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MEASURABLE PATTERNS, NECKLACES

AND SETS INDISCERNIBLE BY MEASURE

Sinǐsa Vrećica — Rade Živaljević

Abstract. In some recent papers the classical ‘splitting necklace theorem’
is linked in an interesting way with a geometric ‘pattern avoidance problem’,

see Alon et al. (Proc. Amer. Math. Soc., 2009), Grytczuk and Lubawski

(arXiv:1209.1809 [math.CO]), and Lasoń (arXiv:1304.5390v1 [math.CO]).
Following these authors we explore the topological constraints on the ex-

istence of a (relaxed) measurable coloring of Rd such that any two dis-

tinct, non-degenerate cubes (parallelepipeds) are measure discernible. For
example, motivated by a conjecture of Lasoń, we show that for every col-

lection µ1, . . . , µ2d−1 of 2d − 1 continuous, signed locally finite measures

on Rd, there exist two nontrivial axis-aligned d-dimensional cuboids (rect-

angular parallelepipeds) C1 and C2 such that µi(C1) = µi(C2) for each

i ∈ {1, . . . , 2d − 1}. We also show by examples that the bound 2d − 1
cannot be improved in general. These results are steps in the direction of

studying general topological obstructions for the existence of non-repetitive

colorings of measurable spaces.

1. Introduction

The following definition explains in what sense two objects (measurable sets)

can be measure discernible (or indiscernible).
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Definition 1.1. Let (X,B, µ1, . . . , µd) be a measure space with a collection

µ = (µ1, . . . , µd) of measures. We say that two measurable sets A,B ∈ B are

µ-indiscernible or measure indiscernible if µ(A) = µ(B) as vectors in Rd or,

equivalently, if

(1.1) µj(A) = µj(B) for each j = 1, . . . , d.

In the opposite case, i.e. if at least one of equalities in (1.1) does not hold, the

sets A and B are measure discernible.

There are many interesting combinatorial geometric results which claim the

existence of measure indiscernible partitions of the ambient space X. The clas-

sical ‘Ham Sandwich Theorem’ is a result of this type. Indeed, if X = Rd then

it claims the existence of two µ-indiscernible half-spaces which have a common

boundary hyperplane. Much more recent is the result of Hubard and Aronov [9],

Karasev [11], and Soberón [19], who showed that for a given collection of d con-

tinuous measures µ1, . . . , µd, defined on Rd, and an integer k ≥ 2, there exists

a partition of Rd into k convex sets which are µ-indiscernible.

Some questions (and results) about indiscernible partitions are better known

as problems about fair division, consensus partitions, envy free divisions, or

simply as equipartitions of measures, [16], [13], [15], [21], [22]. One of the best

known results of this type is the ‘splitting necklace theorem’ of Alon [1, 2] which

says that each necklace with k ·ai beads of color i = 1, . . . , n can be fairly divided

between k thieves by at most n(k − 1) cuts. Alon deduced this result from the

fact that such a division is possible also in the case of a continuous necklace

[0, 1] where beads of given color are interpreted as measurable sets Ai ⊂ [0, 1]

(or more generally as continuous measures µi).

Some ‘pattern avoidance problems’ [5] also appear to be directly related to

questions about measure indiscernible sets, however until recently [3], [8], [12]

these areas seem to have had completely independent development. For illustra-

tion, Erdös [6] asked whether there is a 4-coloring of the integers such that each

two adjacent intervals are (in our terminology) ‘color discernible’, meaning that

they remain different even after some permutation of their elements. Continuous

(measure theoretic) analogues of these questions were formulated and studied in

[3], [8] and [12].

The paper [3] establishes an interesting link between the pattern avoidance

problem of Erdös and the splitting necklaces problem and focuses on the ques-

tion whether the number of cuts can be reduced for some subinterval of a line

measurably colored by a prescribed number of colors. For example they showed

that there exists a measurable 4-coloring of the real line such that two adjacent

intervals are always color discernible.
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Papers [8] and [12] continued this research, connecting the higher dimensional

pattern avoidance problem with the higher dimensional extensions of the splitting

necklace theorem [14]. In particular the results and conjectures of Lasoń [12] are

our immediate motivation for exploring these and other aspects of measurable

colorings of Euclidean spaces.

1.1. Our paper. Our objective is to identify and explore the topological

constraints for the existence of ‘non-repetitive’ or ‘pattern avoiding’ colorings

(measures) of Rd which are not necessarily measurable partitions (Definition 2.1).

For a given family F of measurable sets in Rd we introduce the ‘pattern-avoiding

number’ ν(F) and the ‘relaxed pattern-avoiding number’ νrel(F) (Definition 2.3)

which detect the critical number of colors when color repetitions in F are always

present.

Some results and conjectures of Lasoń [12] (see Section 2.1 for an outline)

are naturally interpreted as results about the invariant ν(F). Our focus is on

the closely related invariant νrel(F) which is easier to handle so we are able to

provide much more precise information, including some exact calculations.

Following [3], [8], [12] we put some emphasis on the class Cd of d-cubes and

the class Pd od d-cuboids (rectangular parallelepipeds) in Rd. Our first exact

evaluation (Theorem 2.8, Examples 2.9, 2.10, and 2.11) shows that

νrel(Cd) = d+ 1 and νrel(Pd) = 2d.

The class Pd is somewhat special in the sense that it is invariant with respect

to a very large group of auto-homeomorphisms of Rd (Remark 4.2). As a conse-

quence one can calculate the generalized ν-invariant (in the sense of Remark 2.4)

for the class Pd not only for signed measures but for some other classes including

the positive and probability measures on Rd.
In other directions we show that Theorem 2.8 admits several extensions of

different nature. In Theorem 3.3 we prove, by using more powerful topological

tools, that one can often guarantee the existence of an arbitrarily large finite

family of measure indiscernible cubes (cuboids). The same method yields an

even stronger result involving families obtained by more general Lie group actions

(Theorem 4.1).

In the special case of the Lie group GDL, generated by positive, axis-aligned

dilatations and translations in Rd, we calculate (Theorem 5.1) the νrel-invariant

of the associated families of centrally symmetric convex bodies.

We study also other aspects of Theorem 2.8 and show for example (Sec-

tion 3.1) that in same instances of the problem one can guarantee the existence

of disjoint measure indiscernible cubes.
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2. Non-repetitive colorings of Rd

If not specified otherwise, all measures are signed, locally finite Borel mea-

sures on Rd which are absolutely continuous with respect to the Lebesgue mea-

sure dm.

Definition 2.1. A measurable k-coloring of Rd is a partition Rd = A1 ∪
. . . ∪ Ak of the ambient d-space into k-measurable sets. A relaxed k-coloring of

Rd is a collection µ = (µ1, . . . , µk) of continuous measures, dµi = fi dm, where

fi(x) is the ‘intensity’ of color i at x, and (more importantly) µi(A) is the total

amount of color i used for coloring of the measurable set A.

The following definition explains in what sense a (relaxed) measurable k-

coloring of Rd may be non-repetitive (pattern avoiding). The definition is formu-

lated in the language of measures (relaxed colorings) but we tacitly use it also

for strict colorings (partitions).

Definition 2.2. Let F be a family of Lebesgue measurable sets in Rd, such

as the family of all axis-aligned cubes Cd or the family Pd of all axis-aligned

cuboids (d-parallelepipeds). We say that a (relaxed) k-coloring µ = (µ1, . . . , µk)

of Rd is F-non-repetitive (cube non-repetitive, cuboid non-repetitive) if each two

distinct elements A,B ∈ F are µ-discernible (Definition 1.1) i.e. if µi(A) 6= µi(B)

for at least one of the indices i ∈ [k].

Definition 2.3. Given a family F of Lebesgue measurable sets in Rd we de-

fine the corresponding (measure) ‘pattern-avoiding number’ of F as the number,

(2.1) ν(F) = Inf{k ∈ N | ∃F-non-repetitive k-coloring of Rd}.

Similarly, if we allow relaxed colorings we have the corresponding ‘relaxed pattern

avoiding number’ νrel(F) defined as the minimum (infimum) of all k such that

there exists a relaxed F-non-repetitive k-coloring of Rd.

Remark 2.4. Perhaps a more systematic approach would involve more gen-

eral invariants ν(F , C) where, aside from the family F of measurable sets, one

also specifies in advance the family C of admissible colorings (measures). Here

we deal mainly with ‘relaxed colorings’ and the corresponding invariant νrel(F),

where C is the class of all signed, continuous, locally finite Borel measures. The

invariant ν(F) is recovered if C is the family of all colorings with disjoint measur-

able set. Other cases of interest would include positive (probabilistic) measures,

measures satisfying a condition on their support, etc.

2.1. Some known results about ν(F). Continuing the research from [3]

and [8], and in particular improving over some bounds established in [8], Lasoń

in [12] described a method of constructing measurable k-colorings of Rd which

are cube (or cuboid) non-repetitive.
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Theorem 2.5 [12, Theorem 3.6]. For every d ≥ 1 there exists a measurable

(2d + 3)-coloring of Rd such that no two nontrivial axis-aligned d-dimensional

cubes have the same measure of each color. In other words there exists a mea-

surable (2d+ 3)-coloring (partition) of Rd which is Cd-non-repetitive.

Theorem 2.6 [12, Theorem 3.8]. There exists a measurable (4d+1)-coloring

(partition) of Rd which is Pd-non-repetitive. In other words there exists a mea-

surable (4d+ 1)-coloring of Rd such that no two nontrivial axis-aligned d-dimen-

sional cuboids have the same measure of each color.

It is natural to ask whether the bounds 2d + 3 and 4d + 1 in Theorems 2.5

and 2.6 are the best possible so Lasoń formulated also the following conjecture.

Conjecture 2.7 [12, Conjecture 3.7]. For every measurable (2d+2)-coloring

of Rd there exist two non-degenerate axis-aligned d-dimensional cubes which have

the same measure of each color. In other words each (2d + 2)-coloring of Rd is

‘pattern-repetitive’ in the sense that there always exist two distinct cubes that

are measure indiscernible.

2.2. Repetitive relaxed colorings of Rd. Here we address the question

of the existence of cube (cuboid) non-repetitive patterns in the class of relaxed

measurable colorings of Rd (Definition 2.1). In other words we consider exactly

the same questions addresses by Theorems 2.5 and 2.6 and Conjecture 2.7 but

we allow more general colorings provided by continuous measures which do not

necessarily correspond to measurable partitions.

Aside from proving the counterparts of Theorems 2.5 and 2.6 we also provide

examples showing that the bounds are the best possible in this case.

Theorem 2.8. For every collection µ1, . . . , µd of d continuous, signed locally

finite measures on Rd, there are two nontrivial axis-aligned d-dimensional cubes

C1 and C2 such that µi(C1) = µi(C2) for all i = 1, . . . , d.

For every collection µ1, . . . , µ2d−1 of 2d − 1 continuous, signed locally fi-

nite measures on Rd, there are two nontrivial axis-aligned d-dimensional cuboids

(rectangular parallelepiped) C1 and C2 such that µi(C1) = µi(C2) for all i =

1, . . . , 2d− 1.

Proof. Each nontrivial axis-aligned cube in Rd is uniquely determined by

its vertex a = (a1, . . . , ad) with smallest coordinates and with the length l of its

edge. So, the space of all such cubes is homeomorphic to Rd × (0,∞).

The configuration space of all pairs of distinct, axis-aligned cubes in Rd can

be described as (Rd× (0,∞))2 \∆, where ∆ is the diagonal in the product space.

This space is obviously Z/2-equivariantly homotopy equivalent to the sphere Sd.

(The antipodal action on the configuration space is the obvious one.)
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Let us consider the Z/2-equivariant mapping F : (Rd × (0,∞))2 \ ∆ → Rd

given by

F ((a, l1), (c, l2)) = (µ1(a, l1)− µ1(c, l2), . . . , µd(a, l1)− µd(c, l2)).

If there are no measure indiscernible cubes, this mapping would miss the

origin. This would lead to an antipodal map from Sd to Sd−1, which is a con-

tradiction establishing the ‘cube case’ of the theorem.

Each nontrivial axis-aligned cuboid in Rd is uniquely determined by its vertex

a = (a1, . . . , ad) with the smallest coordinates and with its vertex b = (b1, . . . , bd)

with the biggest coordinates. Here ai < bi for each i = 1, . . . , d. So, for every i,

(ai, bi) always belongs to the open half-plane P (above the line y = x). Therefore,

the space of all such cuboids is homeomorphic to Pd ≈ (R2)d.

As a consequence, the configuration space of all pairs of two distinct non-

trivial axis-aligned cuboids in Rd can be described as (Pd)2 \ ∆, where ∆ is

the diagonal in the product space. This space is obviously Z/2-equivariantly

homotopy equivalent to the sphere S2d−1.

Let us consider the Z/2-equivariant mapping G : (Pd)2 \∆→ R2d−1 given by

(2.2) F ((a, b), (c, d)) = (µ1(a, b)− µ1(c, d), . . . , µ2d−1(a, b)− µ2d−1(c, d)).

If there are no pairs of measure indiscernible cuboids, the map described

by (2.2) would miss the origin. This would imply the existence of an antipodal

map from S2d−1 to S2d−2, which leads to the desired contradiction. �

We complete this section by providing examples showing that the estimates

obtained in Theorem 2.8 are the best possible. We describe the densities of

continuous signed measures on Rd which restricted on Id = (0, 1)d yield (after

normalizing) probability measures on the open d-cube Id. In light of Remark 4.2

these measures can be pulled back to Rd to yield desired probability measures

on Rd.

Example 2.9. For illustration we initially treat the case d = 1, and give

two measures on the real line R such that no two distinct intervals in R contain

the same amount of both measures. Notice that in the case d = 1 both parts of

Theorem 2.8 reduce to the same statement.

The measures µ1 and µ2 are described by their density functions ϕ1(x) = 1−x
and ϕ2(x) = x. Any two intervals containing the same amount of both measures

would be of the same length, since the density of the measure µ1+µ2 is constant.

But, if they are different, one of them would be more “on the left” and that one

would contain greater amount of the measure µ1 and smaller amount of the

measure µ2 than the other interval.

Notice that this example is also related to the conjecture 3.4 in [12]. Namely,

it is conjectured there that for any partition of Rd in k measurable sets, there is
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an axis-aligned cube which has a fair q-splitting using at most k(q − 1)− d− 1

axis-aligned hyperplane cuts. This example shows that in the case of measures

(and not partitions) for k = q = 2 and d = 1, one cut is not enough, while

k(q − 1)− d− 1 = 0.

Example 2.10. Let us now take care of the general case. We construct first

a collection of d+ 1 measures on Rd such that no two distinct cubes contain the

same amount of every measure. Let these measures be given by their density

functions ϕ1, . . . , ϕd+1 : Rd → R,

ϕ1(x1, . . . , xd) = x1x2 · . . . · xd,

ϕ2(x1, . . . , xd) = (1− x1)x2 · . . . · xd,

ϕ3(x1, . . . , xd) = (1− x2)x3 · . . . · xd,

ϕ4(x1, . . . , xd) = (1− x3)x4 · . . . · xd, . . . , ϕd+1(x1, . . . , xd) = 1− xd.

It is easy to verify that the length of the edges of two cubes containing the same

amount of every measure have to be equal, and than that the coordinates of the

vertex with the smallest coordinates should be also equal for these two cubes.

(We first notice that for the coordinate xd, then xd−1 etc.)

Example 2.11. Let us describe 2d measures on Rd by their density functions:

ϕ0(x) = 1,

ϕi(x) = xi for i ∈ {1, . . . , d},

ϕd+i(x) = x3i for i ∈ {1, . . . , d− 1}.

Let us denote by [a, b] and [c, d] two cuboids containing the same amount of

every measure. Here a = (a1, . . . , ad) and c = (c1, . . . , cd) are vertices of these

two cuboids with smallest coordinates and b and d the vertices with biggest

coordinates.

The requirement that these cuboids contain the same amount of every mea-

sure provide us with the following equalities. Measure µ0 gives us the equality

d∏
i=1

(bi − ai) =

d∏
i=1

(di − ci).

Measures µj for j ∈ {1, . . . , d} give us the equalities

(aj + bj)

d∏
i=1

(bi − ai) = (cj + dj)

d∏
i=1

(di − ci).

Together with the first equality these give us the equalities aj + bj = cj + dj , for

all j ∈ {1, . . . , d}. Measures µd+j for j ∈ {1, . . . , d− 1} give us the equalities

(a2j + b2j )(aj + bj)

d∏
i=1

(bi − ai) = (c2j + d2j )(cj + dj)

d∏
i=1

(di − ci).
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Together with previous equalities these give us

a2j + b2j = c2j + d2j for j ∈ {1, . . . , d− 1}.

Furthermore, these equalities together with the equalities aj + bj = cj + dj give

us directly aj = cj and bj = dj for j ∈ {1, . . . , d − 1}. Then, from the first

equality we have bd − ad = dd − cd, and from another one ad + bd = cd + dd.

This gives us ad = cd and bd = dd, and so these two cuboids coincide. This

means that two distinct cuboids could not contain the same amount of every of

the described 2d measures.

Corollary 2.12. If Cd and Pd are the families of all cubes (respectively

cuboids) in the d-dimensional space Rd then,

(2.3) νrel(Cd) = d+ 1 and νrel(Pd) = 2d.

Let us compare the results obtained in this section with the results of [12]

(see also Section 2.1), dealing (instead of measures) with the partitions of Rd in

disjoint measurable subsets. Lasoń proved that there exists a partition of Rd in

2d+ 3 disjoint measurable sets such that no two distinct nontrivial axis-aligned

cubes contain the same amount of every of these sets. Also, it is proved that

there exists a partition of Rd in 4d + 1 disjoint measurable sets such that no

two distinct nontrivial axis-aligned cuboids contain the same amount of every of

these sets. It is conjectured (Conjecture 2.7 in Section 2.1) that these estimates

are the best possible.

We work with measures and prove the corresponding results with 2d+3 being

replaced by d + 1, and with 4d + 1 being replaced by 2d, and show that these

results are the best possible in this case.

3. A generalization

Definition 3.1. For each topological space X, the associated configuration

space F (X,n) of all n-tuples of labelled points in X is the space,

F (X,n) := {x ∈ Xn | xi 6= xj for each i 6= j}.

The obvious action of the symmetric group Sn on Xn, restricts to a free

action on the associated configuration space F (X,n).

As shown by examples in the previous section, Theorem 2.8 is optimal as

far as the number of measures is concerned. However, we show that it can be

considerably improved in a different direction. Indeed, it turns out that instead

of two cubes (cuboids) we can prove the existence of a finite family of cubes

(cuboids) of any size which are µ-indiscernible in the sense of Definition 1.1.

More explicitly, we extend the results from the previous section to the case

of n cubes (cuboids) in Rd where n = pk is a power of a prime p. Instead of the
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Borsuk–Ulam theorem, used in the proof of Theorem 2.8, we apply the following

result, see [20], [10], [7], [11], [9], [4].

Theorem 3.2. Suppose that n=pk is a power of a prime p≥2 and let m ≥ 2.

Let Wn be the (n − 1)-dimensional, real representation of the symmetric group

Sn which arises as the orthogonal complement of the diagonal in the permutation

representation Rn. Then each equivariant map Φ: F (Rm, n) → W
⊕(m−1)
n must

have a zero.

Theorem 3.3. For each collection µ1, . . . , µd of d continuous, signed lo-

cally finite measures on Rd and any natural number n, there exists a collection

of n pairwise distinct nontrivial, axis-aligned d-dimensional cubes C1, . . . , Cn
which are µ-indiscernible in the sense that µi(Cj) = µi(Ck) for all i = 1, . . . , d

and j, k ∈ {1, . . . , n}. For each collection µ1, . . . , µ2d−1 of 2d − 1 continuous

signed locally finite measures on Rd, there exists a collection of n pairwise dis-

tinct nontrivial, axis-aligned d-dimensional cuboids (rectangular parallelepipeds)

C1, . . . , Cn which are µ-indiscernible in the sense that µi(Cj) = µi(Ck) for all

i = 1, . . . , 2d− 1 and j, k ∈ {1, . . . , n}.

Proof. We outline the proof of the second statement. Without loss of gen-

erality we can assume that n = pk is a power of a prime number. As already

observed in the proof of Theorem 2.8, the variety Pd of all cuboids in Rd is

homeomorphic to R2d. Given a collection C = (C1, . . . , Cn) ∈ F (Pd, n) of pair-

wise distinct cuboids and a measure µi let µi(C) := (µi(C1), . . . , µi(Cn)) ∈ Rn.

Obviously the cuboids {Cj}nj=1 are µi-indiscernible if and only if π(µi(C)) = 0

where π : Rn →Wn is the natural projection.

Let φi : F (Pd, n) → Wn be the map defined by φi(C) = π(µi(C)). Let

Φ: F (Pd, n) → (Wn)⊕(2d−1) be the associated map where Φ(C) = (φ1(C), . . . ,

φ2d−1(C)). Since Pd ∼= R2d it follows from Theorem 3.2 that for some C ∈
F (Pd, n), Φ(C) = 0 which completes the proof of the theorem. �

3.1. The case of pairwise disjoint cubes and cuboids. A natural ques-

tion is whether one can strengthen Theorems 2.8 and 3.3 by claiming the exis-

tence of pairwise disjoint cuboids (cubes) which are µ-indiscernible.

Proposition 3.4. The configuration space of all ordered collections of n ≥ 2

pairwise disjoint cuboids in Rd is Sn-equivariantly homotopy equivalent to the

configuration space F (Rd, n). Moreover, the configuration space of all ordered

collections of n ≥ 2 pairwise disjoint cubes in Rd of the same size is also Sn-

equivariantly homotopy equivalent to the configuration space F (Rd, n).

Proof. As shown by May [17, Theorem 4.8], the configuration space of

all ordered collections of n pairwise disjoint, axis-aligned cuboids in Rd is Sn-

equivariantly homotopy equivalent to the configuration space F (Rd, n). Actually
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May puts more emphasis in his proof on axis-aligned cuboids with disjoint inte-

riors but the argument in [17] can be easily modified to cover the case of disjoint

cuboids as well.

A similar result holds for disjoint cubes. Indeed, for a given axis-aligned

cuboid C let Ĉ be the ⊆-maximal cube in the set of all axis-aligned cubes D ⊂ C
which have the same barycenter as C. Then the map which sends an ordered

collection (C1, . . . , Cn) of n pairwise disjoint cuboids to the corresponding col-

lections (Ĉ1, . . . , Ĉn) of cubes is easily shown to be a deformation retraction.

Finally, if all cubes Ĉi are shrank to the cubes of the same size we obtain a de-

formation retraction that establishes the second part of the proposition. �

Proposition 3.4 shows that we cannot improve the ‘cuboid case’ of Theo-

rem 3.3 (by an argument based on Theorem 3.2) to pairwise disjoint cuboids

unless we drastically reduce the number of measures. However, the situation

with cubes is different. The following result shows that one can always find two

or more pairwise disjoint, measure indiscernible cubes of the same size if one

allows not more than (d− 1) colors (i.e. one less than in the ‘cube case’ of The-

orem 3.3). The proof relies on Proposition 3.4 and follows closely the proof of

Theorem 3.3 so the details are omitted.

Proposition 3.5. For each collection µ1, . . . , µd−1 of (d − 1) continuous,

signed locally finite measures on Rd and any natural number n, there exists a

collection of n pairwise disjoint, axis-aligned d-dimensional cubes C1, . . . , Cn of

the same size which are µ-indiscernible in the sense that µi(Cj) = µi(Ck) for all

i = 1, . . . , d and j, k ∈ {1, . . . , n}.

Conjecture 3.6. The result from Proposition 3.5 is the best possible in the

following stronger sense. There exists a collection of d continuous, signed locally

finite measures on Rd such that not only pairs of disjoint cubes but the pairs of

disjoint cuboids are also measure discernible.

4. Towards general non-repetitive colorings

Here we show that there is nothing special about cubes and cuboids and

that theorems from the previous sections hold also for balls, ellipsoids, and even

more generally for measurable sets of suitable form. Moreover, there is nothing

special about choosing a preferred position for the selected geometric shape (say

axis-aligned or similar). Perhaps the most natural framework for this problem is

given by the following result which involves arbitrary Lie group actions on Rd.

Theorem 4.1. Let Q be a polytope in Rd (more generally a convex body or

just a measurable set). Let G be a Lie group acting on Rd. Let F = OQ = {g(Q) |
g ∈ G} be the set (orbit) of all images of Q with respect to actions of elements

from G. Assume that OQ is a smooth manifold (possibly with singularities) of
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geometric dimension ν. Then for each relaxed measurable coloring of Rd with

ν − 1 colors (Definition 2.1) and each integer n ≥ 2 there exist a collection of n

distinct elements in F which are pairwise measure indiscernible (in the sense of

Definition 1.1). In particular, νrel(F) ≥ ν.

Proof. By passing to a larger number if necessary we can assume that

n = pk is power of a prime. By assumption OQ is a manifold of dimension ν so

there is a subset U ⊂ OQ homeomorphic to Rν . The test map for the existence

of a collection of n measure indiscernible sets in U is φi : F (U, n) → W
⊕(ν−1)
n

which by Theorem 3.2 must have a zero. �

4.1. Remarks and examples. Typically the orbit space OQ that appears

in Theorem 4.1 is homeomorphic to a homogeneous manifold G/H where H =

{g ∈ G | g(Q) = Q}. For example it is well-known that the group of all isometries

of a convex body K in Rd is a Lie subgroup H of the group G = Isom(Rd)
of all isometries of the ambient space. In this case Theorem 4.1 establishes

a connection between the dimension of the isometry (symmetry) group H of K

and the νrel-invariant of the associated family FK of isometric copies of K in Rd,

(4.1) d(d+ 1)/2 < dim(H) + νrel(FK).

If G is the Lie group of all maps f : Rd → Rd where f(x) = Ax+ b for some

diagonal matrix A with positive entries and b ∈ Rd we obtain a generalization

of Theorem 2.8 to the case of G-orbits of convex bodies, including for example

the case of axis-aligned ellipsoids.

Remark 4.2. Perhaps as a justification of treating separately the case of

cuboids (Theorems 2.8 and 3.3) from the general case (Theorem 4.1), here we

argue that after all there is something special about the family Pd.
Suppose that fi : R→ R (i = 1, . . . , d) is a family of homeomorphisms. If f =∏
fi is the associated auto-homeomorphism of Rd then f obviously sends cuboids

to cuboids. Similarly if fi : R → (0, 1) are homeomorphisms, the associated

product homeomorphism f : Rd → (0, 1)d sends bijectively the cuboids from Rd

to cuboids from (0, 1)d. By restricting on (0, 1)d the functions described in the

Example 2.11, normalizing and pulling back to Rd by f , we can easily construct

2d probability measures on Rd which distinguish cuboids one from another. As

a consequence we can prove that ν(Pd,P) = 2d (see Remark 2.4) where P is the

family of probability measures on Rd. This is a result that does not obviously

hold for other classes F covered by Theorem 4.1.

5. Some exact values for νrel(F)

In this section we show that the invariant νrel(F) can be evaluated for many

other classes of convex bodies (measurable sets) in Rd. In particular we show
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that the same bounds that we determined in the case of cuboids (Theorem 2.8),

also hold in the case of ellipsoids and other centrally symmetric, axis-aligned

bodies in Rd.
We begin with some preliminary definitions. Let χ : Rd → R be a non-

negative, bounded, measurable function with bounded support in Rd. Our main

example of such a function is the indicator function χK of a convex body K ⊂ Rd.
We put some emphasis on the case of centrally symmetric convex bodies.

Motivated by that we say that χ : Rd → R is an even function, relative a ∈ Rd, if

(5.1) χ(a+ x) = χ(a− x) for each x ∈ Rd.

Let GDT be the group of all transformations of Rd generated by translations

and positive axis-aligned dilatations. More explicitly, L ∈ GDT if there exists

a diagonal matrix A = diag{C1, . . . , Cd} with positive entries, and a vector

b ∈ Rd such that L(x) = A(x) + b for each x ∈ Rd.
It is not difficult to check that the geometric dimension of the family FK =

{L(K) | L ∈ GDT } is equal to 2d. In light of Theorem 4.1 we know that

νrel(FK) ≥ 2d. The following proposition establishes the opposite inequality in

the case of centrally symmetric convex bodies.

Theorem 5.1. Let K be a centrally symmetric convex body in Rd. Let

FK = {L(K) | L ∈ GDT }

be the associated family of all convex bodies obtained from K by successive pos-

itive, axis-aligned dilatations and translations. Then νrel(FK) ≤ 2d. More

explicitly, the required relaxed (2d)-coloring of Rd is provided by the measures

dµi = φidm with the following density functions,

(5.2) φ0 = 1, φi(x) = xi (i = 1, . . . , d), φd+i = x2i (i = 1, . . . , d− 1).

Before we commence the proof of Theorem 5.1 we establish the following

lemma.

Lemma 5.2. Suppose that α : R → R is a non-negative, integrable function

such that for some r ∈ R, α(r − x) = α(r + x) for each x ∈ R. Assume that∫
R α > 0. Suppose that u1(x) = a1x+ b1 and u2(x) = a2x+ b2 are two increasing

linear functions (a1, a2 > 0) such that

(5.3)

∫
R
u1(x)α(x) dx =

∫
R
u2(x)α(x) dx,∫

R
u21(x)α(x) dx =

∫
R
u22(x)α(x) dx.

Then (a1, b1) = (a2, b2), i.e. u1(x) = u2(x) for each x ∈ R.
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Proof. Without loss of generality we may assume that r = 0 which means

that α is an even function. Since ui(x) + ui(−x) = 2bi, it easily follows from the

first equality in (5.3) that b1 = b2.

For contradiction let us assume that a2 > a1 > 0. It follows that u22(x) +

u22(−x) > u21(x) + u21(−x) for each x 6= 0, which is essentially a consequence of

the convexity of the function x 7→ |x|2. However this is in contradiction with the

second equality in (5.3) since α is non-negative and by a change of variables,

(5.4)

∫
R

[u21(x) + u21(−x)]α(x) dx =

∫
R

[u22(x) + u22(−x)]α(x) dx. �

Proof of Theorem 5.1. For a given χ : Rd → R let Fχ = {χ ◦ L | L ∈
GDT }. For example if χ = χK is the indicator function of a convex body K then

FχK
is the set of indicator functions of elements from FK .

We prove a slightly more general statement by showing that if χ : Rd → R is

an even, non-negative, integrable function with non-zero integral, then each two

elements χ1, χ2 ∈ Fχ are measure discernible in the sense that

(5.5)

∫
Rd

φiχ1 =

∫
Rd

φiχ2 for each i ∈ {0, 1, . . . , 2d− 1} ⇒ χ1 = χ2.

Suppose that χi(x) = χ(L−1i )(x) (i = 1, 2) where Li(x) = Ai(x) + bi and

A1 = diag(c′1, . . . , c
′
d), A2 = diag(c′′1 , . . . , c

′′
d), b1 = (b′1, . . . , b

′
d), b2 = (b′′1 , . . . , b

′′
d).

The assumption from (5.5) on the functions χ1 and χ2 is by a change of variables

equivalent to,

(5.6)

d∏
i=1

c′i

∫
Rd

φi(L1(x))χ(x) dx =

d∏
i=1

c′′i

∫
Rd

φi(L2(x))χ(x) dx.

Since φ0 = 1, and by assumption
∫
χ 6= 0, we deduce from (5.6) that

d∏
i=1

c′i =

d∏
i=1

c′′i .

The functions φj(x) = xj and φd+j(x) = x2j depend only on the variable xj . If

i ∈ {j, d + j} then the equality (5.6) (after cancelling out the products) can be

rewritten as follows:

(5.7)

∫
R
φi(L1(x))χ̂(x) dx =

∫
R
φi(L2(x))χ̂(x) dx

where χ̂ is the density of the measure on R obtained as the pushforward of the

measure χdx (defined on Rd) with respect to the projection on the xj-axis.

Since φj(L1(x)) = c′jxj + b′j and φd+j(L1(x)) = (c′jxj + b′j)
2 the equalities

(5.7) provide exactly the input needed for the application of Lemma 5.2. As

a consequence we have the equality (c′j , b
′
j) = (c′′j , b

′′
j ) for each j = 1, . . . , d− 1.
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From here and the equality of products we observe that c′d = c′′d . By choosing

the remaining unused function φd(x) = xd, and by one more application of (5.7),

we deduce that b′d = b′′d which completes the proof of the proposition. �

Corollary 5.3. Suppose that K is a centrally symmetric convex body in Rd.

If FK = {L(K) | L ∈ GDT } is the associated family of all convex bodies obtained

by successive dilatations (positive, axis-aligned) and translations, then

νrel(FK) = 2d.
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