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RECURSION FORMULA OF
SECOND-ORDER RECURRENT SEQUENCES

HONG HU

ABSTRACT. Let {wn} be a second order recurrence se-
quence. A recursion formula is proved for certain recipro-
cal sums whose denominators are products of consecutive el-
ements of {wn}.

1. Introduction. Let Z and R denote the ring of the integers
and the field of real numbers, respectively. For a field F, we put
F∗ = F \ {0}. Fix A ∈ R and B ∈ R∗, and let L(A, B) consist of all
those second-order recurrent sequences {wn}n∈Z of complex numbers
satisfying the recursion:

(1)
wn+2 = Awn+1 − Bwn (i.e., Bwn = Awn+1 − wn+2)

for n = 0,±1,±2, . . . .

For sequences in L(A, B), the corresponding characteristic equation is
x2−Ax+B = 0, whose roots (A±√

A2 − 4B)/2 are denoted by α and
β. If A ∈ R and Δ = A2 − 4B ≥ 0, then we have

α =
A − sg (A)

√
Δ

2
and β =

A + sg (A)
√

Δ
2

,

where sg (A) = 1 if A > 0, and sg (A) = − 1 if A < 0.

The Lucas sequences {un}n∈Z and {vn}n∈Z in L(A, B) take special
values at n = 0, 1, namely,

(2) u0 = 0, u1 = 1, v0 = 2, v1 = A.

If A = 1 and B = − 1, then those Fn = un and Ln = vn are called
Fibonacci numbers and Lucas numbers, respectively.
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Let m, n and k be integers. If wn �= 0 for all n = 1, 2, . . . , the sums
are defined as follows:

(3) Sm,k =
∞∑

n=1

Bk(n−1)

wnwn+1 · · ·wn+m
.

In [1] Brousseau proved S2,−1 = (5/12)−(3/2)S4,0, S4,0 = (97/2640)−
(40/11)S6,1 and S6,−1 = (589/1900080) − (273/29)S8,0 when {wn} =
{Fn}. In [5], under the same condition, Melham showed Sm,−1 =
r1 + r2Sm+2,0 and Sm,0 = r3 + r4Sm+2,1, where the ri are rational
numbers that depend on m. In this paper we obtain the following
theorem.

Theorem. Let k be an integer, and let m and n be positive integers.
If wn �= 0 for all n = 1, 2, . . . ,

(4)
Sm+2,k+1 =

Bm−k+1wm+2 − w2m+3

eBk+1w1w2 · · ·wm+2um+1um+2

− Bk + Bm−k+1 − vm+1

eBk+1um+1um+2
Sm,k

where e = w0w2 − w2
1.

Remark 1. The theorem of Melham [5] is essentially our (4) in the
special case A = 1, B = −1, k = 0, k = 1 and {wn} = {Fn}.

2. Some lemmas. To complete the proof of the theorem, we need
the following two lemmas:

Lemma 1. Let m and n be nonnegative integers ; then we have

(5)

wn+m wn+m+2 − Bkwnwn+m+1

= Bk−m−1um+1wn+m+1wn+m+2

+ (1 − Bk−m−1um+2)wn+mwn+m+2

+ eBn+k−1um+2.

Proof. The following identity is well known, see [4, 7], that

Bm+1wn = wn+m+1um+2 − wn+m+2um+1,(6)
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and

w2
n+m+1 = wn+mwn+m+2 − eBn+m.(7)

Thus, we find that

wn+m wn+m+2 − Bkwnwn+m+1

= wn+mwn+m+2

− Bkwn+m+1B
−m−1(um+2wn+m+1 − um+1wn+m+2)

= wn+mwn+m+2

− Bk−m−1(w2
n+m+1um+2 − um+1wn+m+1wn+m+2)

= Bk−m−1um+1wn+m+1wn+m+2

+ (1 − Bk−m−1um+2)wn+mwn+m+2

+ eBn+k−1um+2.

This proves Lemma 1.

Lemma 2. Let k be an integer, and let m and n be positive integers.
If wn �= 0 for all n = 1, 2, . . . ,

(8)

∞∑
n=1

Bk(n−1)

wnwn+1 · · ·wn+m−1wn+m+1
=

−Bm−k

w1w2 · · ·wm+1um+1

+
Bm−k + um

um+1
Sm,k.

Proof. For k an integer, and m and n positive integers, we have

∞∑
n=1

Bk(n−1)

wnwn+1 · · ·wn+m−1wn+m+1
− Bm−k + um

um+1
Sm,k

=
∞∑

n=1

Bk(n−1)[um+1wn+m − umwn+m+1 − Bm−kwn+m+1]
wnwn+1 · · ·wn+m+1um+1

=
∞∑

n=1

Bk(n−1)[Bmwn − Bm−kwn+m+1]
wnwn+1 · · ·wn+m+1um+1

=
−Bm−k

w1w2 · · ·wm+1um+1
.
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This completes the proof of Lemma 2.

3. Proof of Theorem. Let k be an integer, and let m be a positive
integer. We define

(9)
∑

=
∞∑

n=1

Bk(n−1)(wn+mwn+m+2 − Bkwnwn+m+1)
wnwn+1 · · ·wn+m+2

.

Then, we get

∑
=

∞∑
n=1

Bk(n−1)

wnwn+1 · · ·wn+m−1wn+m+1

−
∞∑

n=1

Bkn

wn+1wn+2 · · ·wn+mwn+m+2

=
1

w1w2 · · ·wmwm+2
.

By Lemmas 1 and 2, we obtain

∑
=

∞∑
n=1

Bk(n−1)

[
Bk−m−1um+1wn+m+1wn+m+2

wnwn+1 · · ·wn+m+2

+
(1−Bk−m−1um+2)wn+mwn+m+2 + eBn+k−1um+2

wnwn+1 · · ·wn+m+2

]

= Bk−m−1um+1Sm,k + (1 − Bk−m−1um+2)

×
∞∑

n=1

Bk(n−1)

wnwn+1 · · ·wn+m−1wn+m+1

+ eBkum+2Sm+2,k+1

= Bk−m−1um+1Sm,k + (1 − Bk−m−1um+2)

×
( −Bm−k

w1w2 · · ·wm+1um+1
+

Bm−k + um

um+1
Sm,k

)

+ eBkum+2Sm+2,k+1.
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Thus,

1
w1w2 · · ·wmwm+2

= Bk−m−1um+1Sm,k +
−Bm−k + B−1um+2

w1w2 · · ·wm+1um+1

+
Bm−k + um − B−1um+2 − Bk−m−1umum+2

um+1
Sm,k

+ eBkum+2Sm+2,k+1.

Now, using the well known identities

vm+1 = um+2 − Bum, u2
m+1 − umum+2 = Bm

and

w2m+3 = um+2wm+2 − Bum+1wm+1,

we obtain

Sm+2,k+1 =
Bm−k+1wm+2 − w2m+3

eBk+1w1w2 · · ·wm+2um+1um+2

− Bk + Bm−k+1 − vm+1

eBk+1um+1um+2
Sm,k.

The proof is now complete.

4. Corollaries of the Theorem. If A, B ∈ R∗, A2 ≥ 4B,
w1 �= αw0, and wn �= 0 for all n ≥ 1, then letting f(n) = n + 1 in
[4, Theorem 2], we obtain

S1,1 =
∞∑

n=1

B(n−1)

wnwn+1
=

1
βw1(w1 − αw0)

.

Corollary 1. If A, B ∈ R∗, A2 ≥ 4B, w1 �= αw0, and wn �= 0 for
all n = 1, 2, . . . , in the case k = 1 and m = 1, (4) becomes
(10)
∞∑

n=1

B2(n−1)

wnwn+1wn+2wn+3
=

Bw3 − w5

eB2w1w2w3u2u3
− 2B − v2

eB2u2u3βw1(w1 − αw0)
.



1178 H. HU

Remark 2. Equation (3.10) of Melham [6] is essentially our (10) in
the special case w0 = 0, w1 = 1 and wn = 3wn−1 − wn−2 = F2n.

Corollary 2. In the case {wn} = {Fn} and {wn} = {Ln}, (10)
turns out to be

∞∑
n=1

1
FnFn+1Fn+2Fn+3

=
12 − 5

√
5

4
,(11)

and
∞∑

n=1

1
LnLn+1Ln+2Ln+3

=
5 − 2

√
5

40
.(12)

Corollary 3. If A, B ∈ R∗, A2 ≥ 4B, w1 �= αw0, and wn �= 0 for
all n = 1, 2, . . . , in the case k = 2 and m = 3, (4) says that

(13)

∞∑
n=1

B3(n−1)

wnwn+1wn+2wn+3wn+4wn+5

=
B2w5 − w9

eB3w1w2w3w4w5u4u5
− 2B2 − v4

eB3u4u5

×
(

Bw3 − w5

eB2w1w2w3u2u3
− 2B − v2

eB2u2u3βw1(w1 − αw0)

)
.

Corollary 4. In the case {wn} = {Fn} and {wn} = {Ln}, (13)
becomes

∞∑
n=1

(−1)n−1

FnFn+1Fn+2Fn+3Fn+4Fn+5
=

421
450

− 5
√

5
12

,(14)

and
∞∑

n=1

(−1)n−1

LnLn+1Ln+2Ln+3Ln+4Ln+5
=

√
5

300
− 41

5544
.(15)
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