ON CONSTRUCTING ORTHOGONAL IDEMPOTENTS

S. MOUTON

Abstract

Given a finite-dimensional, semi-simple, commutative algebra A over an algebraically closed field K, and $n-1$ orthogonal idempotents different from 0 and 1 , of which at least $n-2$ are minimal, we construct explicitly n orthogonal idempotents different from 0 and 1 , of which at least $n-1$ are minimal, using the given idempotents, in the case that n is not larger than the dimension of A.

1. Introduction. If A is a finite-dimensional, semi-simple, commutative algebra over an algebraically closed field K, then A is isomorphic to K^{n}, where $n=\operatorname{dim} A$. This follows, for instance, from the Wedderburn-Artin theorem, see e.g., [2, Theorem 2.1.6]. From this fact it follows immediately that A has a basis of orthogonal idempotents. It is, however, interesting to consider different ways of constructing explicitly such a basis. In this note we consider, in particular, a method to use $n-1$ given orthogonal idempotents to construct n orthogonal idempotents, for $n \leq \operatorname{dim} A$. For this construction we use the properties of the socle of an algebra.
2. Preliminaries. Throughout, A will be a unital algebra over a field K. We recall the following definitions and basic facts. A minimal left ideal of A is a nonzero left ideal L such that $\{0\}$ and L are the only left ideals contained in L. An element $p \in A$ is called idempotent if $p^{2}=p$, and $p \neq 0$ is a minimal idempotent if the algebra $p A p$ (with unit p) is a division algebra. If A is finite-dimensional and commutative, and K is algebraically closed, then a nonzero idempotent p is minimal if and only if $A p=K p$. If A is semi-simple, then L is a minimal left ideal in A if and only if $L=A p$ where p is a minimal idempotent in A, [1, Proposition 30.6].

If A is semi-simple, then its socle $\operatorname{Soc} A$ is defined as the sum of the minimal left ideals in A. (It is also equal to the sum of the minimal

[^0]right ideals, so it is a two-sided ideal.) If A is semi-simple and finitedimensional, then $A=\operatorname{Soc} A$, [1, Corollary 32.6].
3. Construction of orthogonal idempotents. The following properties of idempotents are well known and very easy to prove. We supply these properties in the interest of self-containedness.

Lemma 3.1. Let A be an algebra.

1. If $p \in A$ is an idempotent, then $1-p$ is an idempotent.
2. The sum of any finite number of orthogonal idempotents in A is an idempotent.
3. The sum of any finite number of orthogonal idempotents is nonzero, if at least one of them is nonzero.

Lemma 3.2. Let A be an m-dimensional algebra. If p_{1}, \ldots, p_{m} are linearly independent idempotents and e is a nonzero idempotent in A, then there exists an $N \in\{1, \ldots, m\}$ such that $p_{N} e \neq 0$.

Lemma 3.3. Let A be a finite-dimensional algebra over an algebraically closed field K.

1. If $\operatorname{dim} A \geq 2$, then 1 is not a minimal idempotent.
2. Suppose, in addition, that A is commutative. If $\operatorname{dim} A=m$, $n<m$ and p_{1}, \ldots, p_{n} are minimal idempotents, then $\sum_{k=1}^{n} p_{k} \neq 1$.

Lemma 3.4. Let A be a commutative algebra. Then the following holds:

1. If p and q are idempotents, then $p q$ is an idempotent, and if $p \neq 1$, then $p q \neq 1$.
2. If p is a minimal idempotent and q an idempotent in A such that $p q \neq 0$, then $p q$ is a minimal idempotent.

Using the properties of the socle, we now prove that a finitedimensional, semi-simple, commutative algebra over an algebraically closed field has a basis consisting of minimal idempotents.

Proposition 3.5. Let A be a finite-dimensional, semi-simple, commutative algebra over an algebraically closed field K. Then A has a basis consisting of minimal idempotents.

Proof. Since A is semi-simple and finite-dimensional, $A=\operatorname{Soc} A$, and each element of $\operatorname{Soc} A$ is a finite sum of elements of the form $y p$, with p a minimal idempotent and $y \in A$. Let $\operatorname{dim} A=m$, and let $\left\{a_{1}, \ldots, a_{m}\right\}$ be a basis for A with $a_{i}=\sum_{j=1}^{N_{i}} y_{i j} p_{i j}$ for all $i=1, \ldots, m$. Since A is finite-dimensional and commutative, K is algebraically closed and each $p_{i j}$ is a minimal idempotent, $A p_{i j}=K p_{i j}$, so that $a_{i}=\sum_{j=1}^{N_{i}} \lambda_{i j} p_{i j}$ with $\lambda_{i j} \in K$ for all $i=1, \ldots, m$. Therefore, $\left\{p_{i j}: i=1, \ldots, m, j=1, \ldots, N_{i}\right\}$ forms a generating set for A, so that a basis p_{1}, \ldots, p_{m} for A can be chosen from this set.

We now formulate our main theorem. In this theorem we use $n-1$ given orthogonal idempotents different from 0 and 1 , of which at least $n-2$ are minimal, to construct n orthogonal idempotents different from 0 and 1 , of which at least $n-1$ are minimal, in the case that n is not larger than the dimension of A.

Theorem 3.6. Let A be a semi-simple commutative algebra over an algebraically closed field K, with $\operatorname{dim} A=m \geq 2$, and let $3 \leq n \leq$ m. If e_{1}, \ldots, e_{n-1} are orthogonal idempotents different from 0 and 1 with e_{1}, \ldots, e_{n-2} minimal idempotents, then there exist orthogonal idempotents q_{1}, \ldots, q_{n} different from 0 and 1 with q_{1}, \ldots, q_{n-1} minimal idempotents.

Proof. Let $\left\{p_{1}, \ldots, p_{m}\right\}$ be a basis of minimal idempotents of A, see Proposition 3.5. By Lemma 3.2 there exists an $N \in\{1, \ldots, m\}$ such that $e_{n-1} p_{N} \neq 0$. Let $k \in\{1, \ldots, n-1\}$ be such that

$$
e_{n-j} p_{N} \neq 0 \quad \text { for all } \quad j=1, \ldots, k
$$

and

$$
\begin{equation*}
e_{n-j} p_{N}=0 \quad \text { for } \quad j=k+1, \ldots, n-1 \tag{3.7}
\end{equation*}
$$

if $k<n-1$. Choose $q_{j}=e_{n-j} p_{N}$ for $j=1, \ldots, k$. If $k<n-1$, choose $q_{k+1}=e_{n-(k+1)}, \ldots, q_{n-1}=e_{n-(n-1)}=e_{1}$ and $q_{n}=1-$
$\sum_{i=k+1}^{n-1} e_{n-i}-p_{N}$, and if $k=n-1$, choose $q_{n}=1-p_{N}$. We prove that q_{1}, \ldots, q_{n} are orthogonal idempotents different from 0 and 1 with q_{1}, \ldots, q_{n-1} minimal.

First consider the case $k<n-1$, i.e.,

$$
\begin{aligned}
& \left\{q_{1}, \ldots, q_{n}\right\} \\
& \quad=\left\{e_{n-1} p_{N}, \ldots, e_{n-k} p_{N}, e_{n-(k+1)}, \ldots, e_{1}, 1-\sum_{i=k+1}^{n-1} e_{n-i}-p_{N}\right\} .
\end{aligned}
$$

Clearly $q_{1}, \ldots, q_{n-1} \neq 0$. If $q_{n}=0$, then $\sum_{i=k+1}^{n-1} e_{n-i}+p_{N}=1$. But there are at most $n-1$ terms in this sum and all of them are minimal idempotents, so that this contradicts Lemma 3.3.2. So $q_{n} \neq 0$.

It follows from Lemma 3.4.1 that $q_{j} \neq 1$ for $j=1, \ldots, k$. It is clear that $q_{k+1}, \ldots, q_{n-1} \neq 1$. Since $e_{n-(k+1)}, \ldots, e_{1}$ and p_{N} are orthogonal, by (3.7), it follows from Lemma 3.1.3 that $\sum_{i=k+1}^{n-1} e_{n-i}+p_{N} \neq 0$, so that $q_{n} \neq 1$.

Clearly, q_{1}, \ldots, q_{n-1} are idempotents. Furthermore,

$$
\begin{aligned}
{q_{n}}^{2}= & \left(1-\sum_{i=k+1}^{n-1} e_{n-i}-p_{N}\right)\left(1-\sum_{i=k+1}^{n-1} e_{n-i}-p_{N}\right) \\
= & 1-\sum_{i=k+1}^{n-1} e_{n-i}-p_{N}-\sum_{i=k+1}^{n-1} e_{n-i} \\
& +\left(\sum_{i=k+1}^{n-1} e_{n-i}\right)^{2}+\left(\sum_{i=k+1}^{n-1} e_{n-i}\right) p_{N} \\
& -p_{N}+p_{N}\left(\sum_{i=k+1}^{n-1} e_{n-i}\right)+p_{N} \\
= & q_{n}+2 p_{N}\left(\sum_{i=k+1}^{n-1} e_{n-i}\right) \text { by Lemma 3.1.2 } \\
= & q_{n} \quad \text { by }(3.7),
\end{aligned}
$$

so that q_{n} is idempotent.
To prove orthogonality, let $j_{1} \neq j_{2} \in\{1, \ldots, k\}$. Then

$$
q_{j_{1}} q_{j_{2}}=e_{n-j_{1}} e_{n-j_{2}} p_{N}=0
$$

Clearly q_{k+1}, \ldots, q_{n-1} are orthogonal. Now let $j \in\{1, \ldots, k\}$ and $l \in\{k+1, \ldots, n-1\}$. Then $q_{j} q_{l}=e_{n-j} p_{N} e_{n-l}=0$, since $j \neq l$. Furthermore,

$$
\begin{aligned}
q_{j} q_{n} & =e_{n-j} p_{N}\left(1-\sum_{i=k+1}^{n-1} e_{n-i}-p_{N}\right) \\
& =e_{n-j} p_{N}-e_{n-j}\left(\sum_{i=k+1}^{n-1} e_{n-i}\right) p_{N}-e_{n-j} p_{N} \\
& =0
\end{aligned}
$$

and, by (3.7),

$$
\begin{aligned}
q_{l} q_{n} & =e_{n-l}\left(1-\sum_{i=k+1}^{n-1} e_{n-i}-p_{N}\right) \\
& =e_{n-l}-e_{n-l}\left(\sum_{i=k+1}^{n-1} e_{n-i}\right)-e_{n-l} p_{N} \\
& =e_{n-l}-e_{n-l}{ }^{2} \\
& =0
\end{aligned}
$$

so that q_{1}, \ldots, q_{n} are orthogonal.
Since p_{N} is minimal, q_{1}, \ldots, q_{k} are minimal, by Lemma 3.4.2. If $j \in\{k+1, \ldots, n-1\}$, then $q_{j} \in\left\{e_{1}, \ldots, e_{n-k-1}\right\}$, and since $k \geq 1$, $n-k-1 \leq n-2$, so that q_{j} is minimal. This proves the case $k<n-1$.
Now consider the case $k=n-1$, i.e.,

$$
\left\{q_{1}, \ldots, q_{n}\right\}=\left\{e_{n-1} p_{N}, e_{n-2} p_{N}, \ldots, e_{1} p_{N}, 1-p_{N}\right\}
$$

Since, by construction, $e_{n-j} p_{N} \neq 0$ for $j=1, \ldots, n-1$, it follows that $q_{1}, \ldots, q_{n-1} \neq 0$. By Lemma 3.3.1 we have that $p_{N} \neq 1$, so that $q_{n} \neq 0$. It follows from Lemma 3.4.1 that $q_{j} \neq 1$ for $j=1, \ldots, n-1$. Since $p_{N} \neq 0, q_{n} \neq 1$.

Lemma 3.4.1 implies that q_{1}, \ldots, q_{n-1} are idempotents, and Lemma 3.1.1 implies that q_{n} is idempotent. If $j_{1} \neq j_{2} \in\{1, \ldots, n-1\}$, then $q_{j_{1}} q_{j_{2}}=e_{n-j_{1}} e_{n-j_{2}} p_{N}=0$. Also, if $j \in\{1, \ldots, n-1\}$, then
$q_{j} q_{n}=e_{n-j} p_{N}\left(1-p_{N}\right)=e_{n-j}\left(p_{N}-p_{N}^{2}\right)=0$. Finally, since p_{N} is minimal, it follows from Lemma 3.4.2 that $q_{j}=e_{n-j} p_{N}$ is minimal, for $j=1, \ldots, n-1$. This proves the case $k=n-1$.

If A is finite-dimensional, semi-simple and commutative and K is algebraically closed, then A has a basis of orthogonal idempotents different from 0 and 1. This is a well-known fact, following, for instance, from [2, Theorem 2.1.6]. It can also be obtained as a corollary of Theorem 3.6.

Corollary 3.8. Let A be a finite-dimensional, semi-simple, commutative algebra over an algebraically closed field K, with $\operatorname{dim} A=m \geq 2$. Then A has a basis q_{1}, \ldots, q_{m} of orthogonal idempotents, different from 0 and 1.

Proof. By Proposition 3.5 and Lemma 3.3.1, A has a basis p_{1}, \ldots, p_{m} of minimal idempotents different from (0 and) 1 . Then p_{1} and $1-p_{1}$ are two orthogonal idempotents different from 0 and 1 with p_{1} minimal. If $m=2$, then we can take $q_{1}=p_{1}, q_{2}=1-p_{1}$.

Suppose $m \geq 3$. Then it follows from Theorem 3.6 that there exist three orthogonal idempotents different from 0 and 1 with two of them minimal, say e_{1}, e_{2}, e_{3}. If $m=3$, then we can take $q_{i}=e_{i}, i=1,2,3$.

Repeating this procedure, after $m-2$ applications of Theorem 3.6, we obtain m orthogonal idempotents different from 0 and 1 (with $m-1$ of them minimal) - call them q_{1}, \ldots, q_{m}. This is the required basis.

The spectrum of an element a in an algebra A over a field K is defined by

$$
\operatorname{Sp}(a)=\{\lambda \in K: \lambda 1-a \text { is not invertible in } A\} .
$$

If K is algebraically closed and $\operatorname{dim} A=m<\infty$, then if $a \in A, a$ is algebraic of degree $\leq m$, so that $\operatorname{Sp}(a)$ contains at most m elements. Let $\# X$ denote the number of elements in a set X.

Corollary 3.9. Let A be a finite-dimensional, semi-simple, commutative algebra over an algebraically closed field K, with $\operatorname{dim} A=m \geq 2$. Then A contains an element a such that $\# \operatorname{Sp} a=m$. In fact, given
any different $\alpha_{1}, \ldots, \alpha_{m} \in K$, there exists an $a \in A$ such that $\operatorname{Sp} a=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$.

Proof. Let q_{1}, \ldots, q_{m} be the basis of orthogonal idempotents, different from 0 and 1 , which exists by Corollary 3.8, and let $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ be a set of different elements in K. If $a=\alpha_{1} q_{1}+\cdots+\alpha_{m} q_{m}$, then $\left(a-\alpha_{k}\right) q_{k}=\alpha_{k} q_{k}-\alpha_{k} q_{k}=0$ for all $k \in\{1, \ldots, m\}$. Since $q_{k} \neq 0$, it follows that $a-\alpha_{k}$ is not invertible, for all $k \in\{1, \ldots, m\}$. Hence, $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \subset \operatorname{Sp}(a)$. Since $\operatorname{dim} A=m$, we must have $\# \operatorname{Sp}(a) \leq m$. Consequently, $\operatorname{Sp}(a)=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$.

Corollary 3.9 is in particular useful if A is a complex Banach algebra.

REFERENCES

1. F.F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, New York, 1973.
2. I.N. Herstein, Noncommutative rings, Math. Assoc. America, Washington, D.C., 1968.

Department of Mathematical Sciences, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
E-mail address: smo@sun.ac.za

[^0]: 2000 AMS Mathematics Subject Classification. Primary 16B99, 46H05, 46J05.
 Key words and phrases. Semi-simple algebra, orthogonal idempotent.
 Received by the editors on January 3, 2005.

