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KERNELS OF ADJOINTS OF COMPOSITION
OPERATORS WITH MULTIVALENT SYMBOL

VIA A FORMAL ADJOINT

REBECCA G. WAHL

ABSTRACT. If ϕ is an analytic map of the unit disk D
into itself, the composition operator Cϕ on the Hardy space
H2(D) is defined by Cϕ(f) = f ◦ ϕ. For a certain class of
composition operators with multivalent symbol ϕ, we give a
complete and convenient description of Ker C�

ϕ using intuition
from a purely formal adjoint calculation.

1. Introduction. Composition operators can be defined on any
Hilbert space of analytic functions. Here we consider composition
operators on the classical Hardy Hilbert space of analytic functions
on the unit disk D, H2(D), the set of analytic functions f on D for
which

sup
0<r<1

∫ 2π

0

|f(reiθ)|2 dθ

2π
< ∞.

If ϕ is an analytic map of the unit disk D into itself, the composition
operator Cϕ on H2(D) is defined by Cϕ(f) = f ◦ ϕ and bounded on
H2(D) [3]. These operators have been studied for almost four decades
and many properties are known [3] but progress in answering several
basic questions has been impeded.

Computing the norm, determining the spectrum, and deciding on
the hyponormality of Cϕ and C�

ϕ are all hindered by the absence of a
convenient description of the adjoint C�

ϕ (except in the case that ϕ is
a linear fractional map [3], or an inner function [3] and more recently
[6]). In this note we present an approach around this obstacle whereby
a purely formal adjoint provides some intuition in determining KerC�

ϕ

for a general class of multivalent symbols ϕ, and we expect applications
to follow as a result of the utility of the description.
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After dispensing with the necessary preliminary notions in Section 2,
we present a successive derivative condition that completely character-
izes Ker C�

ϕ in Section 3. In Section 4 we present a formal expression for
C�

ϕ and show how this formal adjoint provides intuition for discovering
the description of Ker C�

ϕ. To our knowledge this is the first application
of Cowen’s method for finding the adjoint (formal or otherwise) to the
case where ϕ has variable multiplicity on the unit disk.

2. Preliminaries. For w ∈ D, evaluation at w is a bounded linear
functional so, by the Riesz representation theorem, there is a function
Kw in H2(D) that induces this linear functional: f(w) = 〈f, Kw〉. The
function Kw is called the reproducing kernel function. In the Hardy
space H2(D), the reproducing kernel is

Kw(z) =
1

1 − wz

and has H2 norm
||Kw|| =

1
(1 − |w|2)1/2

.

A fundamental property of composition operators is that the set
{Kα : α ∈ D} is invariant under the action of the adjoint. In fact,
for any f ∈ H2(D), it is easy to see that

〈f, C�
ϕKα〉 = 〈Cϕf, Kα〉 = f(ϕ(α)) = 〈f, Kϕ(α)〉

so we have C�
ϕKα = Kϕ(α).

3. A description of Ker C�
ϕ, ϕ(z) = ((1 − 2c)z2)/(1 − 2cz) for

0 < c < 1/2. In this section we present a complete and convenient
description of KerC�

ϕ for ϕ(z) = ((1 − 2c)z2)/(1 − 2cz), 0 < c < 1/2.

Note that for any composition operator Cϕ(1) = 1. So if f ∈ Ker C�
ϕ,

then 0 = 〈1, C�
ϕf〉 = 〈Cϕ1, f〉 = 〈1, f〉 so that f ∈ zH2(D). Hence,

Ker C�
ϕ is necessarily a subspace of zH2.

Theorem 1. Let

ϕ(z) =
(1 − 2c)z2

1 − 2cz
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for 0 < c < 1/2. Suppose f is an element of H2(D) with constant term
equal to zero. Then f is an element of the kernel of C�

ϕ if and only if
f satisfies the successive derivative condition

〈
f,

K
(2j)
c

(2j)!
− c

K
(2j+1)
c

(2j + 1)!

〉
= 0 for j = 0, 1, . . . .

Proof. Suppose f satisfies the successive derivative condition for all
nonnegative integers j. Since f is analytic in D, f has a Taylor series
expansion in the subdisk |z − c| < 1 − c on which

∞∑
j=1

aj(z − c)j

converges absolutely. Since f satisfies the successive derivative condi-
tion we have for all nonnegative integers j

0 =
〈
f,

K
(2j)
c

(2j)!
− c

K
(2j+1)
c

(2j + 1)!

〉

=
f (2j)(c)
(2j)!

− c
f (2j+1)(c)
(2j + 1)!

= a2j − c a2j+1

and so a2j = ca2j+1. Note that for the Taylor series

f(z) =
∞∑

j=1

aj(z − c)j

we have

f(z) =
∞∑

j=0

(
a2j(z − c)2j + a2j+1(z − c)2j+1

)

=
∞∑

j=0

c a2j+1(z − c)2j + a2j+1(z − c)2j+1

=
∞∑

j=0

a2j+1(z − c)2j(c + z − c)

=
∞∑

j=0

a2j+1z(z − c)2j .
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Thus, if f satisfies the successive derivative condition for all nonnega-
tive integers j then f is of the form

∞∑
j=0

a2j+1z(z − c)2j .

To show that f is an element of the kernel of C�
ϕ we’ll show that f

is in the orthogonal complement of the closure of the range of Cϕ. It
suffices to show for all nonnegative integers k that 〈f(z), (ϕ(z))k〉 = 0.
By the identity principle for analytic functions applied to f(z)/z on
the subdisk |z − c| < 1 − c, the analytic continuation of f(z)/z to the
disk D is an even function of z − c defined and analytic on D. Now,

〈f(z), (ϕ(z))k〉 =
∫ 2π

0

f(eiθ) ϕ(eiθ)k
dθ

2π

=
∫ 2π

0

f(eiθ)
(

(1 − 2c)e−2iθ

1 − 2c e−iθ

)k
dθ

2π

=
∫ 2π

0

f(eiθ)
(

1 − 2c

e2iθ − 2c eiθ

)k
dθ

2π

=
∫ 2π

0

f(eiθ)(1 − 2c)k

eikθ(eiθ − 2c)k

dθ

2π

=
1

2πi

∫
|z|=1

f(z)(1 − 2c)k

zk+1(z − 2c)k
dz

=
1

2πi

∫
|w+c|=1

[(f(w + c))/(w + c)](1 − 2c)k

(w + c)k(w + c − 2c)k
dw

=
1

2πi

∫
|w+c|=1

[(f(w + c))/(w + c)](1 − 2c)k

(w2 − c2)k
dw

by the change of variable w = z − c. Recall that

f(w + c)
w + c

=
∞∑

j=0

a2j+1(w + c − c)2j =
∞∑

j=0

a2j+1(w)2j

so that
(1 − 2c)k f(w + c)

w + c
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is an even function of w on the disk |w| < 1 − c. Let g(w) denote

(1 − 2c)k f(w + c)
w + c

,

and consider the partial fraction expansion for

1
(w + c)k(w − c)k

:

a1

w + c
+

a2

(w + c)2
+ · · · + ak

(w + c)k

+
b1

w − c
+

b2

(w − c)2
+ · · · + bk

(w − c)k
.

Note that this is an even function of w, since

1
(w + c)k(w − c)k

=
1

(w2 − c2)k
,

so we must have aj = (−1)jbj for all j = 1, . . . , k. By the theory of
residues, we have

1
2πi

∫
|w+c|=1

g(w)
aj

(w + c)j
dw =

ajg
(j−1)(−c)
(j − 1)!

and

1
2πi

∫
|w+c|=1

g(w)
bj

(w − c)j
dw =

bjg
(j−1)(c)

(j − 1)!
.

Since g(w) is an even function,

g(j)(c) = (−1)jg(j)(−c)

for all nonnegative integers k so that

ajg
(j−1)(−c) = (−1)j bjg

(j−1)(−c)

= (−1)j bj(−1)j−1g(j−1)(c)

= − bjg
(j−1)(c).
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Thus,
1

2πi

∫
|w+c|=1

g(w)
(w + c)j(w − c)j

dw = 0

for all nonnegative k since

∫
|w+c|=1

g(w)
aj

(w + c)j
dw +

∫
|w+c|=1

g(w)
bj

(w − c)j
dw

is equal to zero for all j = 0, 1, . . . , k.

Conversely, suppose that f is in the kernel of C�
ϕ. Then f is in the

orthogonal complement of the closure of the range of Cϕ. Hence, for
all nonnegative integers k, we have 〈f(z), (ϕ(z))k〉 = 0. As above, this
gives

1
2πi

∫
|w+c|=1

g(w)
(w + c)k(w − c)k

dw = 0

for all nonnegative integers k. Recalling the partial fraction expansion
involved in the integrand, the theory of residues implies that for each k
we have aj = (−1)jbj , j = 0, 1, . . . , k. For k = 1, we have g(−c) = g(c).
For k = 2, the theory of residues yields an expression of four terms in
which two terms cancel since g(c) = g(−c) and a1 = −b1. Since a2 = b2

we have g(1)(−c) = −g(1)(c). Continuing in this manner we see that
g(j)(−c) = (−1)jg(j)(c) for all j = 0, 1, . . . . Hence, g is an even function
of w. Recalling that

g(w) = (1 − 2c)k f(w + c)
w + c

and w = z − c, we see that f(z)/z is an even function of z − c or

f(z)
z

=
∞∑

j=0

a2j(z − c)2j

so that

f(z) =
∞∑

j=0

z a2j(z − c)2j .
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Hence,

f(z) =
∞∑

j=0

z a2j(z − c)2j

=
∞∑

j=0

a2j(z − c + c)(z − c)2j

=
∞∑

j=0

a2j(z − c)(z − c)2j +
∞∑

j=0

c a2j(z − c)2j

=
∞∑

j=0

a2j(z − c)2j+1 +
∞∑

j=0

c a2j(z − c)2j

so that f(z) has power series
∑∞

j=0 bj(z − c)j where b2j+1 = a2j and
b2j = c a2j . Thus, for all nonnegative integers j, we have

〈
f,

K
(2j)
c

(2j)!
− c

K
(2j+1)
c

(2j + 1)!

〉
=

f (2j)(c)
(2j)!

− c
f (2j+1)(c)
(2j + 1)!

= b2j − c b2j+1

= c a2j − c a2j

= 0

so if f is in the kernel of C�
ϕ, then f satisfies the successive derivative

condition for all nonnegative integers j.

It is easy to construct polynomials of any degree that satisfy the
successive derivative condition of the previous theorem. Hence, we
record the following immediate corollary.

Corollary 2. If

ϕ(z) =
(1 − 2c)z2

1 − 2c z

for 0 < c < 1/2, then Ker C�
ϕ is infinite dimensional.

4. A formal expression for C�
ϕ. We present the formal adjoint

for the composition operator Cϕ where

ϕ(z) =
(1 − 2c)z2

1 − 2c z
for 0 < c < 1/2.
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Let MF denote the formal multiplication operator on H2(D) given
by MF (g(z)) = F (z)g(z) for g ∈ H2(D) and z ∈ D.

Theorem 3. If

ϕ(z) =
(1 − 2c)z2

1 − 2c z
for 0 < c < 1/2

we have the following formal expression for the adjoint of Cϕ

C�
ϕ =

1
2

∑
√

c2+(1−2c)z

M
F (
√

c2+(1−2c)z)
C

σ(
√

c2+(1−2c)z)

where F (z) = (−c + z)/z and σ(z) = c + z and where the sum is
understood to be taken over the branches of the square root function.

Proof. Following the technique of Cowen used to find the adjoint of
a composition operator with linear fractional symbol [2], we compute
the action of the adjoint on the reproducing kernel functions:

C�
ϕ(Kw(z)) = Kϕ(w)(z)

=
1

1 − ϕ(w)z

=
1

1 − (w2(1 − 2c)z)/(1 − 2c w)

=
1 − 2c w

1 − 2c w − w2(1 − 2c)z

=
2c w − 1

(1 − 2c)z w2 + 2c w − 1
.

Now, the denominator

(1 − 2c)z w2 + 2c w − 1



COMPOSITION OPERATORS 1357

has a factorization (1 − 2c)z (w − w1)(w − w2) where

w1, w2 =
(−2c)/(1 − 2c) ± √

(4c2)/((1 − 2c)2) + (4z)/(1 − 2c)
2z

=
−c/(1 − 2c) ± 1/(1 − 2c)

√
c2 + (1 − 2c)z

z

=
−c ± √

c2 + (1 − 2c)z
(1 − 2c)z

=
1

c ± √
c2 + (1 − 2c)z

.

Hence,

C�
ϕ(Kw(z)) = Kϕ(w)(z)

=
2c w − 1

(1 − 2c)z (w − w1)(w − w2)

with w1 and w2 as above. By partial fractions,

Kϕ(w) =
1

(1 − 2c)z

[
A

w − w1
+

B

w − w2

]

where

A =
2c w1 − 1
w1 − w2

and

B =
1 − 2c w2

w1 − w2

so that

C�
ϕ(Kw(z))

=
1

(1−2c)z

[
(2c w1−1)/(w1−w2)

w−w1
+

(1−2c w2)/(w1−w2)
w−w2

]

=
1

(1−2c)z(w1− w2)

[
2c w1− 1
w− w1

+
1−2c w2

w− w2

]

=
1

(1−2c)z(w1−w2)

[
(2c w1−1)/(−w1)

1−(w)/(w1)
+

(1−2c w2)/(−w2)
1−(w)/(w2)

]
.
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Now,

w1 − w2 =
1

c +
√

c2 + (1 − 2c)z
− 1

c − √
c2 + (1 − 2c)z

=
2
√

c2 + (1 − 2c)z
(1 − 2c)z

,

1 − 2c w1

w1
=

(2c)/(c +
√

c2 + (1 − 2c)z − 1)
−1/(c +

√
c2 + (1 − 2c)z )

= − c +
√

c2 + (1 − 2c)z

and

2cw2 − 1
w2

=
1 − (2c)/(c − √

c2 + (1 − 2c)z )
−1/(c − √

c2 + (1 − 2c)z )

= c +
√

c2 + (1 − 2c)z.

Hence,

Kϕ(w)(z)

=
1

(1 − 2c)z
(
(2

√
c2 + (1 − 2c)z )/((1 − 2c)z)

)

×
[ −c +

√
c2 + (1 − 2c)z

1 − w(c +
√

c2 + (1 − 2c)z )
+

c +
√

c2 + (1 − 2c)z
1 − w(c − √

c2 + (1 − 2c)z )

]

=
1
2

[
(−c +

√
c2 + (1 − 2c)z )/(

√
c2 + (1 − 2c)z )

1 − w(c +
√

c2 + (1 − 2c)z )

+
(c +

√
c2 + (1 − 2c)z )/(−√

c2 + (1 − 2c)z )
1 − w(c − √

c2 + (1 − 2c)z )

]
.

Thus, we may interpret C�
ϕ as the following formal sum:

C�
ϕ =

1
2

∑
√

c2+(1−2c)z

M
F (
√

c2+(1−2c)z)
C

σ(
√

c2+(1−2c)z)



COMPOSITION OPERATORS 1359

where F (z) = (−c + z)/z and σ(z) = c + z and where the sum is
understood to be taken over the branches of the square root function.

In the following, we will use this formal expression for C�
ϕ to supply

the intuition for the results of Section 3. Note that, for functions of
the form

∑∞
j=0 aj(z − c)j , 0 < c < 1/2, the action of C�

ϕ is particularly
simple. The following calculation shows that

C�
ϕ(z − c)2j = (c2 + (1 − 2c)z)j

and

C�
ϕ(z − c)2j+1 = − c(c2 + (1 − 2c)z)j .

Since, formally, we have

2C�
ϕ(z − c)2j

=
∑

√
c2+(1−2c)z

M
F (
√

c2+(1−2c)z)
C

σ(
√

c2+(1−2c)z)
(z − c)2j

=
−c +

√
c2 + (1 − 2c)z√

c2 + (1 − 2c)z
(c +

√
c2 + (1 − 2c)z − c)2j

+
c +

√
c2 + (1 − 2c)z√

c2 + (1 − 2c)z
(c −

√
c2 + (1 − 2c)z − c)2j

=
1√

c2 + (1 − 2c)z

[(
−c +

√
c2 + (1 − 2c)z

) (√
c2 + (1 − 2c)z

)2j
]

+
1√

c2 + (1 − 2c)z

[(
c +

√
c2 + (1 − 2c)z

)(√
c2 + (1 − 2c)z

)2j
]

=
1√

c2 + (1 − 2c)z

(
c2 + (1 − 2c)z

)j

·
(
−c +

√
c2 + (1 − 2c)z + c +

√
c2 + (1 − 2c)z

)

=
1√

c2 + (1 − 2c)z

(
c2 + (1 − 2c)z

)j
(
2
√

c2 + (1 − 2c)z
)

= 2
(
c2 + (1 − 2c)z

)j
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and, again formally,

2C�
ϕ(z − c)2j+1

=
∑

√
c2+(1−2c)z

M
F (
√

c2+(1−2c)z)
C

σ(
√

c2+(1−2c)z)
(z − c)2j+1

=
−c +

√
c2 + (1 − 2c)z√

c2 + (1 − 2c)z

(
c +

√
c2 + (1 − 2c)z − c

)2j+1

+
c +

√
c2 + (1 − 2c)z√

c2 + (1 − 2c)z

(
c −

√
c2 + (1 − 2c)z − c

)2j+1

=
−c +

√
c2 + (1 − 2c)z√

c2 + (1 − 2c)z

(√
c2 + (1 − 2c)z

2j+1
)

− c +
√

c2 + (1 − 2c)z√
c2 + (1 − 2c)z

(√
c2 + (1 − 2c)z

)2j+1

=
(
−c +

√
c2 + (1 − 2c)z

) (
c2 + (1 − 2c)z

)j

−
(
c +

√
c2 + (1 − 2c)z

) (
c2 + (1 − 2c)z

)j

=
(
−c +

√
c2 + (1 − 2c)z − c −

√
c2 + (1 − 2c)z

) (
c2 + (1 − 2c)z

)j

= −2c(c2 + (1 − 2c)z)j .

Hence we have, at least formally,

C�
ϕ

∞∑
j=0

aj(z − c)j = C�
ϕ

∞∑
j=0

a2j(z − c)2j + C�
ϕ

∞∑
j=0

a2j+1(z − c)2j+1

=
∞∑

j=0

a2j(c2 + (1 − 2c)z)j

+
∞∑

j=0

a2j+1(−c)(c2 + (1 − 2c)z)j

=
∞∑

j=0

(a2j − ca2j+1)(c2 + (1 − 2c)z)j .
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From this it is easy to identify which zH2(D) functions ought to be in
Ker C�

ϕ. Since

0 =
〈
f,

K
(2j)
c

(2j)!
− c

K
(2j+j)
c

(2j + 1)!

〉

=
f (2j)(c)
(2j)!

− c
f (2j+1)(c)
(2j + 1)!

= a2j − c a2j+1,

we can see that functions of the form
∑∞

j=0 aj(z − c)j are in Ker C�
ϕ if

they satisfy the successive derivative condition

0 =
〈
f,

K
(2j)
c

(2j)!
− c

K
(2j+1)
c

(2j + 1)!

〉

for all nonnegative integers j.
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Ann. Sci. École Norm. Sup. (3) 1 suppl. (1884), 3 41.

6. J.N. McDonald, Adjoints of a class of composition operators, Proc. Amer.
Math. Soc. 131 (2003), 601 606.

Butler University, Indianapolis, Indiana 46208-3485
E-mail address: rwahl@butler.edu


