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ON CONSTRUCTING ORTHOGONAL IDEMPOTENTS

S. MOUTON

ABSTRACT. Given a finite-dimensional, semi-simple, com-
mutative algebra A over an algebraically closed field K, and
n− 1 orthogonal idempotents different from 0 and 1, of which
at least n− 2 are minimal, we construct explicitly n orthogo-
nal idempotents different from 0 and 1, of which at least n−1
are minimal, using the given idempotents, in the case that n
is not larger than the dimension of A.

1. Introduction. If A is a finite-dimensional, semi-simple, com-
mutative algebra over an algebraically closed field K, then A is iso-
morphic to Kn, where n = dim A. This follows, for instance, from the
Wedderburn-Artin theorem, see e.g., [2, Theorem 2.1.6]. From this fact
it follows immediately that A has a basis of orthogonal idempotents.
It is, however, interesting to consider different ways of constructing ex-
plicitly such a basis. In this note we consider, in particular, a method
to use n − 1 given orthogonal idempotents to construct n orthogonal
idempotents, for n ≤ dimA. For this construction we use the properties
of the socle of an algebra.

2. Preliminaries. Throughout, A will be a unital algebra over a
field K. We recall the following definitions and basic facts. A minimal
left ideal of A is a nonzero left ideal L such that {0} and L are the
only left ideals contained in L. An element p ∈ A is called idempotent
if p2 = p, and p �= 0 is a minimal idempotent if the algebra pAp (with
unit p) is a division algebra. If A is finite-dimensional and commutative,
and K is algebraically closed, then a nonzero idempotent p is minimal
if and only if Ap = Kp. If A is semi-simple, then L is a minimal left
ideal in A if and only if L = Ap where p is a minimal idempotent in A,
[1, Proposition 30.6].

If A is semi-simple, then its socle Soc A is defined as the sum of the
minimal left ideals in A. (It is also equal to the sum of the minimal
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right ideals, so it is a two-sided ideal.) If A is semi-simple and finite-
dimensional, then A = Soc A, [1, Corollary 32.6].

3. Construction of orthogonal idempotents. The following
properties of idempotents are well known and very easy to prove. We
supply these properties in the interest of self-containedness.

Lemma 3.1. Let A be an algebra.

1. If p ∈ A is an idempotent, then 1 − p is an idempotent.

2. The sum of any finite number of orthogonal idempotents in A is
an idempotent.

3. The sum of any finite number of orthogonal idempotents is non-
zero, if at least one of them is nonzero.

Lemma 3.2. Let A be an m-dimensional algebra. If p1, . . . , pm are
linearly independent idempotents and e is a nonzero idempotent in A,
then there exists an N ∈ {1, . . . , m} such that pNe �= 0.

Lemma 3.3. Let A be a finite-dimensional algebra over an alge-
braically closed field K.

1. If dim A ≥ 2, then 1 is not a minimal idempotent.

2. Suppose, in addition, that A is commutative. If dimA = m,
n < m and p1, . . . , pn are minimal idempotents, then

∑n
k=1 pk �= 1.

Lemma 3.4. Let A be a commutative algebra. Then the following
holds :

1. If p and q are idempotents, then pq is an idempotent, and if p �= 1,
then pq �= 1.

2. If p is a minimal idempotent and q an idempotent in A such that
pq �= 0, then pq is a minimal idempotent.

Using the properties of the socle, we now prove that a finite-
dimensional, semi-simple, commutative algebra over an algebraically
closed field has a basis consisting of minimal idempotents.
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Proposition 3.5. Let A be a finite-dimensional, semi-simple,
commutative algebra over an algebraically closed field K. Then A has
a basis consisting of minimal idempotents.

Proof. Since A is semi-simple and finite-dimensional, A = SocA,
and each element of Soc A is a finite sum of elements of the form
yp, with p a minimal idempotent and y ∈ A. Let dim A = m,
and let {a1, . . . , am} be a basis for A with ai =

∑Ni

j=1 yijpij for all
i = 1, . . . , m. Since A is finite-dimensional and commutative, K is
algebraically closed and each pij is a minimal idempotent, Apij = Kpij ,
so that ai =

∑Ni

j=1 λijpij with λij ∈ K for all i = 1, . . . , m. Therefore,
{pij : i = 1, . . . , m, j = 1, . . . , Ni} forms a generating set for A, so
that a basis p1, . . . , pm for A can be chosen from this set.

We now formulate our main theorem. In this theorem we use n − 1
given orthogonal idempotents different from 0 and 1, of which at least
n−2 are minimal, to construct n orthogonal idempotents different from
0 and 1, of which at least n − 1 are minimal, in the case that n is not
larger than the dimension of A.

Theorem 3.6. Let A be a semi-simple commutative algebra over
an algebraically closed field K, with dim A = m ≥ 2, and let 3 ≤ n ≤
m. If e1, . . . , en−1 are orthogonal idempotents different from 0 and
1 with e1, . . . , en−2 minimal idempotents, then there exist orthogonal
idempotents q1, . . . , qn different from 0 and 1 with q1, . . . , qn−1 minimal
idempotents.

Proof. Let {p1, . . . , pm} be a basis of minimal idempotents of A, see
Proposition 3.5. By Lemma 3.2 there exists an N ∈ {1, . . . , m} such
that en−1pN �= 0. Let k ∈ {1, . . . , n − 1} be such that

en−jpN �= 0 for all j = 1, . . . , k

and

en−jpN = 0 for j = k + 1, . . . , n − 1,(3.7)

if k < n − 1. Choose qj = en−jpN for j = 1, . . . , k. If k < n − 1,
choose qk+1 = en−(k+1), . . . , qn−1 = en−(n−1) = e1 and qn = 1 −
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∑n−1
i=k+1 en−i − pN , and if k = n − 1, choose qn = 1 − pN . We prove

that q1, . . . , qn are orthogonal idempotents different from 0 and 1 with
q1, . . . , qn−1 minimal.

First consider the case k < n − 1, i.e.,

{q1, . . . , qn}

=
{

en−1pN , . . . , en−kpN , en−(k+1), . . . , e1, 1 −
n−1∑

i=k+1

en−i − pN

}
.

Clearly q1, . . . , qn−1 �= 0. If qn = 0, then
∑n−1

i=k+1 en−i + pN = 1. But
there are at most n− 1 terms in this sum and all of them are minimal
idempotents, so that this contradicts Lemma 3.3.2. So qn �= 0.

It follows from Lemma 3.4.1 that qj �= 1 for j = 1, . . . , k. It is clear
that qk+1, . . . , qn−1 �= 1. Since en−(k+1), . . . , e1 and pN are orthogonal,
by (3.7), it follows from Lemma 3.1.3 that

∑n−1
i=k+1 en−i + pN �= 0, so

that qn �= 1.

Clearly, q1, . . . , qn−1 are idempotents. Furthermore,

qn
2 =

(
1 −

n−1∑
i=k+1

en−i − pN

)(
1 −

n−1∑
i=k+1

en−i − pN

)

= 1 −
n−1∑

i=k+1

en−i − pN −
n−1∑

i=k+1

en−i

+
( n−1∑

i=k+1

en−i

)2

+
( n−1∑

i=k+1

en−i

)
pN

− pN + pN

( n−1∑
i=k+1

en−i

)
+ pN

= qn + 2pN

( n−1∑
i=k+1

en−i

)
by Lemma 3.1.2

= qn by (3.7),

so that qn is idempotent.

To prove orthogonality, let j1 �= j2 ∈ {1, . . . , k}. Then

qj1qj2 = en−j1en−j2pN = 0.
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Clearly qk+1, . . . , qn−1 are orthogonal. Now let j ∈ {1, . . . , k} and
l ∈ {k + 1, . . . , n − 1}. Then qjql = en−jpNen−l = 0, since j �= l.
Furthermore,

qjqn = en−jpN

(
1 −

n−1∑
i=k+1

en−i − pN

)

= en−jpN − en−j

( n−1∑
i=k+1

en−i

)
pN − en−jpN

= 0,

and, by (3.7),

qlqn = en−l

(
1 −

n−1∑
i=k+1

en−i − pN

)

= en−l − en−l

( n−1∑
i=k+1

en−i

)
− en−lpN

= en−l − en−l
2

= 0,

so that q1, . . . , qn are orthogonal.

Since pN is minimal, q1, . . . , qk are minimal, by Lemma 3.4.2. If
j ∈ {k + 1, . . . , n − 1}, then qj ∈ {e1, . . . , en−k−1}, and since k ≥ 1,
n−k−1 ≤ n−2, so that qj is minimal. This proves the case k < n−1.

Now consider the case k = n − 1, i.e.,

{q1, . . . , qn} = {en−1pN , en−2pN , . . . , e1pN , 1 − pN}.

Since, by construction, en−jpN �= 0 for j = 1, . . . , n − 1, it follows
that q1, . . . , qn−1 �= 0. By Lemma 3.3.1 we have that pN �= 1, so that
qn �= 0. It follows from Lemma 3.4.1 that qj �= 1 for j = 1, . . . , n − 1.
Since pN �= 0, qn �= 1.

Lemma 3.4.1 implies that q1, . . . , qn−1 are idempotents, and Lemma
3.1.1 implies that qn is idempotent. If j1 �= j2 ∈ {1, . . . , n − 1},
then qj1qj2 = en−j1en−j2pN = 0. Also, if j ∈ {1, . . . , n − 1}, then
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qjqn = en−jpN (1 − pN ) = en−j(pN − pN
2) = 0. Finally, since pN is

minimal, it follows from Lemma 3.4.2 that qj = en−jpN is minimal, for
j = 1, . . . , n − 1. This proves the case k = n − 1.

If A is finite-dimensional, semi-simple and commutative and K is
algebraically closed, then A has a basis of orthogonal idempotents
different from 0 and 1. This is a well-known fact, following, for instance,
from [2, Theorem 2.1.6]. It can also be obtained as a corollary of
Theorem 3.6.

Corollary 3.8. Let A be a finite-dimensional, semi-simple, commu-
tative algebra over an algebraically closed field K, with dimA = m ≥ 2.
Then A has a basis q1, . . . , qm of orthogonal idempotents, different from
0 and 1.

Proof. By Proposition 3.5 and Lemma 3.3.1, A has a basis p1, . . . , pm

of minimal idempotents different from (0 and) 1. Then p1 and 1 − p1

are two orthogonal idempotents different from 0 and 1 with p1 minimal.
If m = 2, then we can take q1 = p1, q2 = 1 − p1.

Suppose m ≥ 3. Then it follows from Theorem 3.6 that there exist
three orthogonal idempotents different from 0 and 1 with two of them
minimal, say e1, e2, e3. If m = 3, then we can take qi = ei, i = 1, 2, 3.

Repeating this procedure, after m − 2 applications of Theorem 3.6,
we obtain m orthogonal idempotents different from 0 and 1 (with m−1
of them minimal) call them q1, . . . , qm. This is the required basis.

The spectrum of an element a in an algebra A over a field K is defined
by

Sp (a) = {λ ∈ K : λ1 − a is not invertible in A}.
If K is algebraically closed and dimA = m < ∞, then if a ∈ A, a is
algebraic of degree ≤ m, so that Sp (a) contains at most m elements.
Let #X denote the number of elements in a set X.

Corollary 3.9. Let A be a finite-dimensional, semi-simple, commu-
tative algebra over an algebraically closed field K, with dimA = m ≥ 2.
Then A contains an element a such that #Sp a = m. In fact, given
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any different α1, . . . , αm ∈ K, there exists an a ∈ A such that
Sp a = {α1, . . . , αm}.

Proof. Let q1, . . . , qm be the basis of orthogonal idempotents, differ-
ent from 0 and 1, which exists by Corollary 3.8, and let {α1, . . . , αm}
be a set of different elements in K. If a = α1q1 + · · · + αmqm, then
(a − αk)qk = αkqk − αkqk = 0 for all k ∈ {1, . . . , m}. Since qk �= 0,
it follows that a − αk is not invertible, for all k ∈ {1, . . . , m}. Hence,
{α1, . . . , αm} ⊂ Sp (a). Since dimA = m, we must have #Sp (a) ≤ m.
Consequently, Sp (a) = {α1, . . . , αm}.

Corollary 3.9 is in particular useful if A is a complex Banach algebra.
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