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ON SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATION

WITH LINEAR GROWTH NONLINEARITY IN RN

Rong Cheng — Jianhua Hu

Abstract. We study nontrivial solutions for a class of semilinear elliptic

equation which could be resonant at infinity. We establish the existence of

solutions for the equation by considering the modified non-resonant problem
associated with the original equation through Morse theory. Moreover, only

linear growth assumption is imposed on the nonlinearity and condition on

the potential is weaker than the coercive assumption.

1. Introduction

In the present paper, we are concerned with solutions of the following semi-

linear elliptic equation

(1.1) −∆u+ α(x)u = f(x, u), x ∈ RN

where the potential α(x) ∈ C(RN ,R) satisfies α(x) > inf
RN

α(x) > 0. As shown in

[3], [17], such a problem is motivated by the study of existence of standing wave

solution for the nonlinear Schrödinger equation which arises in mathematical

models from several physical phenomena, especially in nonlinear optics.

If we consider problem (1.1) in a bounded domain Ω ⊂ RN , the compact

condition will be assured by Sobolev Embedding Theorem for bounded domains.

Such case was studied by many authors in many literatures and references cited
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there [16], [23], [12], [11], [18]. When the problem (1.1) is dealt with on entire RN ,

the main difficulty occurs for lack of compact condition, since RN is unbounded.

To overcome this difficulty, lots of assumptions were imposed on the potential

α(x). Also the spectrum of the Schrödinger operator L = −∆ + α was studied

in [1], [2], [7], [6], [14], [10], [21].

In [19], the author considered a similar equation to (1.1) and make a different

condition assumption on the potential which insures the compactness. Some

different assumptions on the potential are employed in [5], [8]. In [17], [5], α(x)

is assumed coercive, i.e. α(x)→∞ as |x| → ∞. This condition was generalized

in [3]. That is

(1.2) For every M > 0, mes({x ∈ RN | α(x) ≤M}) <∞,

where mes( · ) stands for the Lebesgue measure in RN . The above assumption was

used in [8] as well. The nonlinearity f in [8] is asymptotically linear and satisfies

some resonant conditions. In this paper, assumption on the potential α(x) is

little different from [8] and we only need that f has linear growth. Precisely, we

assume that

(H1) α(x) ∈ C(RN ,R), inf
RN

α(x) > 0 and there exists r > 0 such that, for any

γ > 0,

lim
|y|→∞

mes(Aγ(y)) = 0

where Aγ(y) = {x ∈ RN | α(x) < γ}∩Br(y), and Br(y) is a ball centered

at y with radius r.

(H2) f(x, u) ∈ C1(RN × R,R) and there exists a constant C > 0 such that

|f(x, u)| ≤ C|u| for x ∈ RN and u ∈ R.

Remark 1.1. Note that condition lim
|y|→∞

mes(Aγ(y)) = 0 in (H1) is weaker

than (1.2). (1.2) implies for any γ > 0, {x ∈ RN | α(x) < γ} is a bounded set.

Therefore for |y| large enough, {x ∈ RN | α(x) < γ} ∩Br(y) = ∅.

Remark 1.2. The condition (H1) is easy to verify. Let us take an instance for

N = 1. Take α(x) = e|x|. Then α(x) ∈ C(R1,R), inf
R1
α(x) = 1 > 0. Moreover,

for r = 1 and any γ > 0, lim
|y|→∞

mes(Aγ(y)) = 0, since for |y| > ln γ + 1,

{x ∈ R1 | α(x) < γ} ∩Br(y) = ∅.

We would not impose any resonant or non-resonant condition on the non-

linearity at infinity. The main idea is to study the interaction between the

nonlinearity at infinity and linear spectrum directly. This method was employed

to study the problem (1.1) in a bounded domain Ω ⊂ RN and the potential

vanishes in [13]. Therefore the results in this paper generalizes some results

of [13].
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We work in a subspace of H1(RN ) defined by

E =

{
u ∈ H1(RN )

∣∣∣∣ ∫
RN

(|∇u|2 + α(x)u2) dx <∞
}
.

In order to state our main result, we first decompose E as follows. For some

function β(x) ∈ C(RN ,R), we set

E = E−(β)⊕ E0(β)⊕ E+(β),

where the operator −∆ − β is negatively definite on E−(β), positively definite

on E+(β) and null on E0(β). Denote by i(β) and n(β) the dimension of E−(β)

and E0(β), respectively.

Now the main result in this paper can be read as follows.

Theorem 1.3. Assume that (H1), (H2) hold and n(f ′u(x, 0)) = 0. Then (1.1)

possesses at least one nontrivial solution, provided one of the following conditions

holds:

(H3) There exists a constant τ > 0, and some function β∞(x) ∈ C(RN ,R)

such that f ′u(x, u) ≤ β∞(x) + α(x) for all x ∈ RN and u with |u| ≥ τ

and i(β∞) ≤ i(f ′u(x, 0))− 2.

(H4) There exists a constant τ > 0, and some function β∞(x) ∈ C(RN ,R)

such that f ′u(x, u) ≥ β∞(x) + α(x) for all x ∈ RN and u with |u| ≥ τ

and i(β∞) ≥ i(f ′u(x, 0)) + 2.

Remark 1.4. Resonant condition or non-resonant condition at infinity for

the nonlinearity f are often supposed in the references. From Theorem 1.3, it

is easy to see that we do not impose any resonant or non-resonant condition on

the nonlinearity f at infinity.

2. Proof of the main result

It is well known that the space E equipped with the following inner product

〈u, v〉 =

∫
RN

(∇u∇v + α(x)uv) dx

is a Hilbert space. Denote by ‖ · ‖ the associated norm, i.e.

‖u‖2 =

∫
RN

(|∇u|2 + α(x)u2) dx.

By (H2) and [22], the variational functional

I(u) =
1

2

∫
RN

(|∇u|2 + α(x)u2) dx−
∫
RN

F (x, u) dx

is well defined and of the class C2, where F (x, u) =
∫ u

0
f(x, s) ds. Furthermore,

the critical points of I are precisely the weak solutions of equation (1.1).

By the condition (1.2) and the Sobolev Embedding Theorem, the immersion

E ↪→ Lp(RN ) is compact for 2 ≤ p < 2∗ = 2N/(N − 2), which is proved in [3].
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Modify the proof in [3], we can show the embedding E ↪→ Lp(RN ) is also compact

for 2 ≤ p < 2∗ under the assumption (H1).

Lemma 2.1. Under the condition (H1), the embedding E ↪→ Lp(RN ) is com-

pact for 2 ≤ p < 2∗.

Proof. We first consider the case where p = 2. Let {un} ⊂ E such that

‖un‖ ≤ C0. Then up to a subsequence, we have un converges weakly to u in E

as n→∞. We want to show that

un → u in L2(RN ), as n→∞.

Define vn = un−u. Then vn ⇀ 0 in E. We only need to prove vn → 0 in L2(RN ).

By the Sobolev Embedding Theorem for bounded domains, one has vn → 0 in

L2(BR). The remain is to estimate
∫
BcR

v2
n dx. We first choose {yj} ⊂ RN such

that RN ⊂
∞⋃
j=1

Br(yj) and each x ∈ RN is covered by at most 2N such balls.

Therefore∫
BcR

v2
n dx ≤

∞∑
|yj |>R−r

∫
Br(yj)

v2
n dx

=

∞∑
|yj |>R−r

∫
Br(yj)∩{x∈RN |α(x)>γ}

v2
n dx+

∫
Aγ(yj)

v2
n dx.

Then ∫
Br(yj)∩{x∈RN |α(x)>γ}

v2
n dx ≤

1

γ

∫
Br(yj)

α(x)v2
n dx.

and by Hölder inequality, one has∫
Aγ(yj)

v2
n dx ≤

(∫
Aγ(yj)

v2N/(N−2)
n dx

)(N−2)/N(∫
Aγ(yj)

1 dx

)2/N

≤ ‖vn‖2L2∗ (Br(yj))
[mes(Aγ(yj))]

2/N

≤ ‖vn‖2H1(Br(yj))
sup

|yj |≥R−r
[mes(Aγ(yj))]

2/N .

We have then∫
BcR

v2
n dx ≤

∞∑
|yj |≥R−r

[
1

γ

∫
Br(yj)

α(x)v2
n dx

+ C1 sup
|yj |≥R−r

[mes(Aγ(yj))]
2/N

∫
Br(yj)

(|∇vn|2 + α(x)v2
n) dx

]
≤ 2N

γ

∫
BcR−2r

α(x)v2
n dx
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+ 2NC1 sup
|yj |≥R−r

[mes(Aγ(yj))]
2/N

∫
BcR−2r

(|∇vn|2 + α(x)v2
n) dx

≤ 2N

γ
C2

0 + C1 sup
|yj |≥R−r

[mes(Aγ(yj))]
2/NC2

0 .

For any 0 < ε � 1, we chose γ such that 2NC2
0/γ < ε. For such a fixed γ > 0,

there exists R > 0 such that

C1 sup
|y|≥R−r

[mes(Aγ(yj))]
2/NC2

0 < ε.

Since

sup
|yj |≥R−r

[mes(Aγ(yj))]
2/N → 0 as R→∞.

Thus for such R > 0 ∫
BcR

v2
n dx→ 0 as n→∞.

For 2 < p < 2∗, by Hölder inequality and Sobolev inequality, one has

‖vn‖Lp ≤ ‖vn‖|tLp‖vn‖|1−tL2∗ ≤ C1−t
1 ‖vn‖|tL2‖vn‖|1−t ≤ (C0C1)1−t‖vn‖|tL2 → 0

as n → ∞, where t ∈ (0, 1) satisfies 1/p = t/2 + (1− t)/2∗. Then the proof is

complete. �

We recall that a sequence {un} ⊂ E is said to be a (PS) sequence if I(un)

being bounded and I ′(un) → 0. And I satisfies (PS) condition if every (PS)

sequence has a convergent subsequence. By Lemma 2.1, if we want to show I

satisfies (PS) condition, we only need to verify that {un} ⊂ E is bounded. For

a non-resonant elliptic problem, this can be done by a standard argument.

Now, let us recall some definitions on Morse theory [4], [15] which will be

used later. Let u be a critical point of I. The Morse index of u is defined as

the supremum of the subspace of E on which I ′′(u) is negative definite and is

denoted by µ(u). The nullity of u is defined as dimension of ker I ′′(u) and is

denoted by ν(u). For a constant c ∈ R, the level set of I is defined as

Ic = {u ∈ E | I(u) ≤ c}.

Let Hq(A,B) be the q-th singular homology group of the pair (A,B). Then the

Betti number Bq of the pair (A,B) is defined by Bq = rank(Hq(A,B)). For

a, b ∈ R with a < b, the Morse type number Mq of the pair (Ib, Ia) is defined by

Mq =

j∑
k=1

dimCq(I, uk),

where Cq(I, uk) is the q-th critical group and u1, . . . , uj are critical points con-

tained in I−1([a, b]).
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Lemma 2.2. Assume that (H1) and (H2) hold. And there exists a constant

τ > 0 and some function β(x) ∈ C(RN ,R) such that f ′u(x, u) ≤ β(x) + α(x)

for all x ∈ RN and u with |u| ≥ τ . Then there exists a constant κ = κ(τ, β, C)

such that for each solution u of (1.1), ‖u‖L∞ ≤ κ, provided µ(u) + ν(u) ≥
i(β) + n(β) + 1.

Proof. If the result is not true, then for any n, there exists a function fn
and a un satisfying

(2.1) −∆un + α(x)un = fn(x, un), x ∈ RN

such that µ(un) + ν(un) ≥ i(β) + n(β) + 1 and ‖u‖L∞ ≥ n. The corresponding

functional is defined as

In(un) =
1

2

∫
RN

(|∇un|2 + α(x)u2
n) dx−

∫
RN

Fn(x, un) dx,

where Fn(x, u) =
∫ u

0
fn(x, s) ds. Then by (H1) and elliptic estimate, we have∫

Ω⊂RN
|∇un|2 dx→∞ as n→∞.

Thus

‖un‖ ≥
∫
RN
| ∇un|2 dx ≥

∫
Ω⊂RN

| ∇un|2 dx→∞.

Write wn = un/‖un‖. Then wn is bounded with ‖wn‖ = 1. By passing to

a subsequence, we can assume that for some w ∈ E

wn ⇀ w in E,

wn → w in L2(RN ),

wn(x)→ w(x) a.e. x ∈ RN .

Then (2.1) multiplied by un and integrated in RN , one has by (H2)

‖un‖2 =
1

2

∫
RN

(|∇un|2 + α(x)u2
n) dx =

∫
RN

fn(x, un)un dx ≤ C‖un‖2L2

which yields that ‖w‖L2 ≥ 1/
√
C for each n, since

‖wn‖2L2 =
1

‖un‖2

∫
RN
|un|2dx =

1

‖un‖2
‖un‖2L2 ≥

‖un‖2L2

C‖un‖2L2

=
1

C
.

By (H2), for un 6= 0, f(x, un)/un(x) ≤ C. Thus

gn(x) =


fn(x, un)

un
as un 6= 0,

0 as un = 0,

is bounded in L∞(RN ). So by passing to a subsequence, we may assume

gn(x)→ g(x) in L∞(RN )
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in weak* topology. Since un satisfies (2.1), we have for each ϕ ∈ C∞0 (RN )∫
RN

(∇un∇ϕ+ α(x)unϕ) dx−
∫
RN

fn(x, un)ϕdx = 0.

Then, divided by ‖un‖ 6= 0, we have∫
RN

(∇wn∇ϕ+ α(x)wnϕ) dx−
∫
RN

fn(x, un)

un

un
‖un‖

ϕdx = 0.

That is ∫
RN

(∇wn∇ϕ+ α(x)wnϕ) dx−
∫
RN

gn(x)wnϕdx = 0.

Let n→∞, one has∫
RN

(∇w∇ϕ+ α(x)wϕ) dx−
∫
RN

g(x)wϕdx = 0.

It concludes that w solves the following linear equation−∆w + α(x)w = g(x)w,

x ∈ RN .

By the unique continuation property in [9], we have w(x) 6= 0 almost everywhere

in RN , since w 6= 0. This means un(x)→∞ almost everywhere in RN .

Next we prove that there exists n0, for any z ∈ E+(β) \ {0}

(2.2) 〈I ′′n(un)z, z〉 > 0 as n ≥ n0

which means µ(un)+ν(un) ≤ i(β)+n(β). That is a contradiction. Now, if (2.2)

is not true, then there exists nj → ∞ and zj ∈ E+(β) with ‖zj‖ = 1 such that

〈I ′′nj (unj )zj , zj〉 ≤ 0, i.e.∫
RN

(|∇zj |2 + α(x)z2
j ) dx−

∫
RN

f ′nj ,u(x, unj (x))z2
j (x) dx ≤ 0.

That is∫
RN

f ′nj ,u(x, unj (x))z2
j (x) dx ≥

∫
RN

(|∇zj |2 + α(x)z2
j ) dx = ‖zj‖2 = 1.

Note that {zj} is bounded in E, by Lemma 2.1, we can assume that zj → z in

L2(RN ). Then by Hölder inequality and Fatou’s Lemma

lim sup
j→∞

∫
RN
f ′nj ,u(x, unj (x))z2

j (x) dx

= lim sup
j→∞

[ ∫
RN

f ′nj ,u(x, unj (x))(z2
j (x)− z2(x)) dx

+

∫
RN

f ′nj ,u(x, unj (x))z2(x) dx

]
≤ 0 + lim sup

j→∞

∫
RN

f ′nj ,u(x, unj (x))z2(x) dx
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≤
∫
RN

lim sup
j→∞

f ′nj ,u(x, unj (x))z2(x) dx

≤
∫
RN

(α(x) + β(x))z2(x) dx < 1

since for z ∈ E+(β),∫
RN

((−∆ + α(x)− α(x)− β(x))z, z) =

∫
RN

((−∆− β(x))z, z) > 0,

that is ∫
RN

(α(x) + β(x))z2(x) dx <

∫
RN

((−∆ + α(x))z, z) dx = ‖z‖2.

This contributes a contradiction and (2.2) is true. �

Lemma 2.3. Assume (H1), (H2) and there exists a constant τ > 0 and some

function β(x) ∈ C(RN ,R) such that f ′u(x, u) ≥ β(x)+α(x) for all x ∈ RN and u

with |u| ≥ τ . Then there is a constant κ = κ(τ, β, C) such that for each solution

u of (1.1), ‖u‖L∞ ≤ κ provided µ(u) ≤ i(β)− 1.

Proof. We also make a indirect argument. Assume for any n, there exists

fn as in Lemma 2.2 and un satisfies (2.1) such that µ(un) ≤ i(β) − 1 and

‖un‖L∞ ≥ n. Then similar to the proof of Lemma 2.2, un(x) → ∞, almost

everywhere in RN . For each z ∈ E−(β) \ {0} and by Fatou’s Lemma, we have

lim sup
j→∞

〈I ′′n(un)z, z〉

=

∫
RN

(|∇z|2 + α(x)z2) dx+ lim sup
j→∞

(
−
∫
RN

f ′n,u(x, un(x))z2(x) dx

)
=

∫
RN

(|∇z|2 + α(x)z2) dx− lim inf
j→∞

∫
RN

f ′n,u(x, un(x))z2(x) dx

≤
∫
RN

(|∇z|2 + α(x)z2) dx−
∫
RN

lim inf
j→∞

f ′n,u(x, un(x))z2(x) dx

≤
∫
RN

(|∇z|2 + α(x)z2) dx−
∫
RN

(α(x) + β(x))z2 dx

=

∫
RN

(|∇z|2 dx−
∫
RN

β(x)z2 dx < 0

Henceforth, for n ≥ n0, where n0 large enough 〈I ′′n(un)z, z〉 < 0. Thus we have

µ(un) ≥ i(β) for n ≥ n0, a contradiction. �

Now we can give proof of Theorem 1.3.

Proof of Theorem 1.3. First we transform problem (1.1) into a non-

resonant case at infinity. Then we study the non-resonant problem by Morse

theory. Finally, combining Lemmas 2.2 and 2.3, we obtain solutions of problem

(1.1). We consider the case where (H3) holds at the first place.
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Without loss of generality, we can assume that n(β∞) = 0. Let {ξn} be an

increasing sequence satisfying ξ1 > τ and ξn →∞ as n→∞.

To modify problem (1.1), we define a function fn(x, u) as

fn(x, u) =

∫ u

0

f ′n,u(x, s) ds

where

f ′n,u(x, u)) =



f ′u(x, u), |u| ≤ ξn,(
2− u

ξn

)
f ′u(x, u) +

(
u

ξn
− 1

)
β∞(x), ξn < u < 2ξn,(

2 +
u

ξn

)
f ′u(x, u)−

(
u

ξn
+ 1

)
β∞(x), −2ξn < u < −ξn,

β∞(x), |u| ≥ 2ξn.

Then fn(x, u) ∈ C(RN ,R). Now consider the following equation

(2.3) −∆u+ α(x)u = fn(x, u), x ∈ RN ,

and the corresponding functional is

In(u) =
1

2

∫
RN

(|∇u|2 + α(x)u2) dx−
∫
RN

Fn(x, u)) dx.

It is easy to see u = 0 is a trivial critical point of In. Observe that n(β∞) = 0,

In satisfies (PS) condition by Lemma 2.1. Jointed by (H3), In has nontrivial

critical points. Let a, b with a < b be numbers such that any critical point

u of In satisfies a < In(u) < b. What we want to verify is that there exists

a nontrivial critical point un of In whose Morse index satisfies

(2.4) µ(un) + ν(un) ≥ i(β∞) + 1.

We prove this by an indirect method. First, if In has only a finite number of

critical points, by (H3), i0 = i(f ′u(x, 0)) ≥ i(β∞) + 2. By [4], [15], we have

(2.5) Bq = δq,i(β∞)

and

(2.6) Mq =

1, q = i0,

0, q ∈ {i(β∞) + 1, i(β∞) + 2, . . .} \ {i0}.

Morse inequality at the level (i0 + 1)-th can be written as

(2.7) Mi0+1 −Mi0 + . . .+ (−1)i0+1M0 ≥ Bi0+1 −Bi0 + . . .+ (−1)i0+1B0.

Also, by Morse inequality, we have

(2.8) Mi(β∞) −Mi(β∞)−1 + . . .+ (−1)i(β∞)M0

≥ Bi(β∞) −Bi(β∞)−1 + . . .+ (−1)i(β∞)B0,
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(2.9) Mi(β∞)+1 −Mi(β∞) + . . .+ (−1)i(β∞)+1M0

≥ Bi(β∞)+1 −Bi(β∞) + . . .+ (−1)i(β∞)+1B0.

Notice that Mi(β∞)+1 = Bi(β∞)+1 = 0. Thus (2.8) and (2.9) yield that

(2.10) Mi(β∞) −Mi(β∞)−1 + . . .+ (−1)i(β∞)M0

= Bi(β∞) −Bi(β∞)−1 + . . .+ (−1)i(β∞)B0.

It follows from (2.5), (2.6) and (2.8)–(2.10) that (2.7) can be reduced to

Mi0+1 −Mi0 + . . .+ (−1)i0−i(β∞)−1Mi(β∞)+2

≥ Bi0+1 −Bi0 + . . .+ (−1)i0−i(β∞)−1Bi(β∞)+2

That is −1 ≥ 0, a contradiction.

Next, if In has infinitely many critical points. Let K = {u 6= 0 | I ′n(u) = 0}.
Then, by the Marino–Prodi argument in Section 3 of [20], for any 0 < ε, η � 1,

there exists a functional J such that

‖In − J‖C2(H1
0 (RN )) < ε(2.11)

In(u) = J(u), u ∈ H1
0 (RN )) \ N2η(K)(2.12)

I ′′n(u) = J ′′(u), u ∈ Nη(K)(2.13)

Moreover, J satisfies (PS) condition and has only a finite number of critical

points, which are all non-degenerate and contained in Nη(K), where Nη(K) is

the domain of K with radius η. Therefore the Morse index of any nontrivial

critical point of J is at least i(β∞) by (2.13). Since J satisfies (PS) condition, K
is compact and we can also let η converge to zero. Thus if we use J , a − ε and

b+ ε in Mq and Bq instead of In, a and b respectively, then (2.5) and (2.6) still

hold and a contradiction takes place by (2.11), (2.12) and the proof for In with

finite number of critical points.

By above discussion, In has a nontrivial critical point un satisfying (2.4).

Then by Lemma 2.2, there exists κ > 0 such that ‖un‖L∞ < κ. Note that

|un| < ‖un‖L∞ < κ and ξn defined above is an increasing sequence. Hence for

some n, ξn > κ, which makes f ′n,u(x, u) = f ′u(x, u) and un is a nontrivial critical

point of I, i.e. un is a nontrivial solution for (1.1).

Most of the proof for assumption (H4) is similar to the argument for assump-

tion (H3). Here we only give a skeleton of the proof. If the result is false, we

can also get contradiction from Morse inequality. Therefore, there exists a non-

trivial solution un for (2.3) satisfying assumptions in Lemma 2.3. Finally by

Lemma 2.3, un must be a nontrivial solution for (1.1). �
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[15] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer–

Verlag, Berlin, 1989, 182–184.

[16] L. Pisani, Multiple solutions for elliptic equations at resonance, NoDEA Nonlinear Dif-

ferential Equations Appl. 8 (2001), 389–398.

[17] P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys.

43 (1992), 270–291.

[18] M. Ramos, S. Terracini and C. Troestler, Superlinear indefinite elliptic problems and

Pohozaev type identities, J. Funct. Anal. 159 (1998), 596–628.

[19] A. Salvatore, Some multiplicity results for a superlinear elliptic probles in RN , Topol.

Methods Nonlinear Anal. 21 (2003), 29–39.

[20] S. Solimini, Morse index estimates in min-max theorems, Manuscripta Math. 63 (1989),

421–453.

[21] A. Szulkin and T. Weth, Ground state solutions for some indefinite variational prob-

lems, J. Funct. Anal. 257 (2009), 3802–3822.

[22] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
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