RECURSION FORMULA OF SECOND-ORDER RECURRENT SEQUENCES

HONG HU

Abstract

Let $\left\{w_{n}\right\}$ be a second order recurrence sequence. A recursion formula is proved for certain reciprocal sums whose denominators are products of consecutive elements of $\left\{w_{n}\right\}$.

1. Introduction. Let \mathbf{Z} and \mathbf{R} denote the ring of the integers and the field of real numbers, respectively. For a field \mathbf{F}, we put $\mathbf{F}^{*}=\mathbf{F} \backslash\{0\}$. Fix $A \in \mathbf{R}$ and $B \in \mathbf{R}^{*}$, and let $\mathcal{L}(A, B)$ consist of all those second-order recurrent sequences $\left\{w_{n}\right\}_{n \in \mathbf{Z}}$ of complex numbers satisfying the recursion:

$$
\begin{gather*}
w_{n+2}=A w_{n+1}-B w_{n} \quad\left(\text { i.e., } B w_{n}=A w_{n+1}-w_{n+2}\right) \\
\text { for } \quad n=0, \pm 1, \pm 2, \ldots \tag{1}
\end{gather*}
$$

For sequences in $\mathcal{L}(A, B)$, the corresponding characteristic equation is $x^{2}-A x+B=0$, whose roots $\left(A \pm \sqrt{A^{2}-4 B}\right) / 2$ are denoted by α and β. If $A \in \mathbf{R}$ and $\Delta=A^{2}-4 B \geq 0$, then we have

$$
\alpha=\frac{A-\operatorname{sg}(A) \sqrt{\Delta}}{2} \quad \text { and } \quad \beta=\frac{A+\operatorname{sg}(A) \sqrt{\Delta}}{2}
$$

where $\operatorname{sg}(A)=1$ if $A>0$, and $\operatorname{sg}(A)=-1$ if $A<0$.
The Lucas sequences $\left\{u_{n}\right\}_{n \in \mathbf{Z}}$ and $\left\{v_{n}\right\}_{n \in \mathbf{Z}}$ in $\mathcal{L}(A, B)$ take special values at $n=0,1$, namely,

$$
\begin{equation*}
u_{0}=0, \quad u_{1}=1, \quad v_{0}=2, \quad v_{1}=A \tag{2}
\end{equation*}
$$

If $A=1$ and $B=-1$, then those $F_{n}=u_{n}$ and $L_{n}=v_{n}$ are called Fibonacci numbers and Lucas numbers, respectively.

[^0]Let m, n and k be integers. If $w_{n} \neq 0$ for all $n=1,2, \ldots$, the sums are defined as follows:

$$
\begin{equation*}
S_{m, k}=\sum_{n=1}^{\infty} \frac{B^{k(n-1)}}{w_{n} w_{n+1} \cdots w_{n+m}} \tag{3}
\end{equation*}
$$

In [1] Brousseau proved $S_{2,-1}=(5 / 12)-(3 / 2) S_{4,0}, S_{4,0}=(97 / 2640)-$ $(40 / 11) S_{6,1}$ and $S_{6,-1}=(589 / 1900080)-(273 / 29) S_{8,0}$ when $\left\{w_{n}\right\}=$ $\left\{F_{n}\right\}$. In [5], under the same condition, Melham showed $S_{m,-1}=$ $r_{1}+r_{2} S_{m+2,0}$ and $S_{m, 0}=r_{3}+r_{4} S_{m+2,1}$, where the r_{i} are rational numbers that depend on m. In this paper we obtain the following theorem.

Theorem. Let k be an integer, and let m and n be positive integers. If $w_{n} \neq 0$ for all $n=1,2, \ldots$,

$$
\begin{align*}
S_{m+2, k+1}= & \frac{B^{m-k+1} w_{m+2}-w_{2 m+3}}{e B^{k+1} w_{1} w_{2} \cdots w_{m+2} u_{m+1} u_{m+2}} \tag{4}\\
& -\frac{B^{k}+B^{m-k+1}-v_{m+1}}{e B^{k+1} u_{m+1} u_{m+2}} S_{m, k}
\end{align*}
$$

where $e=w_{0} w_{2}-w_{1}^{2}$.

Remark 1. The theorem of Melham [5] is essentially our (4) in the special case $A=1, B=-1, k=0, k=1$ and $\left\{w_{n}\right\}=\left\{F_{n}\right\}$.
2. Some lemmas. To complete the proof of the theorem, we need the following two lemmas:

Lemma 1. Let m and n be nonnegative integers; then we have

$$
\begin{align*}
& w_{n+m} w_{n+m+2}-B^{k} w_{n} w_{n+m+1} \\
&= B^{k-m-1} u_{m+1} w_{n+m+1} w_{n+m+2} \\
&+\left(1-B^{k-m-1} u_{m+2}\right) w_{n+m} w_{n+m+2} \tag{5}\\
&+e B^{n+k-1} u_{m+2}
\end{align*}
$$

Proof. The following identity is well known, see $[\mathbf{4}, \mathbf{7}]$, that

$$
\begin{equation*}
B^{m+1} w_{n}=w_{n+m+1} u_{m+2}-w_{n+m+2} u_{m+1} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{n+m+1}^{2}=w_{n+m} w_{n+m+2}-e B^{n+m} \tag{7}
\end{equation*}
$$

Thus, we find that

$$
\begin{aligned}
& w_{n+m} w_{n+m+2}-B^{k} w_{n} w_{n+m+1} \\
&= w_{n+m} w_{n+m+2} \\
&-B^{k} w_{n+m+1} B^{-m-1}\left(u_{m+2} w_{n+m+1}-u_{m+1} w_{n+m+2}\right) \\
&= w_{n+m} w_{n+m+2} \\
&-B^{k-m-1}\left(w_{n+m+1}^{2} u_{m+2}-u_{m+1} w_{n+m+1} w_{n+m+2}\right) \\
&= B^{k-m-1} u_{m+1} w_{n+m+1} w_{n+m+2} \\
&+\left(1-B^{k-m-1} u_{m+2}\right) w_{n+m} w_{n+m+2} \\
&+e B^{n+k-1} u_{m+2}
\end{aligned}
$$

This proves Lemma 1.

Lemma 2. Let k be an integer, and let m and n be positive integers. If $w_{n} \neq 0$ for all $n=1,2, \ldots$,

$$
\begin{align*}
\sum_{n=1}^{\infty} \frac{B^{k(n-1)}}{w_{n} w_{n+1} \cdots w_{n+m-1} w_{n+m+1}}= & \frac{-B^{m-k}}{w_{1} w_{2} \cdots w_{m+1} u_{m+1}} \tag{8}\\
& +\frac{B^{m-k}+u_{m}}{u_{m+1}} S_{m, k}
\end{align*}
$$

Proof. For k an integer, and m and n positive integers, we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{B^{k(n-1)}}{w_{n} w_{n+1} \cdots w_{n+m-1} w_{n+m+1}}-\frac{B^{m-k}+u_{m}}{u_{m+1}} S_{m, k} \\
& \quad=\sum_{n=1}^{\infty} \frac{B^{k(n-1)}\left[u_{m+1} w_{n+m}-u_{m} w_{n+m+1}-B^{m-k} w_{n+m+1}\right]}{w_{n} w_{n+1} \cdots w_{n+m+1} u_{m+1}} \\
& =\sum_{n=1}^{\infty} \frac{B^{k(n-1)}\left[B^{m} w_{n}-B^{m-k} w_{n+m+1}\right]}{w_{n} w_{n+1} \cdots w_{n+m+1} u_{m+1}} \\
& =\frac{-B^{m-k}}{w_{1} w_{2} \cdots w_{m+1} u_{m+1}} .
\end{aligned}
$$

This completes the proof of Lemma 2.
3. Proof of Theorem. Let k be an integer, and let m be a positive integer. We define

$$
\begin{equation*}
\sum=\sum_{n=1}^{\infty} \frac{B^{k(n-1)}\left(w_{n+m} w_{n+m+2}-B^{k} w_{n} w_{n+m+1}\right)}{w_{n} w_{n+1} \cdots w_{n+m+2}} \tag{9}
\end{equation*}
$$

Then, we get

$$
\begin{aligned}
\sum= & \sum_{n=1}^{\infty} \frac{B^{k(n-1)}}{w_{n} w_{n+1} \cdots w_{n+m-1} w_{n+m+1}} \\
& -\sum_{n=1}^{\infty} \frac{B^{k n}}{w_{n+1} w_{n+2} \cdots w_{n+m} w_{n+m+2}} \\
= & \frac{1}{w_{1} w_{2} \cdots w_{m} w_{m+2}}
\end{aligned}
$$

By Lemmas 1 and 2, we obtain

$$
\begin{aligned}
\sum= & \sum_{n=1}^{\infty} B^{k(n-1)}\left[\frac{B^{k-m-1} u_{m+1} w_{n+m+1} w_{n+m+2}}{w_{n} w_{n+1} \cdots w_{n+m+2}}\right. \\
& \left.+\frac{\left(1-B^{k-m-1} u_{m+2}\right) w_{n+m} w_{n+m+2}+e B^{n+k-1} u_{m+2}}{w_{n} w_{n+1} \cdots w_{n+m+2}}\right] \\
= & B^{k-m-1} u_{m+1} S_{m, k}+\left(1-B^{k-m-1} u_{m+2}\right) \\
& \times \sum_{n=1}^{\infty} \frac{B^{k(n-1)}}{w_{n} w_{n+1} \cdots w_{n+m-1} w_{n+m+1}} \\
& +e B^{k} u_{m+2} S_{m+2, k+1} \\
= & B^{k-m-1} u_{m+1} S_{m, k}+\left(1-B^{k-m-1} u_{m+2}\right) \\
& \times\left(\frac{-B^{m-k}}{w_{1} w_{2} \cdots w_{m+1} u_{m+1}}+\frac{B^{m-k}+u_{m}}{u_{m+1}} S_{m, k}\right) \\
& +e B^{k} u_{m+2} S_{m+2, k+1}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \frac{1}{w_{1} w_{2} \cdots} w_{m} w_{m+2} \\
&= B^{k-m-1} u_{m+1} S_{m, k}+\frac{-B^{m-k}+B^{-1} u_{m+2}}{w_{1} w_{2} \cdots w_{m+1} u_{m+1}} \\
&+\frac{B^{m-k}+u_{m}-B^{-1} u_{m+2}-B^{k-m-1} u_{m} u_{m+2}}{u_{m+1}} S_{m, k} \\
&+e B^{k} u_{m+2} S_{m+2, k+1}
\end{aligned}
$$

Now, using the well known identities

$$
v_{m+1}=u_{m+2}-B u_{m}, \quad u_{m+1}^{2}-u_{m} u_{m+2}=B^{m}
$$

and

$$
w_{2 m+3}=u_{m+2} w_{m+2}-B u_{m+1} w_{m+1}
$$

we obtain

$$
\begin{aligned}
S_{m+2, k+1}= & \frac{B^{m-k+1} w_{m+2}-w_{2 m+3}}{e B^{k+1} w_{1} w_{2} \cdots w_{m+2} u_{m+1} u_{m+2}} \\
& -\frac{B^{k}+B^{m-k+1}-v_{m+1}}{e B^{k+1} u_{m+1} u_{m+2}} S_{m, k}
\end{aligned}
$$

The proof is now complete.
4. Corollaries of the Theorem. If $A, B \in R^{*}, A^{2} \geq 4 B$, $w_{1} \neq \alpha w_{0}$, and $w_{n} \neq 0$ for all $n \geq 1$, then letting $f(n)=n+1$ in [4, Theorem 2], we obtain

$$
S_{1,1}=\sum_{n=1}^{\infty} \frac{B^{(n-1)}}{w_{n} w_{n+1}}=\frac{1}{\beta w_{1}\left(w_{1}-\alpha w_{0}\right)}
$$

Corollary 1. If $A, B \in R^{*}, A^{2} \geq 4 B, w_{1} \neq \alpha w_{0}$, and $w_{n} \neq 0$ for all $n=1,2, \ldots$, in the case $k=1$ and $m=1$, (4) becomes
(10)
$\sum_{n=1}^{\infty} \frac{B^{2(n-1)}}{w_{n} w_{n+1} w_{n+2} w_{n+3}}=\frac{B w_{3}-w_{5}}{e B^{2} w_{1} w_{2} w_{3} u_{2} u_{3}}-\frac{2 B-v_{2}}{e B^{2} u_{2} u_{3} \beta w_{1}\left(w_{1}-\alpha w_{0}\right)}$.

Remark 2. Equation (3.10) of Melham [6] is essentially our (10) in the special case $w_{0}=0, w_{1}=1$ and $w_{n}=3 w_{n-1}-w_{n-2}=F_{2 n}$.

Corollary 2. In the case $\left\{w_{n}\right\}=\left\{F_{n}\right\}$ and $\left\{w_{n}\right\}=\left\{L_{n}\right\}$, (10) turns out to be

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{F_{n} F_{n+1} F_{n+2} F_{n+3}}=\frac{12-5 \sqrt{5}}{4} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{L_{n} L_{n+1} L_{n+2} L_{n+3}}=\frac{5-2 \sqrt{5}}{40} \tag{12}
\end{equation*}
$$

Corollary 3. If $A, B \in R^{*}, A^{2} \geq 4 B, w_{1} \neq \alpha w_{0}$, and $w_{n} \neq 0$ for all $n=1,2, \ldots$, in the case $k=2$ and $m=3$, (4) says that

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{B^{3(n-1)}}{w_{n} w_{n+1} w_{n+2} w_{n+3} w_{n+4} w_{n+5}} \\
& \quad=\frac{B^{2} w_{5}-w_{9}}{e B^{3} w_{1} w_{2} w_{3} w_{4} w_{5} u_{4} u_{5}}-\frac{2 B^{2}-v_{4}}{e B^{3} u_{4} u_{5}} \tag{13}\\
& \quad \times\left(\frac{B w_{3}-w_{5}}{e B^{2} w_{1} w_{2} w_{3} u_{2} u_{3}}-\frac{2 B-v_{2}}{e B^{2} u_{2} u_{3} \beta w_{1}\left(w_{1}-\alpha w_{0}\right)}\right)
\end{align*}
$$

Corollary 4. In the case $\left\{w_{n}\right\}=\left\{F_{n}\right\}$ and $\left\{w_{n}\right\}=\left\{L_{n}\right\}$, (13) becomes

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{F_{n} F_{n+1} F_{n+2} F_{n+3} F_{n+4} F_{n+5}}=\frac{421}{450}-\frac{5 \sqrt{5}}{12} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4} L_{n+5}}=\frac{\sqrt{5}}{300}-\frac{41}{5544} \tag{15}
\end{equation*}
$$

REFERENCES

1. Brother Alfred Brousseau, Summation of infinite Fibonacci series, Fibonacci Quart. 7 (1969), 143-168.
2. L. Carlitz, Reciprocal solution to problem H-10 (proposed by R.L. Graham), Fibonacci Quart. 1 (1963), 49.
3. , Reduction formulas for Fibonacci summations, Fibonacci Quart. 9 (1971), 449-466, 510-511.
4. Hong Hu, Zhi-wen Sun and Jian-xin Liu, Reciprocal sums of second-order recurrences sequences, Fibonacci Quart. 39 (2001), 214-220.
5. R.S. Melham, On some reciprocal sums of Brousseau: An alternative approach to that of Carlitz, Fibonacci Quart. 41 (2003), 59-62.
6. \quad, Summation of reciprocals which involve products of terms from generalized Fibonacci sequences-Part II, Fibonacci Quart. 39 (2001), 264-267.
7. Stanley Ranbinowitz, Algorithimic manipulation of second-order linear recurrences, Fibonacci Quart. 37 (1999), 162-177.

Department of Mathematics, Huaiyin Teachers College, Huaian 223001, Jiangsu Province, P.R.China
E-mail address: huhong053@eyou.com

[^0]: 2000 AMS Mathematics Subject Classification. Primary 11B39, 11B37.
 Key words and phrases. Second-order recurrent sequences, Lucas numbers, recursion formula.

 Received by the editors on Jan. 22, 2005, and in revised form on March 25, 2005.

