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RECURSION FORMULA OF
SECOND-ORDER RECURRENT SEQUENCES

HONG HU

ABSTRACT. Let {wp} be a second order recurrence se-
quence. A recursion formula is proved for certain recipro-
cal sums whose denominators are products of consecutive el-
ements of {wn,}.

1. Introduction. Let Z and R denote the ring of the integers
and the field of real numbers, respectively. For a field F, we put
F*=F\ {0}. Fix A € R and B € R*, and let L(A, B) consist of all
those second-order recurrent sequences {wy, }nez of complex numbers
satisfying the recursion:

Wpyo = Awpq1 — Bw, (i.e., Bw,, = Awy41 — wn+2)

(1) _
for n=0,£1,£2,....

For sequences in L(A, B), the corresponding characteristic equation is
2?2 — Az + B = 0, whose roots (A4 /A2 — 4B) /2 are denoted by o and
8. If Ac Rand A = A2 — 4B > 0, then we have

A—sg(AWVA

o= AZEAVE g Atsg(HVA

2 b
where sg(A) =1if A >0, and sg(A)=—-1if A <0.

The Lucas sequences {up tnez and {v, tnez in L(A, B) take special
values at n = 0, 1, namely,

(2) up =0, wu =1 v9=2, v =A.

If A=1and B = —1, then those F,, = u, and L, = v, are called
Fibonacci numbers and Lucas numbers, respectively.
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Let m, n and k be integers. If w,, # 0 for all n = 1,2,..., the sums
are defined as follows:
0 Bk(nfl)

(3) Sm,k = Z

n=1

WpWnp+1 " Wn4m

In [1] Brousseau proved Sp —1 = (5/12)—(3/2)S4,0, Sa,0 = (97/2640)—
(40/11)Sg.1 and Sg_1 = (589/1900080) — (273/29)Ss.0 when {w,} =
{F,}. In [5], under the same condition, Melham showed S,, 1 =
T1 4+ 728m42,0 and Sy 0 = 73 + 745,421, Where the r; are rational
numbers that depend on m. In this paper we obtain the following
theorem.

Theorem. Let k be an integer, and let m and n be positive integers.
If wy, #0 foralln=1,2,...,

—kt1
B s 0 — Womts

6BlﬁLl'(UlllJQ W 2Um 1 Um 2
B Bk +Bm—l~c+1 — U1

eBF My 1 U2

Sm+2.k4+1 =

(4)

Sm,k

where e = wows — w%

Remark 1. The theorem of Melham [5] is essentially our (4) in the
special case A=1, B=—-1, k=0, k=1 and {w,} = {F,.}.

2. Some lemmas. To complete the proof of the theorem, we need
the following two lemmas:

Lemma 1. Let m and n be nonnegative integers; then we have

k
Wn++m Wnt+m+2 — B wpWp4m41

k—m—1
(5) =B Um~+1Wn+m+1Wn+m+2

k—m—1
+ (1 - B m um+2)wn+mwn+m+2
+ eB”Jrk*lum“.

Proof. The following identity is well known, see [4, 7], that

1
(6) Bt Wy, = Wn4m+1Um+2 — Wn4m4+2Um41,
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and
2
(7) Whntm+1 = Wn4mWn4+m+2 — eB"™,

Thus, we find that

W tm Wntm42 — Bkwnwn+m+1
= Wn+mWn+m+2
- Bkwn+m+1Bim71(um+2wn+m+l - um+1wn+m+2)
= Wn+mWn+m+2
- Bk_m_l(wr21+m+1um+2 = U +1Wn g m41Wntm+2)
= Bk_m_lum+lwn+m+1wn+m+2
+(1— Bk_m_lum+2)wn+mwn+m+2
+ eB”*kilumH.

This proves Lemma 1. ]

Lemma 2. Let k be an integer, and let m and n be positive integers.
If w, #0 foralln=1,2,...,

e Bk(nfl) _Bm—k
(8) el WnWntl  Wnpm—1Wnim+1  W1W2 - Wit 1 Um+1
Bm—k + Uy,
+—— Sike
Um+1

Proof. For k an integer, and m and n positive integers, we have

el Bk(nfl) Bm—k + Uy,
- Sm,k:
n—1 wnwn+1 e wn+m71wn+m+1 uerl
> k(n—1 —k
Bk(n )[um+1wn+m — U Wptmi1 — B™ wn+m+1]

(]

WnWnp+1 " Wn4m+1Um+1
Bk:(nfl) [Bm,wn _ Bmszwnijle]
WnWn+1 - Wn4+m4+1Um+1
_pm—~k
B

WiwW2 -« * * Wm41Um+41

3
Il
-

M

3
Il
—
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This completes the proof of Lemma 2. o

3. Proof of Theorem. Let k be an integer, and let m be a positive
integer. We define

> k(n—1 k
DR S pram LA ASEEY .
n=1 WpWp+41 *** Wntm+2

Then, we get

Bk(n—l)

0o
p— WnWp+1 - Wn+m—1Wn+m+1
& Bkn
—1 Wn+1Wni2 " WnipmWntm4-2
1

WIW2 -« + * WmWm+-2

n

By Lemmas 1 and 2, we obtain

00 k—m—1
Z _ Z phn-1) {B " U1 Wi 1 Wit mt-2

n—1 WpWp+1 " Wn4+m+2

k—m—1 k—1
(1_B m um+2)wn+mwn+m+2 + eBn+ Um+-2

wnwn+1 Tt wn+m+2

= Bkimilum—klsm,k + (1 - Bkimilum—&-Z)
)
X
> w
n=1

k
+ eB Uumi2Smy2 k41

= Bkimilum—klsm,k + (1 - Bkimilum—&-Z)

—Bmk B™ N+ up,
X + SmJg
WiwW2 -« * * Wm41Um+41 Um+1

Bk(nfl)

nwn+1 Tt wn+m71wn+m+1

k
+ eB um+2Sm+2,k+1-
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Thus,
1

WiwW2 -« « * WmWm+-2

_B’m—k + B_1Um+2
WIW2 -« + * W41 Um+1
Bk 4y, — B_lum+2 — Bk_m_lumuerg
+ Sm)k
Um+1

k
+ eB  um42Sm42,k+1-

_ Bk—m—l

uerlSm,k: +

Now, using the well known identities

2 m
Um41 = Umt2 — Bum, Upyi1 = UmUmy2 = B
and
W2m43 = Um42Wim42 — BlUmy1Wmqt,
we obtain
g _ B w0 — wops
m+2k+1 = oy
€ WIW2 -« + * Wm4-2Um+1Um+-2
BlC + Bm_k+1 — ’Um+1 S
- m,k-
6Bk+1um+1u7n+2
The proof is now complete. u]

4. Corollaries of the Theorem. If A,B € R* A? > 4B,
w1 # awg, and w, # 0 for all n > 1, then letting f(n) = n+ 1 in
[4, Theorem 2], we obtain

o0

B(=1) 1
Sii=)

= Wy Wit - Bwi(w; — awg)’

Corollary 1. If A,B € R*, A2 > 4B, wy # awg, and w, # 0 for

allm=1,2,..., in the case k =1 and m =1, (4) becomes
(10)
i B2(n—1) . Bws — ws 2B — vy

= WnWnt 1 Wit 2 Wt 3 eB2uwywowsusus  eB2usugfw (wy — awp)



1178 H. HU

Remark 2. Equation (3.10) of Melham [6] is essentially our (10) in
the special case wg =0, w1 =1 and w, = 3w,_1 — Wp_o = Fo,.

Corollary 2. In the case {w,} = {F,} and {w,} = {L,}, (10)

turns out to be

_12-5V5
(11) Z = :
F, F, +1Fn+2Fn+3 4
and
5—2v5
(12) Z = .
L Ln+1Ln+2Ln+3 40

Corollary 3. If A,B € R*, A? > 4B, w, # awy, and w, # 0 for
allm=1,2,..., in the case k =2 and m = 3, (4) says that

>

B3(n71)

WnWp41Wn42Wn43Wn4+4Wn+45

n=1
2 2
(13) o B W5 — Wy _ 2B — V4
GB3U}1U)2U)3’LU4U}5U4’LL5 633U4u5
% ng — Ws 2B — V2
eB2wiwowsugug  eB2ugugfwi(wy — awp) )

Corollary 4. In the case {w,} = {F,} and {w,} = {L,}, (13)
becomes

= 1)t 421
(DR pp— 2155
n—1 n n+1Fn+2Fn+3Fn+4Fn+5 450 12
and
(-1t Vs 4l
(15) Z _ys A
L Ln+1Ln+2Ln+3Ln+4Ln+5 300 5544
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