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TORSION THEORIES FOR ALGEBRAS
OF AFFILIATED OPERATORS
OF FINITE VON NEUMANN ALGEBRAS

LIA VAS

ABSTRACT. The dimension of any module over an algebra
of affiliated operators U of a finite von Neumann algebra A is
defined using a trace on A. All zero-dimensional U//-modules
constitute the torsion class of torsion theory (T, P). We show
that every finitely generated U/-module splits as the direct
sum of torsion and torsion-free part. Moreover, we prove that
the theory (T,P) coincides with the theory of bounded and
unbounded modules and also with the Lambek and Goldie
torsion theories. Lastly, we use the introduced torsion theories
to give the necessary and sufficient conditions for ¢ to be semi-
simple.

1. Introduction. A finite von Neumann algebra proves to be an
interesting structure both for operator theorists and for those working
in geometry or algebraic K-theory. One of the reasons is that a finite
von Neumann algebra A comes equipped with a normal and faithful
trace that enables us to define the dimension not just of a finitely
generated projective module over A but also of arbitrary .A-module.

Moreover, A mimics the ring Z in such a way that every finitely
generated module is a direct sum of a torsion and torsion-free part.
The dimension faithfully measures the torsion-free part and vanishes
on the torsion part. A has nice ring-theoretic properties: it is semi-
hereditary, i.e., every finitely generated submodule of a projective
module is projective, and an Ore ring. The fact that A is an Ore ring
allows us to define the classical ring of quotients denoted /. Besides
this algebraic definition, it turns out that, within the operator theory,
U can be defined as the algebra of affiliated operators.
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Using the dimension over .4, we can define the dimension over U/ with
the same properties as the dimension over A. As a ring, U keeps all the
properties of the ring 4 and possesses some additional properties that
A does not necessarily have. In the analogy that A is like Z, I plays
the role of Q. In Section 2, we define a finite von Neumann algebra A,
the dimension of .4-module and the algebra of affiliated operators of A
and list some results on these notions that we shall use further on.

Every finitely generated module over a finite von Neumann algebra
A is a direct sum of a torsion and a torsion-free module. However, it
turns out that there exists more than just one suitable candidate when
it comes to defining torsion and torsion-free modules. To overcome this
problem, the notion of a torsion theory of a ring comes in as a good
framework for the better understanding of the structure of A-modules.
In Section 3, we define a torsion theory for any ring and some related
notions. We introduce some torsion theories for a finite von Neumann
algebra A: Lambek, Goldie, classical torsion theory, the torsion theory
(T, P), studied also in [11, 12, 14, 17] for finitely generated modules
and in [16] for group von Neumann algebras, in which a module is
torsion if its .A-dimension is zero and, finally, the torsion theory (b, u)
of bounded and unbounded modules.

In Section 4, we study the torsion theories for #. Since the dimension
of a U-module can be defined via the dimension over A, we can define
the torsion theory (T, P) in the same way as for A. If M is a finitely
generated U/-module, we show that the short exact sequence

0O—TM — M —PM —0

splits just as for finitely generated A-modules, Proposition 4.1. Then
we show (Theorem 4.1) that, for U,

(T,P) = Lambek torsion theory = Goldie torsion theory = (b, u).

This indicates that, in contrast to the situation with A, there is only
one nontrivial torsion theory of interest for U.

Thus, one can work with ¢/ instead of A if one is not interested in
the information that gets lost by the transfer from A to U (faithfully
measured by the Novikov-Shubin invariant, see [13]). For applications
to topology, see [14, Section 4] or [13, Chapter 8] for details.
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The passage from A to U mimics in many ways the passage from a
principal ideal domain to its quotient field. However, although U/ has
many nice properties as a ring, it is not necessarily semi-simple. Any
infinite group gives us the group von Neumann algebra with algebra of
affiliated operators that is not semi-simple, see [13, Exercise 9.11]. In
Section 5, we use the introduced torsion theories to give necessary and
sufficient conditions for ¢ to be semi-simple, Theorem 5.1.

2. Finite von Neumann algebras and the algebras of affili-
ated operators. Let H be a Hilbert space and B(H) the algebra of
bounded operators on H. The space B(H) is equipped with five dif-
ferent topologies: norm, strong, ultrastrong, weak and ultraweak. The
statements that a #-closed unital subalgebra A of B(H) is closed in
weak, strong, ultraweak and ultrastrong topologies are equivalent, for
details see [6].

Definition 2.1. A wvon Neumann algebra A is a x-closed unital
subalgebra of B(H) which is closed with respect to weak (equivalently
strong, ultraweak, ultrastrong) operator topology.

A x-closed unital subalgebra A of B(H) is a von Neumann algebra if
and only if A = A” where A’ is the commutant of A. The proof can
be found in [6].

Definition 2.2. A von Neumann algebra A is finite if there is a
C-linear function tr 4 : A — C such that

(1) tr 4(ab) = tr 4(ba).

(2) tr 4(a*a) > 0. A C-linear function on A that satisfies 1 and 2 is
called a trace.

(3) tr 4 is normal: it is continuous with respect to ultraweak topology.

(4) tr 4 is faithful: tr 4(a) = 0 for some a > 0, i.e., a = bb* for some
b € A, implies a = 0.

A trace on a finite von Neumann algebra is not unique. A trace
function extends to matrices over A in a natural way: the trace of a
matrix is the sum of the traces of the elements on the main diagonal.
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Example 2.1. Let G be a (discrete) group. The group ring CG is
a pre-Hilbert space with an inner product: (3 . ag9,> peqbnh ) =

ZgEG agg'
Let [?(G) be the Hilbert space completion of CG. Then [*(G) is the

set of square summable complex-valued functions over the group G.

The group von Neumann algebra N'G is the space of G-equivariant
bounded operators from [?(G) to itself:

NG ={feB(*Q)) | f(gzx) = gf(z) for all g € G and z € I*(G) }.

CG embeds into B(I*(G)) by right regular representations. N'G is a
von Neumann algebra for H = [?(G) since it is the weak closure of CG
in B(I?(G)) so it is a x-closed subalgebra of B(I?>(G)) which is weakly
closed, see [13, Example 9.7] for details. N'G is finite as a von Neumann
algebra since it has a normal, faithful trace tr 4(f) = (f(1),1).

The trace provides us with a way of defining a convenient notion of
the dimension of any module.

Definition 2.3. If P is a finitely generated projective A-module,
there exist n and f : A" — A" such that f = f2 = f* and the image
of f is P. Then, the dimension of P is

dim4(P) = tr 4(f) € [0,00).

Here the map f* is defined by transposing and applying * to each entry
of the matrix corresponding to f.

If M is any A-module, the dimension dim 4 (M) is defined as

dim 4 (M) = sup{dim 4(P) | P fin. gen. projective submodule of M}
€ [0, o).

The dimension of a finitely generated projective module P does
not depend on the choice of f and n from the definition above and
depends only on the isomorphism class of P. For more details, see
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[13, comments following Assumption 6.2, page 238] or [12, remarks
following Definition 1.6].

The dimension of arbitrary module is also well defined by [12,
Theorem 0.6] or, equivalently, [13, Theorems 6.5 and 6.7].

The dimension has the following properties.

Proposition 2.1. (1) If 0 - My — My — My — 0 is a short exact
sequence of A-modules, then dim 4(M;) = dim 4(Mp) + dim 4(M3).

(2) If M = ®ierM;, then dim (M) =, -, dim 4 (M;).

(3) If M = U;e1 M, is a directed union of submodules, then dim 4 (M) =
sup{dim4(M;) | i € I}.

(4) If M is a finitely generated projective, then dim (M) = 0 if and
only if M = 0.

The proof of this proposition can be found in [12, 13].

As a ring, a finite von Neumann algebra A is semi-hereditary, i.e.,
every finitely generated submodule of a projective module is projective
or, equivalently, every finitely generated ideal is projective. This follows
from two facts. First, every von Neumann algebra is an AW *-algebra
and, hence, a Rickart C*-algebra, see [3, Chapter 1.4]. Second, a C*-
algebra is semi-hereditary as a ring if and only if it is Rickart, see
[1, Corollary 3.7]. The fact that A is Rickart also gives us that A is
nonsingular, see [10, 7.6 (8) and 7.48].

Note also that every statement about left ideals over A can be
converted to an analogous statement about right ideals. This is the case
because A is a ring with involution (which gives a bijection between the
lattices of left and right ideals and which maps a left ideal generated
by a projection to a right ideal generated by the same projection).

2.1 The algebra of affiliated operators. A finite von Neumann
algebra is a pre-Hilbert space with inner product (a,b) = tr 4(ab*).
Let 12(A) be the Hilbert space completion of A. Note that in the
group case [2(N'G) is isomorphic to [2(G) since they are both Hilbert
space completions of NG, see [13, Section 9.1.4] for details. Also, a
finite von Neumann algebra A can be identified with the set of A-
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equivariant bounded operators on [?(A), B(I?(.A))*, using the right
regular representations. This justifies the definition of NG as G-
equivariant operators in B(1(@G)) since B(I2(NG))NE = B(1*(G))N¢ =
B(*(G))Y = NG.

Definition 2.4. Let a be a linear map a : doma — [%(A),
doma C I%(A). We say that a is affiliated to A if

i) a is densely defined (the domain dom a is a dense subset of I2(.A));
ii) a is closed (the graph of a is closed in I2(A) @ [?(A));
iii) ba = ab for every b in the commutant of A.

Let U = U(A) denote the algebra of operators affiliated to A.

Proposition 2.2. Let A be a finite von Neumann algebra and U its
algebra of affiliated operators.

(1) A is an Ore ring.

(2) U is equal to the classical ring of quotients Qu(A) of A.

(3) U is a von Neumann regular, left and right self-injective ring.
(4) U is the mazimal ring of quotients Qumax(A).

The proof of (1) and (2) can be found in [14]. The proof of (3) and
(4) can be found in [2].

From this proposition it follows that the algebra U/ can be defined
using purely algebraic terms (ring of quotient, injective envelope) on
the one hand and using just the language of operator theory (affiliated
operators) on the other.

The ring &/ has many nice properties that A is missing: it is von
Neumann regular and self-injective; and it keeps all the properties that
A has: it is semi-hereditary and nonsingular.

Further, Ko(A) and Ky(U) are isomorphic. Namely, Handelman
proved [9, Lemma 3.1] that, for every finite Rickart C*-algebra R such
that every matrix algebra over R is also Rickart, the inclusion of R into
a certain regular ring U(R) with the same lattice of projections as R
induces an isomorphism p : Ko(R) — Ko(U(R)). By [1, Theorem 3.4],
a matrix algebra over a Rickart C*-algebra is a Rickart C*-algebra.
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Thus, Ko(R) is isomorphic to Ko(U(R)) for every finite Rickart C*-
algebra R. If A is a finite von Neumann algebra, the regular ring
from Handelman’s theorem can be identified with the maximal ring of
quotients Qmax(A), see [2]. This gives us that the inclusion of a finite
von Neumann algebra A in its algebra of affiliated operators U induces
the isomorphism

i Ko(A) — Ko(U).

In [16] it is shown that the inverse of this isomorphism is induced by
the map Proj (U) — Proj(A) given by [Q] — [Q N A"] for any direct
summand @ of ™. Thus, the following holds.

Theorem 2.1. There is a one-to-one correspondence between direct
summands of A and direct summands of U given by I — UR 41 = E(I).
The inverse map is given by L — LNA. This correspondence induces an
isomorphism of monoids p : Proj (A) — Proj (U) and an isomorphism

s Ko(A) — Ko(U)

given by [P] — [U @4 P] with the inverse [Q] — [@ N A"] if Q is a
direct summand of U™.

In [16, Chapter 4], this theorem was proved for a group von Neumann
algebra and in [16, Chapter 7], it is shown that it holds for any finite von
Neumann algebra as well. In [17], this result is contained in Theorem
5.2.

In [14], the dimension of a ¢/-module is defined using the dimension
of an A-module and the above isomorphism u. The dimension over U
of a finitely generated projective U/-module M is defined as

dimy (M) = dim4(p~*(M)),

where dim 4(u~!(M)) denotes the dimension over A of any module in
the inverse image of the equivalence class [M].

Just as for the ring A, we can extend the definition of the dimension
to all modules. If M is an U-module, define the dimension of M,
dimy, (M), as follows:

dimy (M) = sup{dimy(P) | P is a fin. gen proj. submodule of M}.
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The dimension over U is well defined. For details, see [13, Section 8.3]
or [14, Section 3].

In [14], it is shown that the dimension over I/ has all the properties
that the dimension over A had, i.e., Proposition 2.1 holds for dimy, as
well. In addition, in [14] it is shown that the following holds:

dimy (U ® 4 N) =dim4(N) for every .A-module N.

In [18], it is shown that &/ allows the definition of another type of
dimension. This dimension is analogous to the cental-valued dimension

over a finite von Neumann algebra considered in [11]. For more details,
see [18, Section 4.2].

3. Torsion theories. To study different ways of defining the torsion
and torsion-free parts of modules over A or U, we first introduce the
general framework in which we shall be working—the torsion theory.

3.1 General torsion theories.

Definition 3.1. Let R be any ring. A torsion theory for R is a pair
7 = (T,F) of classes of R-modules such that

i) Homg(T,F) =0, forall T € T and F € F.

ii) 7 and F are maximal classes having property i).

The modules in 7 are called 7-torsion modules, or torsion modules for
7, and the modules in F are called 7-torsion-free modules, or torsion-
free modules for 7.

If = (T1,F1) and 75 = (T2, F2) are two torsion theories, we say
that 7 is smaller than 75 and write 71 < 75 if and only if 7; C 7s.
Equivalently, 71 < 75 if and only if F; O Fo.

If C is a class of R-modules, then the torsion theory generated by C is

the smallest torsion theory (7, F) such that C C 7. The torsion theory
cogenerated by C is the largest torsion theory (7, F) such that C C F.

Proposition 3.1. (1) If (T, F) is a torsion theory, then the class T
s closed under quotients, direct sums and extensions and the class F
1s closed under taking submodules, direct products and extensions.
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(2) If C is a class of R-modules closed under quotients, direct sums
and extensions, then it is a torsion class for a torsion theory (C,F)
where F = {F | Homg(C,F) =0, for all C € C}.

Dually, if C is a class of R-modules closed under submodules, direct
products and extensions, then it is a torsion-free class for a torsion
theory (T,C) where T = {T | Homg(T,C) =0, for all C € C}.

(3) Two classes of R-modules T and F constitute a torsion theory if
and only if

i) TnF ={0},
ii) T is closed under quotients,
iii) F is closed under submodules and

iv) For every module M there exists submodule N such that N € T
and M/N € F.

The proof of this proposition is straightforward by the definition of a
torsion theory. The details can be found in [4].

From this proposition it follows that every module M has a largest
submodule which belongs to 7. We call it the torsion submodule of
M and denote it TM. The quotient M /T M is called the torsion-free
quotient and we denote it FM.

A torsion theory 7 = (T, F) is hereditary if the class T is closed under
taking submodules. A torsion theory is hereditary if and only if the
torsion-free class is closed under formation of injective envelopes. Also,
a torsion theory cogenerated by a class of injective modules is hereditary
and, conversely, every hereditary torsion theory is cogenerated by some
class of injective modules. The details can be found in [7].

A torsion theory enables us to define the closure of a submodule in a
module.

Definition 3.2. If M is an R-module and K a submodule of M,
let us define the closure cl} (K) of K in M with respect to the torsion
theory (7, F) by

¥ (K)=7"1(T(M/K)) where 7 is the natural projection
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If it is clear in which module we are closing the submodule K, we
suppress the superscript M from 017]\1[ (K) and write just clr(K). If K
is equal to its closure in M, we say that K is a closed submodule of M.

The closure has the following properties.

Proposition 3.2. Let (T,F) be a torsion theory on R, let M and

N be R-modules and K and L submodules of M. Then

1) TM = cl1(0).

2)T(M/K)=cly(K)/K and F(M/K) = M/cly(K).

3) If K C L, then clr(K) C cly(L).

4) K C cly(K) and cly(clyr(K)) = clr (K).

5) cly(K) is the smallest closed submodule of M containing K.
)
0
)

(
(
(
(
(
(

6) If (T, F) is hereditary, then X (K NL) = K nc¥ (L). If (T, F)
s not hereditary, just C holds in general.

(7) If (T1, F1) and (T2, F2) are two torsion theories, then (T1,F1) <
(T2, F2) if and only if cly (K) C clyp (K) for all K.

The proof follows directly from the definition of the closure.

3.2 Examples. (1) The trivial torsion theory on Modp, is the torsion
theory (0, Modpg).

(2) The improper torsion theory on Modpg is the torsion theory
(MOdR,O).

(3) The torsion theory cogenerated by the injective envelope E(R)
of R is called the Lambek torsion theory. We denote it 7. Since it is
cogenerated by an injective module, it is hereditary.

If the ring R is torsion-free in a torsion theory 7, we say that 7 is
faithful. 7, is faithful, and it is the largest hereditary faithful torsion
theory.

(4) The class of nonsingular modules over a ring R is closed under
submodules, extensions, products and injective envelopes. Thus, the
class of all nonsingular modules is a torsion-free class of a hereditary
torsion theory. This theory is called the Goldie torsion theory 7¢.
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The Lambek theory is smaller than the Goldie theory. This is the case
since 7¢ is larger than any hereditary torsion theory, see [4]. Moreover,
71, = 7¢ if and only if R is a nonsingular ring, i.e., 7 is faithful. Recall
that a finite von Neumann algebra is a nonsingular ring.

(5) If R is an Ore ring with the set of regular elements T, i.e.,
Tr N Rt # 0, for every t € T and r € R, we can define a hereditary
torsion theory by the condition that an R-module M is a torsion module
if and only if, for every m € M, there is a nonzero ¢t € T such that
tm = 0. This torsion theory is called the classical torsion theory of an
Ore ring.

This theory is faithful and so it is contained in 7.

(6) Let R be a subring of a ring S. Let us look at a collection T
of R-modules M such that S ® g M = 0. This collection is closed
under quotients, extensions and direct sums. Moreover, if S is flat as
an R-module, then 7 is closed under submodules and, hence, defines
a hereditary torsion theory. In this case, denote the torsion theory by
TsS.

From the definition of 7g, it follows that the torsion submodule of a
module M in 7g is the kernel of the natural map M — S ®g M, i.e.,
Torf(S/R, M). Thus, all flat modules are Ts-torsion-free. Since R is
flat, g is faithful, so 79 < 7.

If a ring R is Ore, then the classical ring of quotients Qél(R) is a flat
R-module and the set {m € M | rm = 0, for some nonzero-divisor r €
R} is equal to the kernel ker(M — Q! (R) ® g M). Hence the torsion
theory TQL(R) coincides with the classical torsion theory of R in this
case.

Since U = Q. (A), see Proposition 2.2, I is a flat A-module and 7,
is the classical torsion theory of A.

(7) All the torsion theories we introduced so far are hereditary. Let
us introduce a torsion theory that is not necessarily hereditary. Let
(b, u) be the torsion theory cogenerated by the ring R (thus this is the
largest torsion theory in which R is torsion-free). We call a module in
b a bounded module and a module in u an unbounded module.

Since (b,u) is cogenerated by R, the closure of a submodule K
of an R-module M is clff (K) = {x € M | f(z) = 0, for every
f € Hompg(M, R) such that K C ker f}.
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The Lambek torsion theory 71 is contained in the torsion theory
(b, u) because R is 7z-torsion-free. There is another interesting relation
between 77, and (b, u) torsion theory. Namely, M is a 77 -torsion if and
only if every submodule of M is bounded.

This is a direct corollary of the fact that Hompg (M, E(R)) = 0 if
and only if Homg(N, R) = 0, for all submodules N of M, which is an
exercise in [5]. Also, it is easy to show that (b,u) = 7, if and only if
(b, u) is hereditary.

To summarize, for any ring R we have the following relationship for
the torsion theories:

Trivial < 71, < 7¢ < (b,u) < Improper.
If R is an Ore nonsingular ring, then
Trivial < Classical = 7g_,(r) < 7 = 7¢ < (b,u) < Improper.

The last is the situation for our finite von Neumann algebra A as well as
its algebra of affiliated operators U. In the following, we shall examine
the situation for 4 and U/ in more detail.

3.3 Torsion theories for finite von Neumann algebras. Let us
introduce some theories for finite von Neumann algebras and compare
them with the torsion theories from the previous chapter.

(1) We can define a hereditary torsion theory using the dimension
of an A-module. For an A-module M, define TM as the submodule
generated by all submodules of M of the dimension equal to zero. It
is zero-dimensional by property (3) of Proposition 2.1. So, TM is the
largest submodule of M of dimension zero. Let us denote the quotient
M/TM by PM.

The class T = {M € Mod 4 | M = TM} is closed under submodules,
quotients, extensions and direct sums, Proposition 2.1. Thus, T
defines a hereditary torsion theory with torsion-free class equal to
P={M eMody | M =PM}.

From the definition of this torsion theory it follows that clp(K) is
the largest submodule of M with the same dimension as K for every
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submodule K of an module M. Also, since A is semi-hereditary
and a nontrivial finitely generated projective module has nontrivial
dimension, A is in P and so the torsion theory (T,P) is faithful.

(2) The second torsion theory of interest is (b, u), the largest torsion
theory in which the ring is torsion-free. Since A is torsion-free in (T, P),
we have that (T,P) < (b, u).

In [12] it is shown that TM = bM for a finitely generated A-
module M, that PM is a finitely generated projective module and
that M = PM & TM. The proof can also be found in [13].

(3) Let (t,p) denote the classical torsion theory of A. Since U =

ch (A)a
tM = ker(M — U ® 4 M) = Tor{ (U /A, M)

for any A-module M, see Examples (5) and (6) in subsection 3.2.

Let pM denote the torsion-free quotient M/tM. From Example (6),
it follows that all flat modules are torsion-free. In [15], the torsion
theory from Example (6) is studied. Since A is semi-hereditary and
U = Qu(A) = Qmax(A) is von Neumann regular and A-flat, from
Turnidge’s results in [15], it follows that the converse holds as well: a
torsion-free module is flat. Hence, an A-module M is flat if and only
if M isin p.

Various torsion theories for A are ordered as follows:

Trivial < Classical = (¢,p) < 7, = 7¢ = (T, P) < (b,u) < Improper.

The proof of 7, = 7¢ = (T, P) can be found in [16, Chapter 4] for the
case of group von Neumann algebras. The proof for the more general
case of finite von Neumann algebras is the same as for the group von
Neumann algebras, see [16, Chapter 7]. Alternatively, Proposition 4.2
in [17] contains this result. It is interesting to note that this proposition
shows that the torsion theory (T, P), defined via a normal and faithful
trace tr 4, is not dependent on the choice of such trace since (T,P)
coincides with the Lambek and Goldie theories.

The inequality (t, p) < 71, holds since A injects in Y ® 4 A = U, so A
is torsion-free in (t,p) and 77, is the largest hereditary theory in which
A is torsion-free.

All of the above inequalities can be strict. For details, see [13, 16].
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If M is an A-module, there is a filtration:

0OCtMCTMCM.
—— ———
tM  TpM PM

This follows from the fact that the quotient TM/tM = pTM is
isomorphic to the module TpM. For details see [17, Proposition 4.3
and comments following it].

4. Torsion theories for the algebra of affiliated operators.
Let us turn to the torsion theories of the algebra of affiliated operators
U of a finite von Neumann algebra A.

Since we have defined the dimension over U/ and it satisfies all the
properties given in Proposition 2.1, we can define the hereditary torsion
theory (T,P) for U in the same way as we did for A: the torsion
submodule TM of a U-module M is the greatest submodule of M
with dimension zero. PM is the quotient M/TM. The class of all
zero-dimensional modules T is closed under quotients, submodules,
extensions and direct sums by Proposition 2.1. Hence, (T,P) is a
hereditary torsion theory over Y. (T,P) coincides with the torsion
theory defined via the dimension considered in [18]. For more details,
see [18, Corollary 24 and the two paragraphs following it].

The second theory of interest is (b, u), the torsion theory cogenerated
by the ring itself. The Lambek torsion theory 7, is cogenerated by
the injective envelope of the ring, but U is a self-injective ring, hence
7. = (b, u). Further, since U is also a nonsingular ring, 7, = 7¢.

U has no finitely generated submodules of dimension zero because
U is semi-hereditary and the dimension of a projective module is zero
only if the module is trivial. Since the dimension of a module is the
supremum of the dimensions of its finitely generated submodules, U
has no nontrivial submodules of dimension zero. Thus U is in P so
(T, P) is faithful. This yields

(T7P) STL=T6= (b’u)'
We will show that (T,P) = (b,u). The proof consists of three

steps. Lemma 4.1 tells us that clt = clp on submodules of a finitely
generated projective module. Proposition 4.1 tells us that cly = clp
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on submodules of a finitely generated module. Proposition 4.1 will also
tell us that a finitely generated U/-module has the same property as a
finitely generated A-module: it is the direct sum of its T-submodule
and P-quotient. Theorem 4.1 will then tell us that T = b.

Let Lgg (U™) denote the lattice of finitely generated submodules of /™.
Since U is von Neumann regular, this lattice coincides with the lattice
of direct summands of &™. In [14] it is shown that this is a complete
lattice in which the supremum and infimum of two direct summands
are their sum and intersection, respectively. Note that the intersection
of two finitely generated {/-modules is finitely generated since U is a
coherent ring.

Lemma 4.1. Let P be a finitely projective U-module and K a
submodule of P.

clr(K) = ﬂ{Q C P | Q is finitely generated and K C Q}
=inf{Q C P | Q is finitely generated and K C Q}
=sup{Q C P | Q is finitely generated and QQ C K}
= clp(K).

clr(K) is finitely generated and projective, and clp(K) is a direct
summand of P.

Note that the infimum and supremum in the lemma denote the
operations in the lattice Lg, (U™) for P a direct summand of U™. Since
this lattice is complete, these two modules are finitely generated and,
hence, projective. The fact that clp(K) is finitely generated projective
will follow from the equality with these two modules.

Proof. Let I (I for infimum) denote the module inf{@ C P | Q is
finitely generated and K C Q}, S (S for supremum) denote sup{@ C
P | Q is finitely generated and @ C K} and Int (Int for intersection)
denote the module N{@ C P | Q is finitely generated and K C Q}.
The proof proceeds in five steps:

(1) S = Int;
(2) I =Int;
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(3) S Cclx(K);
(4) clr(K) C clp(K);
(5) clp(K) = S.

(1) and (3) are proven in [14].

(2) Int is finitely generated projective by (1) (since S is). So, Int is
the largest finitely generated projective module that is contained in all
the modules Q C P such that @ is finitely generated and K C Q. But
that means that Int is the infimum of the set {Q C P | @ is finitely
generated and K C Q}. So, I = Int.

(4) clp(K) C clp(K) follows since (T,P) < (b, u).

(5) S C clp(K) by (3) and (4). We shall show the equality by showing
that clp (K)/S is trivial. Note that clp (K) is equal to the intersection of
the submodules ker f where f € Homy,(P,U) is such that K C ker f (by
the definition of the torsion theory (b, u)). The image of such a map f
is finitely generated (since P is) and projective (as a finitely generated
submodule of ¢/). But then 0 — ker f — P — im f — 0 splits and so
ker f is also finitely generated projective. Since the lattice of finitely
generated submodules of P is complemented (and the infimum is just
the intersection) clp (K) is finitely generated projective as well.

Since both clp(K) and S are finitely generated projective, cly(K)/S
is finitely presented. All modules over a von Neumann regular ring are
flat and all finitely presented flat modules are projective [10, Theorem
4.21, Theorem 4.30]. Thus, a finitely presented module over a von
Neumann regular ring is finitely generated projective. So cl,(K)/S is
projective.

Since clp(K)/S = Homy (U, clp(K)/S) to show clp(K)/S = 0, it is
sufficient to show Homy, (U, clp(K)/S) = 0. But in every von Neumann
regular ring R, for two projective modules P and @ the following holds:

Hompg(P,Q) =0 iff Homg(Q,P)=0
(this fact can be found in [8]). So, to show Homy (U,cl,(K)/S) =

0, it is sufficient to show Homy(clp(K)/S,U) = 0. Let f be in
Homy(clp (K)/S,U). It uniquely determines a map f : clp(K) — U.
Since U is self-injective, the map Homy, (P,U) — Homy,(clp(K),U) is
onto. So, we can extend f to f in Homy (P,U). Since K C ker f,
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K C ker f and so clp(K) C ker f. But that means that f|u, x) = f :
clp(K) — U is 0, and so f = 0 as well. Hence, Homy, (clp(K)/S,U) = 0,
which finishes the proof of (5).

Since U is a self-injective ring, a finitely generated projective module
is injective. Thus, clp(K) is a direct summand of P since it is finitely
generated projective and a submodule of P. a

The next proposition will tell us that clp(K) = clp(K) for every
submodule K of a finitely generated {-module P.

Proposition 4.1. If M is a finitely generated U-module and K a
submodule of M, then

(1) clp(K) is a direct summand of M and M/cly(K) is finitely
generated projective.

(2) dimy (K) = dimy (clp(K)).
(3) M =bM & uM and dimy (bM) = 0.

(4) TM = bM so M = TM & PM and PM = uM is a finitely
generated projective module.

Proof. (1) Choose a finitely generated projective module P and a
surjection f : P — M. By the previous lemma we know that the T-
closure of a submodule in P is the same as b-closure. We shall transfer
the problem of dealing with submodules of M to P where we know the
claim is true by Lemma 4.1.

First, we shall show that cl, (f~1(K)) = f~(clp(K)).

Let = be in clp(f1(K)). Then g(z) = 0 for every g € Homy (P,U)
such that f~1(K) C ker g. We need to show that f(z) is in cly (K), i.e.,
that h(f(z)) = 0 for every h € Homy, (M,U) with K C ker h. Let h be
one such map. Letting g = hf, we obtain a map in Homy, (P,U) such
that g(f~1(K)) = hff~1(K) = h(K) (since f is onto). But h(K) = 0,
and so f1(K) C ker g. Hence, g(z) =0, i.e., h(f(z)) = 0.

To show the converse, let  be in f !(clp(K)). Then h(f(z)) = 0
for every h € Homy (M,U) such that K C kerh. We need to show
that g(z) = 0 for every g € Homy (P,U) such that f~}(K) C kerg.
Let g be one such map. Since f~}(0) C f~'(K) C kerg, we have
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ker f C kerg. This condition enables us to define a homomorphism
h : M — U such that h(f(p)) = g(p) for every p € P. Then
h(K) = h(f(f~1(K))) = g(f7(K)) = 0, and so h(f(z)) = 0. But
this gives us that g(z) = 0.

It is easy to see that f : P — M induces an isomorphism
P/f Yclp(K)) — M/cp(K). But cp(f 1K) = f clb(K)),
so we obtain that M/cl,(K) is finitely generated projective (since
P/cly(f~H(K)) is). So 0 — clp(K) = M — M/clp(K) — 0 splits.

(2) To show that dimy, (K) = dimy(clp (K)), let us look at a surjection
f:P — M asin (1) and the following two short exact sequences:

0 — ker f — FHEK) — K —0,
0 — ker f — f!(clp(K)) — clp(K) — 0

cp(fY(K)) = clp(f~(K)) by Lemma 4.1. The dimension of
clr(f~1(K)) is the same as the dimension of f ~!(K) by the definition of
the closure and the theory (T,P). Since clp(f~1(K)) = f~(clp(K)),
the two exact sequences give us dimy, (K) = dimy, (clp (K)).

(3) Let K =0 in (1) and (2).

(4) Since T C b we have that TM C bM. But, since dimy (bM) =0
and TM is the largest submodule of M with dimension zero, bM C
TM. The rest of (4) follows from (3) and (1). o

Now we can prove the following,.

Theorem 4.1. For the ring U,

(T,P) = Lambek torsion theory = Goldie torsion theory = (b,u).

Proof. Since we know that (T,P) < 7, = 7¢ = (b, u), it is sufficient
to show that b C T. Proposition 4.1 gives us that bM = TM for
every finitely generated M. To finish the proof it suffices to show
that every 7p-torsion module is in T. Let M be 7p-torsion. Then all
submodules of M are bounded, see Example (7) in Section 3.2. So,
all finitely generated submodules of M are bounded, and, hence in T.



TORSION THEORIES FOR ALGEBRAS 2071

Since the dimension of M is the supremum of the dimensions of its
finitely generated submodules, the dimension of M is zero. Hence, M
isin T. m]

In contrast to the situation (T,P) < (b, u) for the ring A, we have
that (T,P) = (b, u) for the ring .

The ring U is Ore because every von Neumann regular ring is Ore,
so the classical ring of quotients exists. Also, U is semi-hereditary,
so we have that U C Qua(U) C Qmax(U) = E(U). But U is self-
injective so E(U) = U. Hence, U = Qu(U) = Qmax(U) = EU). So,
the classical torsion theory of U is trivial. This indicates that there
is only one nontrivial torsion theory of the ring U of interest for us:
(T,P) =TL =TG = (b,u).

This theory is neither trivial nor improper in general. Let N'Z be
the group von Neumann algebra of the group Z and UZ its algebra of
affiliated operators. Example 8.34 in [18] gives us a flat A'Z-module M
with dimension zero. Since M is flat, UZ ®xrz M is nontrivial. Since
M has dimension zero, dimyz(UZ @z M) =0, and so UZ @z M is
in T. Thus, (T, P) is not trivial for UZ.

The theory (T, P) is not improper whenever A, and hence U (A), is
nontrivial since U (A) is a torsion-free module and, hence, not in T.

If one is not interested in the t-part of a module over a finite von
Neumann algebra A, one can work with #/(A) instead of A. For ap-
plications to topology, that means that we can work with algebra of
affiliated operators if we are not interested in Novikov-Shubin invari-
ants. See Section 4 in [14] for details about L%-invariants via an algebra
of affiliated operators.

5. Torsion theories and semi-simplicity. In this section, we shall
see that the vanishing of certain torsion theories is equivalent with the
semi-simplicity of Y. First we need the following result.

Lemma 5.1. Let n be any positive integer. For every submodule P
of U™,

dimy, (P) = dim4 (P N.A").
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Proof. If P is finitely generated, then P = U ®4 (P N A") by
Theorem 2.1 and so

dimy (P) = dimy (U ®4 (P N A™)) = dim4(P N A™).

If P is not finitely generated, write P as a directed union of its finitely
generated submodules P;, i € I. Then PN.A" is direct union of P;N.A",
i € 1. Thus, we have

dimy (P) = sup dimy(P;) = sup dim4(P;NA") = dim4(PNA"™). o
il iel

Now we can prove the result about the equivalence of the vanishing
of certain torsion theories and the semi-simplicity of U.

Theorem 5.1. The following are equivalent:
(1) U is semi-simple.

(2) (T,P) forU is trivial.

(3) (T, P) for A is equal to (t,p).

(4) The Tp-part of every A-module is zero.
(5)

5) The Tp-part of every cyclic A-module is zero.

Proof. We shall show that (1) = (2) = (3) & (4) = (5) = (1).
(1) = (2). If U is semi-simple, all /-modules are projective, and
hence in P. So T = 0.

(2) = (3). Since t C T for A, it is sufficient to show that every
module from T isin t. If M isin T, then dimy (U@ 4 M) = dim4 (M) =
0, so Y ®4 M = 0 by assumption that there are no nontrivial zero-
dimensional {/-modules. But Y ® 4 M = 0 means that M =tM, so M
is in t.

(3) & (4). (3) is equivalent with (4) since TpM =~ pTM = TM/tM.

(4) = (

(56) = (1). To show that U is semi-simple, it is sufficient to show that
every left ideal in I/ is a direct summand. Let I be a left ideal in U.

5). is trivial.
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Then cly(I) is a direct summand of U, by Proposition 4.1. We shall
show that I is a direct summand by showing that I = clp ().

Since cl(I) is a direct summand of U, clr(I)N.A is a direct summand
of A by Theorem 2.1. Denote by J the left ideal / N A and by J the
left ideal clp(I) N.A. We shall show that J = clt(J).

Since I C clp(I), we have J C J. J is T-closed by Proposition 6.32
from [10] and the fact that (T, P) is Goldie torsion theory for A. Since
clp(J) is the smallest closed submodule containing J we have that
clp(J) € J. J/clp(J) is contained in a finitely generated projective
module A/cly(J). So, J/clp(J) is a module in P. To show it is trivial,
it is suflicient to show that its dimension vanishes. This is the case
since

dim 4 (clr(J)) = dim4(J) (Def. of T, clt and Prop. 2.1)
=dimy (I NA) (definition of J)
= dimy, (1) (by Lemma 5.1)
= dimy(clt (1)) (Def. of T, clt and Prop. 2.1
for U)
=dimy(clr(I)N.A) (by Lemma 5.1)
= dim4(J) (definition of J).

Thus, J = clp(J).

By Proposition 3.2, clt(J)/J = T(A/J) and A/cly(J) = P(A/J).
P(A/J) is a finitely generated projective module so the inclusion
T(A/J) = A/J is split. So, clp(J)/J = T(A/J) is cyclic. Its Tp-part
is trivial by assumption, and so

0 = T(A/J)/t(A)J) = clp(J)/cle(J).

Thus, clrp(J)/J =clg(J)/J = t(A/J) is in t.
Since clp(J)/J isin t, U ® 4 clp(J)/J = 0 and, hence

URacr(J)=URaJ
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Thus,
clr(I) =UQ4 (clr(I)N.A) (by Theorem 2.1)
=URsJ (definition of J)
=UQclp(J) (since J = clp(J))
=URaJ (by what we just showed)
=UR4(INA) (definition of J)
crI (I is a left ideal).

But, since I is contained in clr(I), we have that clp(I) = I. So, I
is a direct summand in /. Thus, U/ is semi-simple. This finishes the
proof. o

In view of the t — Tp — P filtration, the vanishing of the Tp-part of
each A-module is equivalent with &/ being semi-simple. The vanishing
of the t-part of every module is equivalent with A = U/. Indeed,
URLU/A=0soU/Aisin t. Hence, if t = 0,4 = A. The converse is
easy: if U = A, then tM = Tor{'(/ /A, M) = 0 for every A-module M.

In the case when a finite von Neumann algebra of interest is a group
von Neumann algebra N'G, the algebra of affiliated operators UG is
semi-simple if the group G is finite. It is easy to see that, for finite
group G, UG = NG = CG and CG is semi-simple. The converse also
holds: finite G is the only case when UG is semi-simple. The proof
of this claim can be found in [13, see the solution of Exercise 9.11].
Thus, Theorem 5.1 asserts that the Tp-part is present for a large class
of group von Neumann algebras.
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