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POSITIVE SOLUTION OF MULTI-POINT
BOUNDARY VALUE PROBLEM FOR

THE ONE-DIMENSIONAL P -LAPLACIAN
WITH SINGULARITIES

DE-XIANG MA AND WEI-GAO GE

ABSTRACT. In the paper, we get positive solutions of the
following multi-point singular boundary value problem with
p-Laplacian operator

⎧⎨
⎩

(φp(u′))′ + q(t)f(t, u, u′) = 0 0 < t < 1,

u(0) =

n∑
i=1

αiu(ξi), u′(1) =

n∑
i=1

βiu
′(ξi),

where φp(s) = |s|p−2s, p > 1; ξi ∈ (0, 1), i = 1, 2, . . . , n,

0 ≤ αi, βi < 1, i = 1, 2, . . . , n, 0 ≤
∑n

i=1
αi,

∑n

i=1
βi < 1

and f(t, u, u′) may be singular at u = 0, u′ = 0.

1. Introduction. In this paper we study the singular boundary
value problem (BVP for short)

(1.1)

⎧⎪⎨
⎪⎩

(φp(u′))′ + q(t)f(t, u, u′) = 0 0 < t < 1,

u(0) =
n∑

i=1

αiu(ξi), u′(1) =
n∑

i=1

βiu
′(ξi),

where φp(s) = |s|p−2s, p > 1; ξi ∈ (0, 1), i = 1, 2, . . . , n, 0 ≤ αi,
βi < 1, i = 1, 2, . . . , n, 0 ≤ ∑n

i=1 αi,
∑n

i=1 βi < 1 and f(t, u, u′) may
be singular at u = 0, u′ = 0, q(t) ∈ C[0, 1]. The singular differential
boundary value problem arises in many branches of both applied and
basic mathematics and it has been extensively studied in the literature,
for details, we refer the reader to [2].
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When f(t, u, u′) = f(t, u) has no singularity at u = 0, Bai [4] and Ma
[8] studied two problems similar to (1.1) respectively, i.e.,

⎧⎪⎨
⎪⎩

(φp(u′))′ + q(t)f(t, u) = 0 0 < t < 1

u′(0) =
n∑

i=1

αiu
′(ξi), u(1) =

n∑
i=1

βiu(ξi),

and ⎧⎪⎨
⎪⎩
u′′ + q(t)f(t, u) = 0 0 < t < 1

u′(0) =
n∑

i=1

αiu
′(ξi), u(1) =

n∑
i=1

βiu(ξi),

The tools used in [4, 8] are fixed point index theory and fixed point
theorem in cones due to Krasnoselskii, respectively. When p = 2, and
f(t, u, u′) has no singularity at u = 0, u′ = 0, (1.1) has been also
studied in [5] and its references. But we may see easily the method
used in [4, 5, 8] is of no effect to (1.1) since f(t, u, u′) may be singular
at u = 0, u′ = 0 in our paper. BVP (1.1) contains the following BVP
as a special case,

(1.2)
{
u′′ + q(t)f(t, u, u′) = 0 0 < t < 1
u(0) = 0, u′(1) = 0,

when f(t, u, u′) may be singular at u = 0, u′ = 0. Equation (1.2) has
been studied extensively in [2].

In fact, when f(t, u, u′) = f(t, u) has singularity at u = 0, the
first differential equation of (1.1) subjected to some other boundary
conditions has been studied, for example,

(1.3)
{

(φp(u′))′ + q(t)f(t, u) = 0 0 < t < 1
u(0) = 0, u(1) = 0,

when f(t, u) = f(u) has singularity at u = 0, (1.3) has been studied in
[9], when f(t, u) has singularity at u = 0, (1.3) has also been studied
in [1]; and

(1.4)
{

(φp(u′))′ + q(t)f(t, u) = 0 0 < t < 1
u(0) = 0, u(1) +B(u′(1)) = 0,
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when f(t, u) has singularity at u = 0, (1.4) has been studied in [8]. In
regards to (1.1), to our knowledge there is not a paper in the literature
which discusses it. As is known, one difficulty that appears is that, for
p �= 2, the differential operator (φp(u′))′ is nonlinear, and thus, it is
very difficult to change the differential equation in (1.1) to an equivalent
integral equation, but in this paper, we use a technique to solve this.
The method used in this paper is different from those of [1, 4 9].

We shall denote by C[0, 1], respectively C1[0, 1], the classical space of
continuous, respectively continuously differentiable, real-valued func-
tions on the interval [0, 1]. The norm in C[0, 1] is denoted by
‖w‖0 = maxt∈[0,1] |w(t)|. The norm in C1[0, 1] is denoted by ‖w‖ =
max{‖w‖0, ‖w′‖0}. Then both C[0, 1] and C1[0, 1] are Banach spaces.

In this paper, we say a function w(t) is a positive solution to problem
(1.1) if it satisfies the following conditions:

(i) w ∈ C[0, 1] ∩ C1[0, 1],

(ii) w(t) > 0 and w′(t) > 0 for any t ∈ (0, 1),

(iii) (φp(w′))′(t) ∈ L1[0, 1] and
⎧⎪⎨
⎪⎩

(φp(w′))′ + q(t)f(t, w, w′) = 0 0 < t < 1

w(0) =
n∑

i=1

αiw(ξi), w′(1) =
n∑

i=1

βiw
′(ξi).

We recall that a function w is said to be concave on [0, 1], if

w(λt2 + (1 − λ)t1) ≥ λw(t2) + (1 − λ)w(t1), t1, t2, λ ∈ [0, 1],

and a function is said to be monotone on [0, 1], if w(t) is nondecreasing
or nonincreasing. We denote

C1
+[0, 1] = {w ∈ C1[0, 1] : w(t) ≥ 0, w′(t) ≥ 0, t ∈ [0, 1]},

P = {w ∈ C1
+[0, 1] : w(t) is concave on [0, 1]}.

It is easy to see that P is a cone in C1[0, 1].

We know easily that, when p > 1, φp(s) is strictly increasing on
(−∞,+∞). So φ−1

p exists. Moreover, φ−1
p = φq, where (1/p) + (1/q)

= 1.

The following conditions are needed in this paper:
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(H1) q(t) ∈ C[0, 1] with q(t) > 0, t ∈ (0, 1).

(H2) f : [0, 1] × (0,+∞) × (0,+∞) → [0,+∞) is continuous;

(H3) there exist A = 0 or A ≥ 1; B ≥ 1; C = 0 or C ≥ 1
and 0 ≤ k ≤ min{p − 1, 1}, l > 0 such that 0 ≤ f(t, u, u′) ≤
[f1(u)+f2(u)][A(u′)k +B(u′)−l +C] on [0, 1]× (0,+∞)× (0,+∞) with
f1 > 0 continuous, nonincreasing on (0,+∞) and

∫ L

0
f1(u) du < +∞

for any fixed L > 0; f2 ≥ 0 is continuous on [0,+∞);

(H4) for any K > 0, N > 0, there exists a function ψK,N continuous
on [0, 1] and positive on (0, 1) with f(t, u, v) ≥ ψK,N (t), t ∈ (0, 1), on
[0, 1] × (0,K] × (0, N ];

(H5) (φ−1
p (

∫ 1

t
ψ(s)q(s) ds))−l ∈ L1[0, 1] and f1(ct) ∈ L1[0, 1], f1(ct)

(φ−1
p (

∫ 1

t
ψ(s)q(s) ds))−l ∈ L1[0, 1] for any fixed c > 0.

When c > 0, let

G(c) =
∫ c

0

(f1(u) + f2(u)) du,

I(c) =
∫ c

0

φ−1
p (t)

A(φ−1
p (t) + 1)k +B(φ−1

p (t))−l + C
dt.

Then bothG(c) and I(c) are strictly increasing about c. So (Iφp)−1(c)=
φ−1

p (I−1(c)) exists on (0,+∞).

We state our main result as follows.

Theorem 3.1. Assume (H1) (H5) hold and

sup
c∈(0,+∞)

c

(Iφ)−1(G(c))Γ
> 1,

where

Γ =
(1 − ∑n

i=1 αi +
∑n

i=1 αiξi)
(1 − ∑n

i=1 αi)(1 − ∑n
i=1 βi)

(Iφ)−1(‖q‖0).

Then (1.1) has at least one positive solution.

The paper is organized as follows. After this section, some lemmas
will be established in Section 2. In Section 3, we prove our main results,
Theorem 3.1. An example is also given to show our results.
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2. Preliminaries. In this section, we suppose F : [0, 1]× [0,+∞)×
[0,+∞) → [0,+∞) is continuous and q(t) satisfies (H1).

Lemma 2.1. Suppose y ∈ C1[0, 1] with (φp(y′))′ ∈ C[0, 1] satisfying

⎧⎪⎨
⎪⎩

−(φp(y′))′(t) ≥ 0 0 < t < 1,

y(0) =
n∑

i=1

αiy(ξi), y′(1) =
n∑

i=1

βiy
′(ξi).

Then, y(t) is concave and y(t) ≥ 0, y′(t) ≥ 0 on [0, 1], i.e., y ∈ P .

Proof. The proof is very easy since 0 ≤ ∑n
i=1 αi < 1, 0 ≤ ∑n

i=1 βi

< 1, and we omit it.

For any x ∈ C1
+[0, 1], suppose u is a solution of the following BVP,

(2.1)

⎧⎪⎨
⎪⎩

(φp(u′))′ + q(t)F (t, x, x′) = 0 0 < t < 1,

u(0) =
n∑

i=1

αiu(ξi), u′(1) =
n∑

i=1

βiu
′(ξi).

Then

u′(t) = φ−1
p

[
Ax +

∫ 1

t

q(s)F (s, x(s), x′(s)) ds
]
,

u(t) = Bx +
∫ t

0

φ−1
p

[
Ax +

∫ 1

s

q(r)F (r, x(r), x′(r)) dr
]
ds,

where Ax, Bx satisfy the boundary conditions, i.e.,
(2.2)

φ−1
p Ax =

n∑
i=1

βiφ
−1
p

(
Ax +

∫ 1

ξi

q(s)F (s, x(s), x′(s)) ds
)

Bx =
n∑

i=1

αi

[
Bx +

∫ ξi

0

φ−1
p

(
Ax +

∫ 1

s

q(r)F (r, x(r), x′(r)) dr
)
ds

]
.
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So,

u(t) =
∑n

i=1 αi

∫ ξi

0
φ−1

p

(
Ax +

∫ 1

s
q(r)F (r, x, x′) dr

)
ds

1 − ∑n
i=1 αi

+
∫ t

0

φ−1

(
Ax +

∫ 1

s

q(r)F (r, x, x′) dr
)
ds,

where Ax satisfies (2.2).

Lemma 2.2. For any x ∈ C1
+[0, 1], there exists a unique Ax ∈

(−∞,+∞) satisfying (2.2). Therefore, for any x ∈ C1
+[0, 1], (2.1) has

a solution.

Proof. For any x ∈ C1
+[0, 1], define

H(c) = φ−1(c) −
n∑

i=1

βiφ
−1
p

(
c+

∫ 1

ξi

q(s)F (s, x(s), x′(s)) ds
)
,

then H(c) ∈ C((−∞,+∞), R) and

H(0) = −
n∑

i=1

βiφ
−1
p

(∫ 1

ξi

q(s)F (s, x(s), x′(s)) ds
)

≤ 0.

In what follows, we will divide into two cases to prove that H(c) = 0
has a unique solution on (−∞,+∞), which means that there exists a
unique Ax ∈ (−∞,+∞) satisfying (2.2). And, as a result,

u(t) =

∑n
i=1 αi

∫ ξi

0
φ−1

p

(
Ax +

∫ 1

s
q(r)F (r, x, x′) dr

)
ds

1 − ∑n
i=1 αi

+
∫ t

0

φ−1

(
Ax +

∫ 1

s

q(r)F (r, x, x′) dr
)
ds

is a solution of (2.1).

Case 1. H(0) = 0. Then

n∑
i=1

βiφ
−1
p

( ∫ 1

ξi

q(s)F (s, x(s), x′(s)) ds
)

= 0.
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So,

βiφ
−1
p

(∫ 1

ξi

q(s)F (s, x(s), x′(s)) ds
)

= 0, i = 1, 2, . . . , n.

Therefore,

φp(βi)
∫ 1

ξi

q(s)F (s, x(s), x′(s)) ds = 0, i = 1, 2, . . . , n.

Then,

H(c) = φ−1
p (c) −

n∑
i=1

βiφ
−1
p

(
c+

∫ 1

ξi

q(s)F (s, x(s), x′(s)) ds
)

= φ−1
p (c) −

n∑
i=1

φ−1
p

(
φp(βi)

(
c+

∫ 1

ξi

q(s)F (s, x(s), x′(s)) ds
))

= φ−1
p (c)

−
n∑

i=1

φ−1
p

(
φp(βi)

(
c+ φp(βi)

∫ 1

ξi

q(s)F (s, x(s), x′(s)) ds
))

= φ−1
p (c) −

n∑
i=1

βiφ
−1
p (c) =

(
1 −

n∑
i=1

βi

)
φ−1(c).

Obviously, there exists a unique c = 0 satisfying H(c) = 0.

Case 2. H(0) �= 0. Then H(0) < 0. (i) When c ∈ (−∞, 0),

H(c) = φ−1
p (c) −

n∑
i=1

βiφ
−1
p

(
c+

∫ 1

ξi

q(s)F (s, x(s), x′(s)) ds
)

≤ φ−1
p (c) −

n∑
i=1

βiφ
−1
p (c)

=
(

1 −
n∑

i=1

βi

)
φ−1(c) < 0.

So when c ∈ (−∞, 0), H(c) �= 0.
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(ii) When c ∈ (0,+∞),

H(c) = φ−1
p (c) −

n∑
i=1

βiφ
−1
p

(
c+

∫ 1

ξi

q(s)F (s, x(s), x′(s)) ds
)

= φ−1
p (c)

[
1 −

n∑
i=1

βiφ
−1
p

(
1 +

∫ 1

ξi
q(s)F (s, x(s), x′(s)) ds

c

)]

= φ−1
p (c)H(c),

where

H(c) = 1 −
n∑

i=1

βiφ
−1
p

(
1 +

∫ 1

ξi
q(s)F (s, x(s), x′(s)) ds

c

)
.

Since H(0) �= 0, that is,

n∑
i=1

βiφ
−1
p

( ∫ 1

ξi

q(s)F (s, x(s), x′(s)) ds
)

�= 0.

As a result, there must exist i0 ∈ {1, 2, . . . , n} such that

βi0φ
−1
p

( ∫ 1

ξi0

q(s)F (s, x(s), x′(s))
)
ds �= 0.

Thus, we get H(c) is strictly increasing on (0,+∞);
∫ 1

0

q(s)F (s, x(s), x′(s)) ds > 0

and
∑n

i=1 βi > 0. Let

c =
φp (

∑n
i=1 βi)

1 − φp (
∑n

i=1 βi)

∫ 1

0

q(s)F (s, x(s), x′(s)) ds,

then c > 0 and we have

H(c) = 1

−
n∑

i=1

βiφ
−1
p

(
1 +

(1 − φp (
∑n

i=1 βi))
∫ 1

ξi
q(s)F (s, x(s), x′(s)) ds

φp (
∑n

i=1 βi)
∫ 1

0
q(s)F (s, x(s), x′(s)) ds

)

≥ 0.
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So, H(c) = φ−1
p (c)H(c) ≥ 0. The mean value theorem guarantees that

there exists c0 ∈ (0, c] ⊂ (0,+∞) such that H(c0) = 0. If there exist
two constants ci ∈ (0,+∞), i = 1, 2, satisfying H(c1) = H(c2) = 0,
then H(c1) = H(c2) = 0. So c1 = c2 since H(c) is strictly increasing
on (0,+∞). Therefore, H(c) = 0 has a unique solution on (0,+∞).

Combining (i), (ii) and H(0) �= 0, we obtain that H(c) = 0 has a
unique solution on (−∞,+∞). The proof of Lemma 2.2 is completed.

Remark 1. From the proof of Lemma 2.2, we know that for any
x ∈ C1

+[0, 1], if we let Ax be the unique constant satisfying equation
(2.2) corresponding to x, then

Ax ∈
[
0,

φp (
∑n

i=1 βi)
1 − φp (

∑n
i=1 βi)

∫ 1

0

q(s)F (s, x(s), x′(s)) ds
]
.

For any x ∈ C1
+[0, 1], let Ax be the unique constant satisfying

equation (2.2) corresponding to x. Then the following conclusion holds.

Lemma 2.3. Ax : C1
+[0, 1] → R is continuous.

Proof. Suppose {xn} ∈ C1
+[0, 1] with xn → x0 ∈ C1

+[0, 1] in
C1

+[0, 1]. Then, ‖xn − x0‖0 → 0 and ‖x′n − x′0‖0 → 0. Let {An},
n = 0, 1, 2, . . . , be constants decided by equation (2.2) corresponding
to xn, n = 0, 1, 2, . . . . Since ‖xn − x0‖0 → 0, ‖x′n − x′0‖0 → 0 and
F : [0, 1]× [0,+∞)× [0,+∞) → [0,+∞) is continuous, we get that, for
ε = 1, there exists N > 0, when n > N , for any r ∈ [0, 1],

(2.3)
0 ≤ F (r, xn(r), x′n(r)) ≤ [1 + F (r, x0(r), x′0(r))]

≤
[
1 + max

r∈[0,1]
F (r, x0(r), x′0(r))

]
.

So, by Remark 1,

An ∈
[
0,

φp (
∑n

i=1 βi)
1 − φp (

∑n
i=1 βi)

[
1 + max

r∈[0,1]
F (r, x0(r), x′0(r))

]
‖q‖0

]
,

which means that {An} is bounded.
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Suppose An does not converge to A0. Then there exist two subse-
quences {A(1)

nk } and {A(2)
nk } of {An} with A(1)

nk → c1 and A(2)
nk → c2 since

{An} is bounded, but c1 �= c2.

By construction of {An}, n = 0, 1, 2, . . . , we have

(2.4)

φ−1
p (A(1)

nk
) =

n∑
i=1

βiφ
−1
p

(
(A(1)

nk
) +

∫ 1

ξi

q(s)F (s, x(1)
nk

(s), (x(1)
nk

)′(s)) ds
)
.

Using (2.3) and letting nk → +∞ in (2.4), we get

φ−1
p (c1)

= lim
nk→∞

n∑
i=1

βiφ
−1
p

(
(A(1)

nk
) +

∫ 1

ξi

q(s)F (s, x(1)
nk

(s), (x(1)
nk

)′(s)) ds
)

=
n∑

i=1

βiφ
−1
p

(
lim

nk→∞(A(1)
nk

) + lim
nk→∞

∫ 1

ξi

q(s)F (s, x(1)
nk

(s), (x(1)
nk

)′(s)) ds
)

=
n∑

i=1

βiφ
−1
p

(
c1 +

∫ 1

ξi

q(s)F (s, x0(s), x′0(s)) ds
)
.

Since {An}, n = 0, 1, 2, 3 . . . , is unique, we get c1 = A0.

Similarly, c2 = A0. So c1 = c2, which is a contradiction. Therefore,
for any xn → x0, An → A0, which means that Ax : C+[0, 1] → R is
continuous.

The proof of Lemma 2.3 is completed.

For any x ∈ C1
+[0, 1], define

(Tx)(t) =

∑n
i=1 αi

∫ ξi

0
φ−1

p

(
Ax +

∫ 1

s
q(r)F (r, x(r), x′(r)) dr

)
ds

1 − ∑n
i=1 αi

+
∫ t

0

φ−1

(
Ax +

∫ 1

s

q(r)F (r, x(r), x′(r)) dr
)
ds,

where Ax is the unique constant in equation (2.2) corresponding to x.
By Lemma 2.2, we know Tx is well defined and

(Tx)′(t) = φ−1
p

(
Ax +

∫ 1

t

q(r)F (r, x(r), x′(r)) dr
)
.
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Furthermore, we have the following result.

Lemma 2.4. T : P → P is completely continuous, i.e., T is
continuous and compact.

Proof. For any x ∈ P , from the definition of Tx, we know (Tx) ∈
C1[0, 1], (φp((Tx)′))′ ∈ C[0, 1] and

⎧⎪⎨
⎪⎩

−(φp((Tx)′))′(t) = q(t)F (t, x(t), x′(t)) ≥ 0 0 < t < 1,

(Tx)(0) =
n∑

i=1

αi(Tx)(ξi), (Tx)′(1) =
n∑

i=1

βi(Tx)′(ξi).

By Lemma 2.1, Tx is concave and (Tx)(t) ≥ 0, (Tx)′(t) ≥ 0 on [0, 1],
i.e., Tx ∈ P . So TP ⊂ P .

The continuity of T is obvious since we have proved Ax is contin-
uous about x in Lemma 2.3. Now, we prove T is compact. Let
Ω ⊂ P be a bounded set. Then there exists R such that Ω ⊂
{x ∈ P | ‖x‖0 ≤ R, ‖x′‖0 ≤ R}. For any x ∈ Ω, we have 0 ≤∫ 1

0
q(s)F (s, x(s), x′(s)) ds ≤ maxs∈[0,1],u∈[0,R],v∈[0,R] F (s, u, v)‖q‖0 =:

M . From Remark 1, we get

|Ax| ≤
φp (

∑n
i=1 βi)

∫ 1

0
q(s)F (s, x(s), x′(s)) ds

1 − φp (
∑n

i=1 βi)
≤ φp (

∑n
i=1 βi)M

1 − φp (
∑n

i=1 βi)
.

Therefore,

‖(Tx)‖0 ≤ (1 − ∑n
i=1 αi +

∑n
i=1 αiξi)φ−1

p (M)

(1 − ∑n
i=1 αi)φ−1

p (1 − φp (
∑n

i=1 βi))
,

‖(Tx)′‖0 ≤ φ−1
p (M)

φ−1
p (1 − φp (

∑n
i=1 βi))

, ‖(φp((Tx)′))′‖0 ≤M.

The Arzela-Ascoli theorem guarantees that TΩ is relatively compact in
P , which means T is compact.

The proof of Lemma 2.4 is completed.

The following lemma is very important in the proof of our main result.
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Lemma 2.5 [3]. Assume Ω is a relatively open subset of a convex
set K in a normal space E. Let A : Ω → K be a compact map with
0 ∈ Ω. Then either

(a) A has a fixed point in Ω, or

(b) there is an x ∈ ∂Ω and a 0 < λ < 1 such that x = λA(x).

The following properties of (Iφp)−1 are needed in our paper.

Lemma 2.6. Assume A = 0 or A ≥ 1, B ≥ 1, C = 0 or C ≥ 1 and
0 ≤ k ≤ min{p− 1, 1}, l > 0. Then, when u > 0, v > 0,

(i) (Iφp)−1(u+ v) ≤ (Iφp)−1(u) + (Iφp)−1(v);

(ii) (Iφp)−1(uv) ≤ (Iφp)−1(u)(Iφp)−1(v).

Proof. (i) For any c1 > 0, c2 > 0,

(Iφp)(c1 + c2)

= I(φp(c1 + c2))

=
∫ φp(c1+c2)

0

φ−1
p (t)

A(φ−1
p (t) + 1)k +B(φ−1

p (t))−l + C
dt

=
∫ φp(c1)

0

φ−1
p (t)

A(φ−1
p (t) + 1)k + B(φ−1

p (t))−l + C
dt

+
∫ φp(c1+c2)

φp(c1)

φ−1
p (t)

A(φ−1
p (t) + 1)k +B(φ−1

p (t))−l + C
dt

= (Iφp)(c1) +
∫ c1+c2

c1

(p− 1)up−1

A(u+ 1)k +B(u)−l + C
du

= (Iφp)(c1) +
∫ c2

0

(p− 1)(u+ c1)p−1

A(u+ c1 + 1)k +B(u+ c1)−l + C
du

≥ (Iφp)(c1) +
∫ c2

0

(p− 1)(u)p−1

A(u+ 1)k +B(u)−l + C
du

= (Iφp)(c1) +
∫ φp(c2)

0

φ−1
p (t)

A(φ−1
p (t) + 1)k +B(φ−1

p (t))−l + C
dt

= (Iφp)(c1) + (Iφp)(c2).
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Thus, we get

(2.5) (Iφp)(c1 + c2) ≥ (Iφp)(c1)(Iφp)(c2).

When u > 0, v > 0, let c1 = (Iφp)−1(u) > 0 and c2 = (Iφp)−1(v) > 0
in (2.5) to obtain

(Iφp)−1(u+ v) ≤ (Iφp)−1(u) + (Iφp)−1(v).

(ii) For any x > 0, y > 0,

I ′(xy)
[
A(φ−1

p (xy) + 1)k +
B

(φ−1
p (xy))l

+ C

]

= I ′(x)
[
A(φ−1

p (x) + 1)k +
B

(φ−1
p (x))l

+ C

]

× I ′(y)
[
A(φ−1

p (y) + 1)k +
B

(φ−1
p (y))l

+ C

]

≥ I ′(x)I ′(y)
[
A2(φ−1

p (xy) + 1)k +
B2

(φ−1
p (xy))l

+ C2

]

≥ I ′(x)I ′(y)
[
A(φ−1

p (xy) + 1)k +
B

(φ−1
p (xy))l

+ C

]
.

Thus,

(2.6) I ′(xy) ≥ I ′(x)I ′(y).

For any z > 0, integrate (2.6) from 0 to z to obtain I(xz) ≥ xI ′(x)I(z).
Remembering, since 0 ≤ k ≤ 1,

I ′(c) =
φ−1

p (c)

A(φ−1
p (c) + 1)k +B(φ−1

p (c))−l + C

is increasing about c when c > 0 and I(0) = 0, we get xI ′(x) ≥ I(x).
So,

(2.7) I(xz) ≥ I(x)I(z), x > 0, z > 0.

When u>0, v >0, let x = I−1(u) > 0 and z = I−1(v) > 0 in (2.7) to
obtain

(2.8) I−1(uv) ≤ I−1(u)I−1(v).
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The conclusion (ii) follows easily after (2.8) since φ−1
p (uv)=φ−1

p (u)φ−1
p (v).

3. Proof of Theorem 3.1.

Proof. Since
sup

c∈(0,+∞)

c

(Iφ)−1(G(c))Γ
> 1,

there must exist M1 > 0 such that

M1

(Iφ)−1(G(M1))Γ
> 1.

Choose 1 > ε > 0 to satisfy

M1

(Iφ)−1(G(M1 + ε))Γ
> 1.

Choose n0 ∈ {1, 2, 3, . . . } with 1/n0 < ε, and let N0 = {n0, n0 +1, n0 +
2, . . . }. In the following, we will show for each m ∈ N0,

(3.1)m

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(φp(u′))′ + q(t)f
(
t, u+

1
m
, u′ +

1
m

)
= 0 0 < t < 1,

u(0) =
n∑

i=1

αiu(ξi), u′(1) =
n∑

i=1

βiu
′(ξi),

has a solution in P . Obviously, for each m ∈ N0, Fm(t, u, u′) =
f(t, u+ (1/m), u′ + (1/m)) ∈ C([0, 1] × [0,+∞) × [0,+∞), [0,+∞)).

To show that (3.1)m has a solution in P for each m ∈ N0, we will
apply Lemma 2.5. So now, for any x ∈ P , define

(Tmx)(t) =

∑n
i=1 αi

∫ ξi

0
φ−1

p

(
Ax +

∫ 1

s
q(r)Fm(r, x(r), x′(r)) dr

)
ds

1 − ∑n
i=1 αi

+
∫ t

0

φ−1

(
Ax +

∫ 1

s

q(r)Fm(r, x(r), x′(r)) dr
)
ds.

Then, by Lemma 2.4, Tm : P → P is completely continuous. It is well
known that a fixed point of operator Tm in P must be a solution of
(3.1)m in P .
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Define

Ω =
{
x ∈ P | ‖x‖0 < M1, ‖x′‖0

<
(Iφp)−1(|q‖0)(Iφp)−1(G(M1 + 1))

1 − ∑n
i=1 βi

:= M2

}
.

In what follows, we will prove for each m ∈ N0 that Tm has a fixed
point in Ω.

We first show that

(3.2) u �= λTmu, for λ ∈ (0, 1), u ∈ ∂Ω.

Otherwise, then there exists a λ ∈ (0, 1) and u ∈ ∂Ω with u = λTmu.
Then by the definition of Tmu,
(3.3)⎧⎪⎪⎪⎨

⎪⎪⎪⎩

−(φp(u′))′ = φp(λ)q(t)f
(
t, u+

1
m
, u′ +

1
m

)
≥ 0 0 < t < 1,

u(0) =
n∑

i=1

αiu(ξi), u′(1) =
n∑

i=1

βiu
′(ξi)

by Lemma 2.1 we get that u(t) is concave and u(t) ≥ 0, u′(t) ≥ 0 on
[0, 1].

Also, notice by (H3) that

− (φp(u′))′

≤ q(t)
(
f1

(
u+

1
m

)
+f2

(
u+

1
m

))(
A

(
u′+

1
m

)k

+B
(
u′+

1
m

)−l

+C
)

≤ q(t)
(
f1

(
u+

1
m

)
+f2

(
u+

1
m

))
(A(u′ + 1)k +B(u′)−l + C).

Multiply the above inequality by u′, u′ ≥ 0, to obtain

(3.4)
−(φp(u′))′u′

A(u′+1)k+B(u′)−l+C
≤ ‖q‖0

(
f1

(
u+

1
m

)
+ f2

(
u+

1
m

))
u′.
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Integrating (3.4) from t to 1, we obtain

∫ φp(u′(t))

φp(u′(1))

φ−1
p (z)

A(φ−1
p (z) + 1)k + B(φ−1

p (z))−l + C
dz

≤ ‖q‖0

∫ u(1)+1/m

u(t)+1/m

[f1(z) + f2(z)] dz.

Therefore,

(Iφp)(u′(t)) ≤ (Iφp)(u′(1)) + ‖q‖0G(u(1) + ε)).

By Lemma 2.6, we get

(3.5)
0 ≤ u′(t) ≤ (Iφp)−1

[
(Iφp)(u′(1)) + ‖q‖0G(u(1) + ε)

]
≤ u′(1) + (Iφp)−1(‖q‖0G(u(1) + ε))
≤ u′(1) + (Iφp)−1(‖q‖0)(Iφp)−1(G(u(1) + ε)), t ∈ [0, 1].

Thus,

(3.6)
0 ≤ u′(ξi) ≤ u′(1) + (Iφp)−1(‖q‖0)(Iφp)−1(G(u(1) + ε)),

i = 1, 2, . . . , n.

Combining (3.6) and u′(1) =
∑n

i=1 βiu
′(ξi), we get

(3.7) 0 ≤ u′(1) ≤
∑n

i=1 βi

1 − ∑n
i=1 βi

(Iφp)−1(‖q‖0)(Iφp)−1(G(u(1) + ε)).

So,

(3.8) 0 ≤ u′(t) ≤ 1
1 − ∑n

i=1 βi
(Iφp)−1(‖q‖0)(Iφp)−1(G(u(1) + ε)).

Integrate (3.8) from 0 to ξi to obtain

(3.9)

0 ≤ u(ξi) ≤ u(0) +
ξi

1−∑n
i=1 βi

(Iφp)−1(‖q|0)(Iφp)−1(G(u(1)+ε)),

i = 1, 2, . . . , n.
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Combining (3.9) and u(0) =
∑n

i=1 αiu(ξi), we get

u(0) ≤
∑n

i=1 αiξi
(1 − ∑n

i=1 αi) (1 − ∑n
i=1 βi)

(Iφp)−1(‖q‖0)

× (Iφp)−1(G(u(1) + ε)).

Integrate (3.8) from 0 to 1 to obtain

u(1) ≤ u(0) +
1

1 − ∑n
i=1 βi

(Iφp)−1(‖q‖0)(Iφp)−1(G(u(1) + ε))

≤ 1 +
∑n

i=1 αiξi −
∑n

i=1 αi

(1 − ∑n
i=1 αi) (1 − ∑n

i=1 βi)

= (Iφp)−1(‖q‖0) = (Iφp)−1(G(u(1) + ε))
= (Iφ)−1(G(u(1) + ε))Γ,

where

Γ =
(1 − ∑n

i=1 αi +
∑n

i=1 αiξi)
(1 − ∑n

i=1 αi) (1 − ∑n
i=1 βi)

(Iφ)−1(‖q‖0).

So
u(1)

(Iφ)−1(G(u(1) + ε))Γ
≤ 1,

which means that

(3.10) ‖u‖0 = u(1) �= M1,

and, as a result, ‖u‖0 = u(1) < M1 since u ∈ ∂Ω. At the same time,
by (3.8), we have,

(3.11)

‖u′‖0 = u′(0) ≤ 1
1 − ∑n

i=1 βi
(Iφp)−1(‖q‖0)(Iφp)−1(G(M1 + ε))

<
1

1 − ∑n
i=1 βi

(Iφp)−1(‖q‖0)(Iφp)−1(G(M1 + 1)) = M2.

Obviously, (3.10) and (3.11) show a contradiction to u ∈ ∂Ω and
consequently (3.2) is true.

Now, Lemma 2.5 implies Tm has a fixed point um in Ω, which means
that (3.1)m has a solution um in Ω for each m ∈ N0.
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We next show that (1.1) has a solution. To see this, we will conclude

(3.12)
{um}n∈N0 , {u′m}n∈N0

is a bounded, equicontinuous family on [0, 1].

To do that, since {um}n∈N0 ∈ Ω, we only need to show {u′m}n∈N0 is
an equicontinuous family on [0, 1]. Now (H4) implies that there is a
continuous function ψ : [0, 1] → (0,+∞), independent of m, with

f

(
t, um(t) +

1
m
, u′m(t) +

1
m

)
≥ ψ(t), t ∈ (0, 1),

i.e.,

(3.13) −(φp(um)′)′ ≥ ψ(t)q(t), t ∈ (0, 1).

Integrate (3.13) from t to 1 to obtain

φp(um)′(t) ≥ φp(um)′(1) +
∫ 1

t

ψ(s)q(s) ds ≥
∫ 1

t

ψ(s)q(s) ds,

t ∈ (0, 1),

i.e.,

(3.14) (um)′(t) ≥ φ−1
p

( ∫ 1

t

ψ(s)q(s) ds
)

=: δ1(t) > 0, t ∈ (0, 1).

Integrate (3.14) from ξn to 1 to obtain

(um)(ξn) ≥ (um)(0) +
∫ ξn

0

φ−1
p

( ∫ 1

s

ψ(r)q(r) dr
)
ds

≥
∫ ξn

0

φ−1
p

( ∫ 1

s

ψ(r)q(r) dr
)
ds =: θ > 0.

For any m ∈ N0, since um is nondecreasing and concave, we have
when t ∈ [0, ξn], um(t) ≥ (θ/ξnt); when t ∈ [ξ1, 1], um(t) ≥ θ.

Let

δ2(t) =

⎧⎨
⎩

θ

ξn
t t ∈ [0, ξn]

θ t ∈ [ξn, 1].
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Then for any m ∈ N0,
um(t) ≥ δ2(t), t ∈ [0, 1].

Since f1(y) is nonincreasing about y, we have

(3.15)

0 ≤ −(φp(um)′)′(t) = q(t)f
(
t, um(t) +

1
m
, u′m(t) +

1
m

)

≤ ‖q‖0

[
f1(δ2(t)) + max

0≤r≤(M1+1)
f2(r)

][
A(M2 + 1)k +

B

(δ1(t))l
+ C

]
.

By (H5), the right-hand function of above inequality is Lebesgue
integrable. Thus, by the absolute continuity of integral interval, we
get {φp((um)′)}+∞

m=n0
is equicontinuous and, as a result, {(um)′)}+∞

m=n0

is equicontinuous. So, (3.12) holds.

The Arzela-Ascoli theorem guarantees that both {((um)′)}+∞
m=n0

and
{um}+∞

m=n0
are compact in C[0, 1]. So there is a subsequence N∗ ⊂ N0

and a function z(j) ∈ C[0, 1](j = 0, 1) with um → z and u′m → z′

uniformly on [0, 1] as m → +∞ through N∗. By the definition of
um(t), we have

(3.16)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φp((um)′(t)) = φp((um)′(0))

−
∫ t

0

q(s)f
(
s, um(s) +

1
m
, u′m(s) +

1
m

)
ds 0 < t < 1,

um(0) =
n∑

i=1

αium(ξi), u′m(1) =
n∑

i=1

βiu
′
m(ξi).

Letting m → +∞ through N∗ and using Lebesgue’s dominated con-
vergence in (3.16), we get⎧⎪⎪⎪⎨

⎪⎪⎪⎩

φp(z′(t)) = φp(z′(0)) −
∫ t

0

q(s)f(s, z(s), z′(s)) ds 0 < t < 1,

z(0) =
n∑

i=1

αiz(ξi), z′(1) =
n∑

i=1

βiz
′(ξi),

i.e., ⎧⎪⎨
⎪⎩

(φp(z′(t)))′ + q(t)f(t, z(t), z′(s)) = 0 0 < t < 1,

z(0) =
n∑

i=1

αiz(ξi), z′(1) =
n∑

i=1

βiz
′(ξi).
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From M1 ≥ um(t) ≥ δ2(t), t ∈ [0, 1], we have M1 ≥ z(t) ≥ δ2(t),
t ∈ [0, 1], so z(t) > 0, t ∈ (0, 1). From M2 ≥ u′m(t) ≥ δ1(t), t ∈ (0, 1),
we haveM2 ≥ z′(t) ≥ δ1(t), t ∈ (0, 1), so z′(t) > 0, t ∈ (0, 1). Moreover,
by

0 ≤ − (φp((z)′(t)))′ = q(t)f(t, z, z′)

≤ ‖q‖0

[
f1(δ2(t)) + max

0≤r≤M1
f2(r)

]
·
[
AMk

2 +
B

(δ1(t))l
+ C

]
∈ L1[0, 1],

we get (φp((z)′(t)))′ ∈ L1[0, 1]. Above all, z(t) is a positive solution to
(1.1).

An example. Now, we give an example to show our result. Consider
(4.1)⎧⎪⎪⎨
⎪⎪⎩

(|u′|−2/3u′)′+ μet

[
u11/6+

1
u1/2

+
∣∣∣ sin

1
u1/2

∣∣∣
]

1
(u′)1/3

= 0 0<t<1,

u(0) =
1
2
u

1
2

+
1
4
u

1
4
, u′(1) =

1
2
u′

1
2

+
1
4
u′

1
4
.

Comparing to Theorem 3.1, conditions (H1) (H5) are all satisfied.
Moreover, if

0 < μ <
171/2

25e3(23)/6 25/2
,

then
sup

c∈(0,+∞)

c

(Iφp)−1 (G(c))Γ
> 1.

According to Theorem 3.1, (4.1) has a positive solution when

0 < μ <
171/2

25e3(23)/625/2
.
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