u), for all u∗ ∈ F (u) and for all v∗ ∈ F (v),

and F is said to be relaxed α-monotone.

From the above definitions, we have the following implications (and the in-

verse of every implication is not true in general):

strong monotonicity ⇒ monotonicity ⇒ relaxed monotonicity

⇓

relaxed η − α-monotonicity ⇐ relaxed α-monotonicity

Example 3.5. Let E = R3, K = [−1, 1]×{0}×[−1, 1] and F : K ⇒ E∗ = R3

denoted by:

F (u) = F (u1, 0, u3) = {(u∗1, u∗2, u∗3) ∈ R3 : u∗1 = u21, u
∗
2 ∈ [−1, 1], u∗3 = u23}.

We point out that F is relaxed η − α-monotone with

η(v, u) = (u21 − v21 , 0, u23 − v23)T and α(u) = −4‖u‖2.

Indeed, for any u, v ∈ K, we have

F (u) = {(u21, u2, u23) : u2 ∈ [−1, 1]}, and F (v) = {(v21 , v2, v23) : v2 ∈ [−1, 1]}.

For any u∗ ∈ F (u), v∗ ∈ F (v), we obtain

〈v∗ − u∗, η(v, u)〉 = 〈(v21 − u21, v2 − u2, v23 − u23)T , (u21 − v21 , 0, u23 − v23)T 〉

= − [(v1 + u1)2(v1 − u1)2 + (u3 + v3)2(v3 − u3)2]

≥ − 4[(v1 − u1)2 + (v3 − u3)2] = −4‖v − u‖2.

Definition 3.6. A sequence {un} in K is an L-α-approximating sequence

for (MQVHVI), if there exists a nonnegative sequence {εn} with εn → 0 as

n→ 0 such that d(un, S(un)) ≤ εn, and, for all v∗ ∈ F (v) and for all n ∈ N

〈v∗, η(v, un)〉+ 〈Tun − f, v − un〉+ J◦(un; v − un) + φ(v)− φ(un)

≥ α(v − un)− εn‖v − un‖.

Definition 3.7. (MQVHVI) is said to be strongly (respectively, weakly)

L-α-well-posed, if it has a unique solution u0 and every L-α-approximating se-

quence {un} strongly (respectively, weakly) converges to u0.
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Definition 3.8. (MQVHVI) is said to be strongly (respectively, weakly)

L-α-well-posed in the generalized sense, if the solution set Γ of (MQVHVI) is

nonempty and every L-α-approximating sequence {un} has a subsequence which

strongly (respectively, weakly) converges to some point of Γ.

Remark 3.9. If F is relaxed η − α-monotone, we have:

(a) an approximating sequence for (MQVHVI) is an L-α-approximating se-

quence;

(b) if (MQVHVI) is strongly (respectively, weakly) L-α-well-posed, it is also

strongly (respectively, weakly ) well-posed;

(c) if (MQVHVI) is strongly (respectively, weakly) L-α-well-posed in the

generalized sense, it is also strongly (respectively, weakly) well-posed in

the generalized sense.

4. The characterizations of well-posedness for (MQVHVI)

In this section, we establish the metric characterizations and derive some

conditions under which (MQVHVI) is strongly well-posed or strongly L-α-well-

posed. For any ε > 0, we define

Ω(ε) = {u ∈ K : d(u, S(u)) ≤ ε, ∃u∗ ∈ F (u) such that

〈u∗, η(v, u)〉+ 〈Tu− f, v − u〉+ J◦(u; v − u) + φ(v)− φ(u) ≥ −ε‖v − u‖,

for all v ∈ S(u)},

Φ(ε) = {u ∈ K : d(u, S(u)) ≤ ε, such that

〈v∗, η(v, u)〉+ 〈Tu− f, v−u〉+J◦(u; v−u) +φ(v)−φ(u) ≥ α(v−u)− ε‖v−u‖,

for all v ∈ S(u) and for all v∗ ∈ F (v)}.

We also make the following assumptions:

(A1) F : K ⇒ E∗ is l.s.c. and relaxed η − α-monotone;

(A2) T : K → E∗ is continuous;

(A3) J : E → R is a locally Lipschitz functional and φ : K → R is a convex

continuous functional;

(A4) the function η : K×K → E is continuous on K×K with η(u, u) = 0 for

any u ∈ K and affine with respect to the first argument, i.e. if for any

ui ∈ K(i = 1, . . . , n) and λi ∈ [0, 1] with
n∑
i=1

λi = 1,

η

( n∑
i=1

λiui, ·
)

=

n∑
i=1

λiη(ui, · );

(A5) α : E → R satisfies lim
t→0+

α(tu)/t = 0 for all u ∈ E, and lim sup
n→∞

α(un) ≥

α(u) whenever un → u.
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The following lemma plays an important role in the sequel.

Lemma 4.1. Let K0 ⊂ K be a nonempty convex subset. If assumptions (A1)–

(A5) hold, then for each u0 ∈ K0 the following two statements are equivalent:

(a) There exists u∗0 ∈ F (u0) such that, for all v ∈ K0,

〈u∗0, η(v, u0)〉+ 〈Tu0 − f, v − u0〉+ J◦(u0; v − u0) + φ(v)− φ(u0) ≥ 0.

(b) The following inequality holds:

(4.1) 〈v∗, η(v, u0)〉+〈Tu0−f, v−u0〉+J◦(u0; v−u0)+φ(v)−φ(u0) ≥ α(v−u0),

for all v ∈ K0, for all v∗ ∈ F (v).

Proof. According to the relaxed η−α-monotonicity of F , for any u, v ∈ K0

we have

(4.2) 〈v∗ − u∗, η(v, u)〉 ≥ α(v − u), for all v∗ ∈ F (v) and for all u∗ ∈ F (u).

By condition (a) and (4.2), we have

〈v∗, η(v, u0)〉+ 〈Tu0 − f, v − u0〉+ J◦(u0; v − u0) + φ(v)− φ(u0) ≥ α(v − u0),

for all v ∈ K0 and for all v∗ ∈ F (v). Therefore, inequality (b) holds.

Conversely, we suppose that inequality (b) holds. Since K0 is convex, for any

v ∈ K0 and λ ∈ [0, 1], we have vλ := λv + (1− λ)u0 ∈ K0. By (4.1), we obtain

〈v∗λ, η(vλ, u0)〉+〈Tu0−f, vλ−u0〉+J◦(u0; vλ−u0)+φ(vλ)−φ(u0) ≥ α(vλ−u0),

for all v∗λ ∈ F (vλ). By virtue of Lemma 2.2 and (A4), we have

(4.3) 〈v∗λ, η(v, u0)〉+ 〈Tu0 − f, v − u0〉+ J◦(u0; v − u0) + φ(v)− φ(u0)

≥ α(λ(v − u0))

λ
for all v∗λ ∈ F (vλ).

For every u∗0 ∈ F (u0), there exists v∗λ ∈ F (vλ) such that v∗λ → u∗0 in E∗ (the

existence of such a sequence is ensured by Proposition 2.8 and the fact that F

is l.s.c.). Letting λ→ 0 in (4.3), we obtain

〈u∗0, η(v, u0)〉+ 〈Tu0 − f, v − u0〉+ J◦(u0; v − u0) + φ(v)− φ(u0)

= lim
λ→0

[〈v∗λ, η(v, u0)〉+ 〈Tu0 − f, v − u0〉+ J◦(u0; v − u0) + φ(v)− φ(u0)]

≥ lim
λ→0

α(λ(v − u0))

λ
= 0,

which implies that

〈u∗0, η(v, u0)〉+ 〈Tu0 − f, v − u0〉+ J◦(u0; v − u0) + φ(v)− φ(u0) ≥ 0,

for all v ∈ K0. �
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Obviously, from the second part of the above proof, the statement in (a) may

be changed into

inf
u∗
0∈F (u0)

〈u∗0, η(v, u0)〉+ 〈Tu0 − f, v − u0〉+ J◦(u0; v − u0) + φ(v)− φ(u0) ≥ 0,

for all v ∈ K0.

Corollary 4.2. Let S : K ⇒ K be a closed, convex valued mapping. If

assumptions (A1)–(A5) hold, then u ∈ K is a solution of (MQVHVI) if and only

if it solves the following problem:

• Find u ∈ S(u) such that

〈v∗, η(v, u)〉+ 〈Tu− f, v − u〉+ J◦(u; v − u) + φ(v)− φ(u) ≥ α(v − u),

for all v ∈ S(u) and for all v∗ ∈ F (v).

Theorem 4.3. Let S : K ⇒ K and F : K ⇒ E∗ be two set-valued mappings,

and let S be a closed, convex valued mapping. Then (MQVHVI) is strongly

well-posed if and only if the solution set Γ of (MQVHVI) is nonempty and

(4.4) lim
ε→0

diam(Ω(ε)) = 0.

Proof. Suppose that (MQVHVI) is strongly well-posed. By its definition,

(MQVHVI) has a unique solution u0 ∈ K, thus Γ 6= ∅. Now, we shall show that

(4.4) holds. Arguing by contradiction, we assume that diam(Ω(ε)) does not tend

to 0 as ε → 0. Thus there exist a constant β > 0 and a positive sequence {εn}
with εn → 0 as n → ∞, such that for each n ∈ N there exist u

(1)
n , u

(2)
n ∈ Ω(εn)

satisfying

(4.5) ‖u(1)n − u(2)n ‖ > β > 0.

Since u
(1)
n , u

(2)
n ∈ Ω(εn), then the sequences {u(1)n } and {u(2)n } are both approxi-

mating sequences of (MQVHVI). Hence,

(4.6) lim
n→∞

u(1)n = lim
n→∞

u(2)n = u0.

From (4.5) and (4.6) we have

0 < β < ‖u(1)n − u(2)n ‖ ≤ ‖u(1)n − u0‖+ ‖u(2)n − u0‖ → 0,

which is a contradiction.

Conversely, (4.4) and Γ 6= ∅ imply that Γ is singleton point set. We may

choose that {u0}=Γ. Let {un}⊂K be an approximating sequence of (MQVHVI).

Then, there exist a nonnegative sequence {εn} with εn → 0 as n→∞ and {u∗n}
in E∗ with u∗n ∈ F (un) such that d(un, S(un)) ≤ εn, and

〈u∗n, η(v, un)〉+ 〈Tun−f, v−un〉+J◦(un; v−un)+φ(v)−φ(un) ≥ −εn‖v−un‖,
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for all v ∈ S(un), for all n ∈ N. That is, un ∈ Ω(εn) for all n ∈ N. Since u0 ∈ Γ,

hence u0 ∈ Ω(εn) and

lim
n→∞

‖un − u0‖ ≤ lim
n→∞

diam(Ω(εn)) = 0,

which implies that {un} strongly converges to u0. So (MQVHVI) is strongly

well-posed. �

In fact, when the set-valued mapping F is relaxed η − α-monotone we can

easily get that (MQVHVI) is strongly L-α-well-posed.

Theorem 4.4. Let S : K ⇒ K and F : K ⇒ E∗ be two set-valued mappings,

and let S be a closed, convex valued mapping. If F is relaxed η − α-monotone,

then (MQVHVI) is strongly L-α-well-posed if and only if the solution set Γ of

(MQVHVI) is nonempty and

lim
ε→0

diam(Φ(ε)) = 0.

The proof is similar to that of Theorem 4.3. We omit it here.

In the above two theorems, the assumption Γ 6= ∅ plays an important role.

In the following, we would like to remove this condition.

Theorem 4.5. Let the mapping S : K ⇒ K be nonempty closed convex valued

and {S(un)} be lower semi–Mosco convergent to S(u0), whenever un → u0 (with

un ∈ K) as n→∞. If assumptions (A1)–(A5) hold, then (MQVHVI) is strongly

well-posed if and only if

(4.7) Ω(ε) 6= ∅, for all ε > 0, and lim
ε→0

diam(Ω(ε)) = 0.

Proof. The necessity part of the proof is obvious from Theorem 4.3. We

only need to prove the sufficiency. Suppose that condition (4.7) holds and {un}
in K is an approximating sequence of (MQVHVI). Then, there exist a sequence

{u∗n} in E∗ with u∗n ∈ F (un) and a positive sequence {εn} with εn → 0 as n→∞
such that d(un, S(un)) ≤ εn and

(4.8) 〈u∗n, η(v, un)〉+ 〈Tun − f, v − un〉+ J◦(un; v − un) + φ(v)− φ(un)

≥ −εn‖v − un‖,

for all v ∈ S(un) and all n ∈ N. That is un ∈ Ω(εn), for all n ∈ N. By condition

(4.7), we get that the sequence {un} is a Cauchy sequence. So {un} converges

strongly to some point u0 ∈ K. Let us show that u0 ∈ K is a solution for

(MQVHVI). Therefore, for each n ∈ N, we may choose u′n ∈ S(un) such that

‖un − u′n‖ < εn + d(un, S(un)) ≤ 2εn.

Since un → u0 and εn → 0 as n→∞, we have that u′n → u0 as n→∞. Accord-

ing to our assumptions, the sequence {S(un)} is lower semi–Mosco convergent
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to S(u0), i.e.

lim inf
n→∞

S(un) = S(u0).

Thus, u0 ∈ S(u0). So, for any v ∈ S(u0) there exists a sequence {vn} in K with

vn ∈ S(un), such that vn → v as n→∞. By the relaxed η − α-monotonicity of

F , we obtain

〈v∗, η(v, un)〉+ 〈Tun − f, v − un〉+ J◦(un; v − un) + φ(v)− φ(un)

≥ 〈u∗n, η(v, un)〉+〈Tun−f, v − un〉+J◦(un; v−un)+φ(v)− φ(un)+α(v−un)

≥ α(v − un)− εn‖v − un‖,

for all v ∈ S(un) and v∗ ∈ F (v), for all n ∈ N. Hence

〈v∗n, η(vn, un)〉+ 〈Tun − f, vn − un〉+ J◦(un; vn − un) + φ(vn)− φ(un)

≥ α(vn − un)− εn‖vn − un‖,

for all v∗n ∈ F (vn), for all n ∈ N. Since F is l.s.c., for all v∗ ∈ F (v) there exist

v∗n ∈ F (vn) such that v∗n → v∗ in E∗. On the other hand, by the property of the

generalized directional derivative J◦(u; v) and the assumptions, we have

〈v∗, η(v, u0)〉+ 〈Tu0 − f, v − u0〉+ J◦(u0; v − u0) + φ(v)− φ(u0)

≥ lim sup
n→∞

[〈v∗n, η(vn, un)〉+〈Tun−f, vn − un〉+J◦(un; vn−un)+φ(vn)−φ(un)]

≥ lim sup
n→∞

[α(vn − un)− εn‖vn − un‖] ≥ α(v − u0),

which implies that

〈v∗, η(v, u0)〉+ 〈Tu0 − f, v − u0〉+ J◦(u0; v − u0) + φ(v)− φ(u0) ≥ α(v − u0),

for all v ∈ S(u0), for all v∗ ∈ F (v).

It follows from Lemma 4.1 that there exists u∗0 ∈ F (u0) such that

〈u∗0, η(v, u0)〉+ 〈Tu0 − f, v − u〉+ J◦(u0; v − u0) + φ(v)− φ(u0) ≥ 0,

for all v ∈ S(u0). Therefore u0 ∈ K is a solution of problem (MQVHVI).

Finally, we shall prove the uniqueness of solution. If there exists another

solution u1 ∈ K, then u0, u1 ∈ Ω(ε) for all ε > 0 and

0 < ‖u0 − u1‖ ≤ diam(Ω(ε))→ 0 as ε→ 0,

which is a contradiction. �

Theorem 4.6. Assume the same hypotheses as in Theorem 4.5. (MQVHVI)

is strongly L-α-well-posed if and only if

(4.9) Φ(ε) 6= ∅, for all ε > 0, and lim
ε→0

diam(Φ(ε)) = 0.

The proof is similar to that of Theorem 4.5. We omit it here.
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5. The characterizations of well-posedness in the generalized sense

for (MQVHVI)

In this section, we establish the metric characterizations and derive some

conditions under which (MQVHVI) is strongly well-posed or strongly L-α-well-

posed in the generalized sense.

Theorem 5.1. Let assumptions (A1)–(A5) hold. Then (MQVHVI) is strongly

well-posed in the generalized sense if and only if the solution set Γ of (MQVHVI)

is nonempty compact and

(5.1) lim
ε→0+

e(Ω(ε),Γ) = 0.

Proof. Suppose that (MQVHVI) is strongly well-posed in the generalized

sense. Then, Γ is nonempty and Γ ⊂ Ω(ε) 6= ∅, for all ε > 0. Now let us

show that Γ is compact. For any sequence {un} ⊂ Γ ⊂ Ω(ε), for all ε > 0,

{un} ⊂ Ω(ε) is obviously an approximating sequence for (MQVHVI). Therefore,

{un} has a subsequence converging to some point of Γ, which shows that Γ is

compact. Now, we prove that (5.1) holds. Arguing by contradiction, we assume

that e(Ω(ε),Γ) does not tend to 0 as ε→ 0. Therefore, there exist a nonnegative

sequence {εn} with εn → 0 as n → ∞, a constant β > 0 and u′n ∈ Ω(εn)

satisfying

d(u′n,Γ) > β, for all n ∈ N.

Since {u′n} is also an approximating sequence of (MQVHVI), there exists a sub-

sequence {u′nk
} of {u′n} strongly converging to some point of Γ. So we have

0 < β < d(u′nk
,Γ)→ 0 as nk →∞,

which is a contradiction.

Conversely, assume that (5.1) holds. Let {un} in K be an approximating

sequence of (MQVHVI). Then there exist a nonnegative sequence {εn} with

εn → 0 as n→∞ and {u∗n} in E∗ with u∗n ∈ F (un) such that d(un, S(un)) ≤ εn
and, for all v ∈ S(un) and all n ∈ N,

〈u∗n, η(v, un)〉+ 〈Tun−f, v−un〉+J◦(un; v−un)+φ(v)−φ(un) ≥ −εn‖v−un‖.

Therefore, un ∈ Ω(εn) for all n ∈ N. By (5.1), there exists a sequence {wn} in Γ,

such that

‖un − wn‖ → 0 as n→∞.

In virtue of the compactness of Γ, there exists a subsequence {wnk
} of {wn}

strongly converging to some point u0 ∈ Γ. Hence

‖unk
− u0‖ ≤ ‖unk

− wnk
‖+ ‖wnk

− u0‖ → 0 as nk →∞.

Therefore, (MQVHVI) is strongly well-posed in the generalized sense. �
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In fact, when F is relaxed η−α-monotone, we also easily get that (MQVHVI)

is strongly L-α-well-posed in the generalized sense.

Theorem 5.2. Assume that assumptions (A1)–(A5) hold. If F is relaxed

η − α-monotone, then (MQVHVI) is strongly L-α-well-posed if and only if Γ is

nonempty compact and

lim
ε→0+

e(Φ(ε),Γ) = 0.

The proof is similar to that of Theorem 5.1, we omit it here.

From Theorems 5.1 and 5.2, we can see that the compactness of Γ plays a key

role. We may remove this condition and obtain the following.

Theorem 5.3. Let the mapping S : K ⇒ K be nonempty closed, convex

valued and {S(un)} be lower semi–Mosco convergent to S(u0), whenever un → u0
(with un ∈ K) as n → ∞. If assumptions (A1)–(A5) hold, then (MQVHVI) is

strongly well-posed in the generalized sense if and only if

(5.2) Ω(ε) 6= ∅, for all ε > 0 and lim
ε→0

µ(Ω(ε)) = 0.

Proof. Suppose that (MQVHVI) is strongly well-posed in the generalized

sense. By Theorem 5.1, Γ is nonempty compact and for any ε > 0, Γ ⊂ Ω(ε) 6= ∅.
Therefore, we have

µ(Γ) = 0,(5.3)

H(Ω(ε),Γ) = max{e(Ω(ε),Γ), e(Γ,Ω(ε))} = e(Ω(ε),Γ), for all ε > 0.(5.4)

From (5.3) and (5.4), we obtain

(5.5) µ(Ω(ε)) ≤ 2H(Ω(ε),Γ) + µ(Γ) = 2H(Ω(ε),Γ) = 2e(Ω(ε),Γ).

It follows from condition (5.1) that lim
ε→0

µ(Ω(ε)) = 0.

Conversely, assume that condition (5.2) holds. For any ε > 0, cl(Ω(ε)) is

nonempty closed, increasing with ε > 0 and satisfies

lim
ε→0

µ(cl(Ω(ε))) = lim
ε→0

µ(Ω(ε)) = 0.

By the generalized Cantor theorem in [15], we have

lim
ε→0
H(cl(Ω(ε)),Ω) = 0,

and Ω is nonempty compact,where Ω =
⋂
ε>0

cl(Ω(ε)).

Let us show that Ω = Γ. Obviously, Γ ⊂ Ω. We only need to prove that

Ω ⊂ Γ. For any u0 ∈ Ω, we obtain d(u0, cl(Ω(εn))) = 0, for all εn > 0. Therefore,

there exists un ∈ Ω(εn), n ∈ N such that ‖u0−un‖ ≤ εn, which implies un → u0
and the sequence {S(un)} lower semi–Mosco converges to S(u0). Hence u0 ∈
S(u0) and there exists u∗n ∈ F (un) such that d(un, S(un)) ≤ εn and

〈u∗n, η(v, un)〉+ 〈Tun−f, v−un〉+J◦(un; v−un)+φ(v)−φ(un) ≥ −εn‖v−un‖,
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for all v ∈ S(un). Due to lower semi–Mosco convergence of {S(un)} to S(u0),

for every v ∈ S(u0), we may choose a sequence {vn} in K with vn ∈ S(un) such

that vn → v as n→∞. We have from the relaxed η − α-monotonicity of F

〈v∗, η(v, un)〉+〈Tun−f, v − un〉+ J◦(un; v−un)+φ(v)−φ(un)

≥ 〈u∗n, η(v, un)〉+〈Tun−f, v − un〉+J◦(un; v−un)+φ(v)−φ(un)+α(v−un)

≥ α(v − un)− εn‖v − un‖,

for all v ∈ S(un) and v∗ ∈ F (v), for all n ∈ N. So

〈v∗n, η(vn, un)〉+ 〈Tun − f, vn − un〉+ J◦(un; vn − un) + φ(vn)− φ(un)

≥ α(vn − un)− εn‖vn − un‖,

for all v∗n ∈ F (vn) and all n ∈ N. Since F is l.s.c., for all v∗ ∈ F (v), there exist

v∗n ∈ F (vn) such that v∗n → v∗ in E∗. On the other hand, by the property of the

generalized directional derivative J◦(u; v), we obtain

〈v∗, η(v, u0)〉+ 〈Tu0 − f, v − u0〉+ J◦(u0; v − u0) + φ(v)− φ(u0)

≥ lim sup
n→∞

[〈v∗n, η(vn, un)〉+〈Tun−f, vn−un〉+J◦(un; vn−un)+φ(vn)−φ(un)]

≥ lim sup
n→∞

[α(vn − un)− εn‖vn − un‖] ≥ α(v − u0),

which implies that

〈v∗, η(v, u0)〉+ 〈Tu0 − f, v − u0〉+ J◦(u0; v − u0) + φ(v)− φ(u0) ≥ α(v − u0),

for all v ∈ S(u0) and all v∗ ∈ F (v). It follows from Lemma 4.1 that there exists

u∗0 ∈ F (u0) such that

〈u∗0, η(v, u0)〉+ 〈Tu0 − f, v − u〉+ J◦(u0; v − u0) + φ(v)− φ(u0) ≥ 0,

for all v ∈ S(u0). So u0 ∈ K is a solution of (MQVHVI). Thus, Ω = Γ and

lim
ε→0

e(Ω(ε),Γ) = lim
ε→0
H(cl(Ω(ε)),Γ) = 0. It follows from the compactness of Γ

and Theorem 5.1 that (MQVHVI) is well-posed in the generalized sense. �

Theorem 5.4. Assume that the same hypotheses as in Theorem 5.3 hold.

Then (MQVHVI) is strongly L-α-well-posed in the generalized sense if and only

if

(5.6) Φ(ε) 6= ∅, for all ε > 0, lim
ε→0

µ(Φ(ε)) = 0.

Proof. Suppose that (MQVHVI) is strongly L-α-well-posed in the general-

ized sense. By Theorem 5.2 and due to F being relaxed η − α-monotonicity, Γ

is nonempty compact and for all ε > 0, Γ ⊂ Φ(ε) 6= ∅. Therefore,

µ(Γ) = 0,(5.7)

H(Φ(ε),Γ) = max{e(Φ(ε),Γ), e(Γ,Φ(ε))} = e(Φ(ε),Γ).(5.8)
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We obtain by (5.7) and (5.8) that

(5.9) µ(Φ(ε)) ≤ 2H(Φ(ε),Γ) + µ(Γ) = 2H(Φ(ε),Γ) = 2e(Φ(ε),Γ).

Consequently, lim
ε→0

µ(Φ(ε)) = 0.

Conversely, assume that condition (5.6) holds. Then for any ε > 0, we can

easily get Φ(ε) is a closed set, and

lim
ε→0

µ(Φ(ε)) = 0.

By the generalized Cantor theorem in [15], we have

lim
ε→0
H(Φ(ε),Φ) = 0,

where Φ =
⋂
ε>0

Φ(ε) is nonempty compact. The rest of the proof is similar to

that of Theorem 5.3. We omit it here. �
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