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HOMOLOGY OF ZERO-DIVISORS

REZA AKHTAR AND LUCAS LEE

ABSTRACT. Let R be a commutative ring with unity. We
define a semi-simplicial abelian group based on the structure
of the semigroup of ideals of R and investigate various proper-
ties of the homology groups of the associated chain complex.

1. Introduction. Let R be a commutative ring with unity. The set
Z(R) of zero-divisors in a ring does not possess any obvious algebraic
structure; consequently, the study of this set has often involved tech-
niques and ideas from outside algebra. Several recent attempts, among
them [2, 3] have focused on studying the so-called zero-divisor graph
ΓR, whose vertices are the zero-divisors of R, with xy being an edge
if and only if xy = 0. This object ΓR is somewhat unwieldy in that it
has many symmetries; for example, if u ∈ R∗ is any unit, then x �→ ux
induces a (graph) automorphism of ΓR. One way of treating this issue,
following an idea of Lauve [5], is to work with the ideal zero-divisor
graph IR. In effect, one replaces zero-divisors of R by proper ideals
with nonzero annihilator; this is the approach adopted by the authors
in [1]. Such a perspective also has its shortcomings; for instance, it
does not adequately detect the phenomenon of there being three dis-
tinct proper ideals I, J, K in R with IJK = 0, but IJ �= 0, IK �= 0,
JK �= 0.

In this paper we adopt a different philosophy, using a new type of
homology to study Z(R) and capture the situation described above.
Roughly speaking, if we denote by Zn(R) the free abelian group
generated by the set of (n + 1)-tuples (I0, . . . , In) of distinct ideals of
R such that I0 · · · · ·In �= 0, there are obvious maps Zn(R) → Zn−1(R)
obtained by forgetting one of the factors. This gives Z.(R) the structure
of a semi-simplicial abelian group; hence, we may speak of its associated
chain complex C.(R). Our homology groups H∗(R) are then defined as
the homology groups of a certain quotient of C.(R). The idea behind
this construction was sketched by Lauve in [5], although the precise
definition is due to the authors.
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After giving a precise definition of these homology groups H∗(R), we
study the group H0(R) in depth and compute H1(Z/pr

Z) when p is
a prime and r ≥ 1 is an integer. We then give some conditions on R
sufficient to ensure that Hn(R) = 0 for n > 0. In the last section we
consider the Euler characteristic χ(R) =

∑∞
n=0(−1)n rkHn(R). Using

some ideas from partition theory, we prove the surprising result that
χ(Z/pr

Z) is always either 0, 1, or 2, depending on the value of r relative
to the “pentagonal” numbers m(3m − 1)/2 and the related numbers
m(3m + 1)/2. We also derive formulas for the Euler characteristic for
some other special types of finite rings.

2. Preliminaries. Let R be a commutative ring and P the set of
proper ideals of R. For each n ≥ 0, let Sn(R) be the set of ordered
(n + 1)-tuples (I0, . . . , In), where I0, . . . , In are distinct proper ideals
of R and I0I1 · · · In �= 0; let S−1(R) be a set consisting of one element.
If there is no danger of ambiguity, we simply write Sn instead of
Sn(R). Observe that, for each i, 0 ≤ i ≤ n, there is a “face map”
φn

i : Sn → Sn−1 defined by φn
i (I0, . . . , In) = (I0, . . . , Îi, . . . , In).

Moreover, S0(R) = ∅ if and only if R is a field, so when R is not
a field, there is a unique “augmentation” map ε : S0(R) → S−1(R).
Now, for each n ≥ −1, let Zn be the free abelian group generated
by Sn. We denote by [I0, . . . , In] the basis element corresponding to
(I0, . . . , In) ∈ Sn. Likewise, the various face maps φn

i extend Z-linearly
to maps φn

i : Zn → Zn−1; moreover, if S0 �= ∅, there is a unique Z-
linear map ε : Z0 → Z−1 = Z defined by ε(

∑
ni(Ii)) =

∑
ni. Thus,

there is a semi-simplicial abelian group:

Z.(R) : . . .
−→−→−→ Z1

−→−→ Z0

with augmentation ε : Z0 → Z if R is not a field.

This in turn gives rise to an (augmented) chain complex in the
standard manner by taking an alternating sum of face maps. For each
n ≥ 0, define δn =

∑n
i=0(−1)iφn

i ; then we have a complex:

C.(R) : . . .
δ1−→ Z1

δ0−→ Z0

of abelian groups.

In practice, the Zn are too large to be useful invariants; in particular,
we chose Zn to be the free Z-module with basis Sn, which consisted of
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ordered (n + 1)-tuples of ideals of R having nonzero product. Because
multiplication in R is commutative, the order of the ideals in this
(n + 1)-tuple ought not to matter; it might appear more natural to
work with unordered (n + 1)-tuples. Unfortunately, the definition of
the face maps does depend on the ordering within each such tuple, so
we resort instead to the following device: for each n ≥ 0, let Rn denote
the subgroup of Zn generated elements of the form:

[I0, . . . , In] − (−1)sgn σ[Iσ(0), . . . , Iσ(n)],

where σ in an element of the symmetric group Sn+1 (viewed as
permutations of the set {0, . . . , n}) and [I0, . . . , In] is a basis element
of Zn. Set Tn = Zn/Rn.

We claim that δn(Rn) ⊆ Rn−1. Thus we must show

δn([I0, . . . , In]) ≡ (−1)sgnσδn([Iσ(0), . . . , Iσ(n)]) (mod Rn−1).

Since every permutation may be written as a product of transpositions,
we may reduce to the case that σ is the transposition which exchanges
r and s, where 0 ≤ r < s ≤ n. In this case,

(−1)sgn σδn([Iσ(0), . . . , Iσ(n)])

= −
n∑

i=0

(−1)i[Iσ(0), . . . , Îσ(i), . . . , Iσ(n)]

=
∑
i �=r,s

(−1)i+1[I0, . . . , Ir−1, Is, Ir+1, . . . , Îi, . . . , Is−1, Ir, Is+1, . . . , In]

+ (−1)r+1[I0, . . . , Ir−1, Ir+1, . . . , Is−1, Ir, Is+1, . . . , In]
+ (−1)s+1[I0, . . . , Ir−1, Is, Ir+1, . . . , Is−1, Is+1, . . . , In]

≡
∑
i �=r,s

(−1)i[I0, . . . , Ir−1, Ir, Ir+1, . . . , Îi, . . . , Is−1, Is, Is+1, . . . , In]

+ (−1)s[I0, . . . , Ir−1, Ir, Ir+1, . . . , Is−1, Is+1, . . . , In]
+ (−1)2s−r[I0, . . . , Ir−1, Ir+1, . . . , Is−1, Is, Is+1, . . . , In] (mod Rn−1)

≡
n∑

i=0

(−1)i[I0, . . . , Îi, . . . , In] (mod Rn−1)

≡ δn([I0, . . . , In]) (mod Rn−1).
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Thus δn(Rn) ⊆ Rn−1 for all n ≥ 1, and hence C.(R) factors through a
complex:

C.(R) : . . .
∂1−→ T1

∂0−→ T0
ε−→ Z −→ 0.

By abuse of notation, we continue to use the symbol [I0, . . . , In] to
denote the class of [I0, . . . , In] in Tn; hence the formula for ∂n (on
generators) reads: ∂n([I0, . . . , In]) =

∑n
i=0(−1)i[I0, . . . , Îi, . . . , In].

Finally we define the homology groups:

Hn(R) =
{

ker(∂n−1)/Im (∂n) if n > 0
T0/Im ∂0 if n = 0

.

If rk Hn(R) is finite for all n and zero for sufficiently large n, we define
the Euler characteristic of R:

χ(R) =
∞∑

n=0

(−1)nrkHn(R).

Since a field has no proper ideals, we immediately have:

Proposition 2.1. Let F be a field. Then Hn(F ) = 0 for all n ≥ 0.

The term “homology” is used somewhat loosely, since neither the
complexes C.(R) nor the groups Hn(R) are functorial in R. This is
not particularly surprising: given a ring homomorphism f : R → S, if
[I0, . . . , In] ∈ Tn(R), it is possible that I0 · · · In = 0 or one of the f(Ii)
may be zero, so it does not necessarily follow that [f(I0), . . . , f(In))]
makes sense as an element of Tn(S). Similarly, if [J0, . . . , Jn] ∈ Tn(S),
it does not follow that [f−1(J0), . . . , f−1(Jn)] defines an element of
Tn(R).

The following well-known device is often useful in computing the
Euler characteristic:

Proposition 2.2. Suppose rkTn is finite for all n and Tn = 0 for
n 
 0. Then

χ(R) =
∞∑

n=0

(−1)nrkTn.
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Proof. By definition of H0(R), there is an exact sequence:

0 −→ Im ∂0 −→ T0 −→ H0(R) −→ 0

and, for each n ≥ 1, there is a short exact sequence:

0 −→ Im ∂n −→ ker ∂n−1 −→ Hn(R) −→ 0.

Since the rank is additive across exact sequences, we have:

χ(R) =
∞∑

n=0

(−1)nrkHn

= rkT0 − rk Im ∂0 +
∞∑

n=1

(−1)n(rk ker ∂n−1 − rk Im ∂n).

Furthermore, for any n ≥ 0, rk Im ∂n = rk Tn+1 − rk ker ∂n, so the
above expression for χ(R) becomes:

χ(R) = rkT0 − rk T1 + rk ker(∂0)

+
∞∑

n=1

(−1)n(rk ker ∂n−1 − rkTn+1 + rk ker ∂n)

= rkT0 − rk T1 +
∞∑

n=1

(−1)nrkTn+1 =
∞∑

n=0

(−1)nrk Tn.

3. The group H0(R). Let R be a commutative ring with unity.
In order to analyze H0(R), we recall the construction of the so-called
ideal graph IR. This is a (simple) graph whose vertices are the proper
ideals of R, with {I, J} being an edge if and only if IJ = 0. We will
be more interested in the complement graph ĪR, whose vertices are the
same as IR, but in which {I, J} is an edge if and only if IJ �= 0.

If
∑n

i=1[Ii] ∈ T0 is an element whose class in H0(R) is zero, this means
that

∑n
i=1[Ii] = ∂0(

∑m
j=1 cj [Aj , Bj ]) for some integers cj and proper

ideals Aj , Bj . Without loss of generality, we may assume cj = ±1.
Equality still holds if we replace [Aj , Bj ] by −[Bj , Aj ], so we may always
write

∑n
i=1[Ii] = ∂0(

∑r
k=1[Ck, Dk]) for some proper ideals Ck, Dk.
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Proposition 3.1. Let I and J be distinct proper ideals of R. Then
[I] and [J ] have the same class in H0(R) if and only if I and J lie in
the same connected component of the graph ĪR.

Proof. If I and J are in the same connected component of ĪR, then
there is some path I = A0 − A1 − · · · − An = J connecting I and J ,
where the Ai are ideals such that for each i = 0, . . . , n−1, AiAi+1 �= 0.
This directly implies that

∑n−1
i=0 [Ai, Ai+1] is an element of T1, and by

direct calculation we see that

∂0

( n−1∑
i=0

[Ai, Ai+1]
)

= [A0] − [An] = [I] − [J ].

Hence [I] = [J ] in H0(R).

Conversely, suppose [I] and [J ] define the same class in H0(R). Then
[I]−[J ] = ∂0(

∑n
i=0[Ai, Bi]) =

∑n
i=0[Ai]−[Bi] where Ai, Bi are distinct

proper ideals of R and AiBi �= ∅. Let n be the smallest integer for
which this is possible. We prove by induction on n that, after suitable
reordering of the Ai and Bi, there is a path in ĪR from I to J .

We may assume without loss of generality that A0 = I and Bn = J .
If B0 = J , then IJ �= 0 and we are done. Otherwise, assume B0 �= J ;
that is, n > 0. Since

[I] − [J ] = [I] − [B0] + [A1] − [B1] + · · · + [An] − [Bn]

is a relation in a free abelian group, we may assume without loss of
generality that A1 = B0. Then, adding [B0] − [I] to both sides of this
equation, we get

[B0] − [J ] = [A1] − [B1] + · · · + [An] − [Bn],

so by induction there is a path in ĪR from B0 to J . Since A0B0 �= 0,
this means that {A0, B0} is an edge in ĪR, and hence that there is a
path from A0 = I to J .

Proposition 3.2. Let I1, . . . , In be distinct proper ideals of R lying
in mutually distinct connected components of ĪR. Then the classes of
[I1], . . . , [In] are linearly independent in H0(R).
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Proof. If R is a field, the assertion is trivial. Otherwise, let C1, . . . , Cr

be the components of ĪR. Suppose the class of
∑n

i=1 ci[Ii] in H0(R) is
0. We may assume that each Ii lies in component Ci of ĪR. Now

n∑
i=1

ci[Ii] = ∂0

( m∑
j=1

[Aj , Bj ]
)

for some distinct proper ideals Aj , Bj such that AjBj �= 0. Since
[Aj , Bj ] ∈ T1, Aj and Bj must lie in the same component of ĪR. For
each k, 1 ≤ k ≤ r, let Jk = {j : 1 ≤ j ≤ m : Aj ∈ Ck}. Then it follows
from the above equation that

ck[Ik] = ∂0

( ∑
j∈Jk

[Aj ] − [Bj ]
)

.

Applying ε to both sides of this equation, we have ck = 0 for all k.

Combining the previous two propositions, we have:

Corollary 3.3. Let R be a ring, and r the number of connected
components of ĪR. Then

H0(R) ∼= Z
r.

Corollary 3.3 is a useful tool for calculating H0(R) in particular cases;
nevertheless, using only elementary facts about ideals, one can prove
even more. We begin with an elementary lemma:

Lemma 3.4. Let R be a ring and m1, m2 distinct maximal ideals of
R. If m1m2 = 0, then R is isomorphic to a product of two fields.

Proof. Let p be a prime ideal of R. Then p ⊇ m1m2 = 0, so p ⊇ m1

or p ⊇ m2, i.e., p = m1 or p = m2. Hence m1 and m2 are the only prime
ideals of R and so R is an Artin ring with two maximal ideals. By the
structure theorem for Artin rings, R ∼= R1×R2, where R1, R2 are Artin
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local rings with respective maximal ideals n1, n2. Then without loss of
generality, m1 = n1 ×R2 and m2 = R1 ×n2. Thus, 0 = m1m2 = n1 ×n2

so n1 = 0, n2 = 0 and so R1, R2 are fields.

Proposition 3.5. Let R be a nonlocal ring which is not isomorphic
to the product of two fields. Then H0(R) ∼= Z.

Proof. By Corollary 3.3 it suffices to prove that ĪR is connected.
Indeed, let m1, m2 be distinct maximal ideals of R. If I is any other
proper ideal of R, then ann (I) is a proper ideal of R, so ann (I) does not
contain both m1 and m2. Hence for each such I, at least one of {I, m1},
{I, m2} is an edge in ĪR. If m1m2 = 0, then it follows from Lemma 3.4
that R is isomorphic to a product of two fields. Thus m1m2 �= 0,
{m1, m2} is an edge of ĪR, and it follows that ĪR is connected.

We have seen that H0(F ) = 0 when F is a field and H0(R) ∼= Z for
a large class of rings. Direct computation shows that if F1 and F2 are
fields, then H0(F1 × F2) ∼= Z

2 and Hn(F1 × F2) = 0 for all n > 0.
A natural question that arises is: given any integer s ≥ 0, is there a
ring R such that H0(R) ∼= Z

s? The discussion above shows that when
s ≥ 3, any such R must necessarily be local. Following an idea supplied
to us by Dennis Keeler, we show below that the rank of H0(R) may be
arbitrarily large.

Let k be a field and x1, . . . , xs independent indeterminates. Let
S be the localization of k[x1, . . . , xs] with respect to the maximal
ideal (x1, . . . , xs). Now let I be the ideal of k[x1, . . . , xs] gener-
ated by all products xixj , where i ≤ j. Since I ⊆ (x1, . . . , xs),
I corresponds, in the usual manner, to an ideal Ĩ ⊆ S. Now let
R = S/Ĩ. Observe now that the proper ideals of R correspond bi-
jectively to ideals (xi1 , . . . , xiν

) ⊆ k[x1, . . . , xs], where 1 ≤ ν ≤ s and
1 ≤ i1 < · · · < iν ≤ s. Furthermore, each such ideal (of R), when mul-
tiplied by any other, yields 0. Thus ĪR is a completely disconnected
graph on 2s − 2 vertices, and so H0(R) ∼= Z

2s−2.

4. Calculation of H1(Z/pr
Z). In this section, we compute the

group H1(Z/pr
Z) where p is a prime number and r ≥ 1 an integer. It

is easy to see by direct calculation that if r ≤ 3, then H1(Z/pr
Z) = 0.
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We assume henceforth that r ≥ 4.

Recall first that

H1(R) =
ker(∂0 : T1 −→ T0)
Im (∂1 : T2 −→ T1)

where

∂0

( ∑
j

[Aj , Bj ]
)

=
∑

j

[Aj ] − [Bj ]

and

∂1

( ∑
j

[Aj , Bj , Cj ]
)

=
∑

j

[Bj , Cj ] −
∑

j

[Aj , Cj ] +
∑

j

[Aj , Bj ].

Definition 4.1. Let n ≥ 0 be an integer. An element α ∈ T1 is called
an n-circuit (or simply a circuit) if there exist proper ideals I1, . . . , In

of R such that

α = [I1, I2] + · · · + [In−1, In] + [In, I1].

A 3-circuit is called a triangle.

Clearly the definition has been chosen to reflect the fact that, in the
above context, I1 − I2 −· · · In − I1 is a circuit in the graph ĪZ/prZ. The
analysis of ker ∂0 proceeds by a sequence of lemmas.

Lemma 4.2. Every element β ∈ ker ∂0 may be written

β =
m∑

k=1

αk

where each αk is a circuit.

Proof. The proof is by induction on the number of symbols in β.
If β = 0, the claim is clear. Otherwise, let β =

∑r
j=1[Aj , Bj ] with r
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chosen to be as small as possible. We may assume that there is no pair
of integers (j1, j2), 1 ≤ j1 < j2 ≤ r such that Aj1 = Bj2 and Aj2 = Bj1 ,
for then we may use the relation [I, J ] = −[J, I] in T1 to simplify the
expression for β and obtain a relation with smaller r.

Since β ∈ ker ∂0, we have:

0 = ∂0(β) = ∂0

( r∑
j=1

[Aj , Bj ]
)

=
r∑

j=1

[Aj ] − [Bj ].

Since this is a relation in the (free abelian) group T0, it follows that
there is some j such that B1 = Aj . Without loss of generality, we
may assume that j = 2. By the previous discussion, it follows that
A1 �= B2. Now it must be the case that there is some j such that
B2 = Aj ; without loss of generality, we assume that j = 3. Continue
this procedure until one reaches s ≤ r such that Bs = A1. Then

β1 = [A1, B1] + [B1, B2] + · · · + [Bs−2, Bs−1] + [Bs−1, A1]

is a circuit in T1. By induction, β−β1 is a sum of circuits in T1; hence,
β itself is a sum of circuits.

Lemma 4.3. Every nonzero circuit in T1 = T1(Z/pr
Z) may be

written as a sum of triangles.

Proof. Let α =
∑r−1

j=1[Aj , Aj+1] + [Ar, A1] be a circuit in T1. If α is
a 3-circuit, there is nothing to prove. By induction, it suffices to prove
that α has a chord, i.e., there exist distinct integers i, j, 1 ≤ i < j ≤ r
such that [Ai, Aj ] ∈ T1 and j − i > 1. Suppose α is an n-circuit, with
n > 3. For each k, 1 ≤ k ≤ r − 1, let Ik denote the ideal of Z/pr

Z

generated by (the class of) pk. Let S = {Ik : 1 ≤ k < r/2}. Observe
that if C, D ∈ S, then [C, D] ∈ T1. Furthermore, if [C, D] ∈ T1 and
C /∈ S, then D must be in S.

If all the Ai appearing in the cycle α are members of S, then by the
above observation [A1, A2] + [A2, A3] + [A3, A1] is a triangle. If not,
then we may assume without loss of generality that A2 /∈ S. Since
[A1, A2] ∈ T1 and [A2, A3] ∈ T1, we must have A1 ∈ S, A3 ∈ S. This
forces [A1, A3] ∈ T1, which completes the proof.
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Lemma 4.4. Every triangle in T1(Z/pr
Z) may be written as a sum

of triangles of the form τij = [I1, Ii] + [Ii, Ij ] + [Ij , I1], where 1 < i,
j < r.

Proof. This follows immediately from the formal identity:

[Ih, Ii] + [Ii, Ij ] + [Ij , Ih] = ([I1, Ih] + [Ih, Ii] + [Ii, I1])
+ ([I1, Ii] + [Ii, Ij ] + [Ij , I1])
+ ([I1, Ij ] + [Ij , Ih] + [Ih, I1])

= τhi + τij + τjh.

Lemma 4.5. The set of triangles T = {τij : 1 < i < j < r} is
(Z)-linearly independent in T1.

Proof. This follows readily from the fact that τij is the only member
of T involving the symbol [Ii, Ij ].

It follows from the sequence of lemmas above that:

Corollary 4.6. The group ker ∂0 is a free abelian group with basis
T .

In fact, τij ∈ T if and only if i + j < r, so an elementary counting
argument gives:

Corollary 4.7. The rank of ker ∂0 is (r − 4)2/4 if r is even or
((r − 4)2 − 1)/4 if r is odd.

We now examine the group Im ∂1. Observe that:

γ = ∂1([Ii, Ij , Ik]) = [Ii, Ij ]− [Ii, Ik]+ [Ij , Ik] = [Ii, Ij ]+ [Ij , Ik]+ [Ik, Ii]

is a triangle of T1.

Since IiIjIk �= 0 and I1 contains Ii, Ij and Ik, it follows readily
that each of the symbols [I1, Ii, Ij ], [I1, Ii, Ik] and [I1, Ij , Ik] are in T2;
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furthermore,

γ = ∂1([Ii, Ij , Ik]) = ∂1([I1, Ii, Ij ]) + ∂1([I1, Ij , Ik]) + ∂1([I1, Ik, Ii])
= τij + τjk + τki,

so in fact Im ∂1 is generated by those elements τij ∈ T such that
1 + i + j < r, i.e., i + j < r − 1.

By the same computation as used to derive Corollary 4.7, we obtain:

Corollary 4.8. The group Im ∂1 is a free abelian group of rank
((r − 5)2 − 1)/4 if r is even or ((r − 5)2)/4 if r is odd.

In particular, we observe that the basis elements τij for Im (∂1)
identified in the previous discussion are a subset of those identified
as a basis for ker(∂0). Thus, we have:

Corollary 4.9. Suppose r ≥ 4. Then H1(Z/pr
Z) is a free abelian

group of rank (r − 4)/2 if r is even or (r − 5)/2 if r is odd.

5. Acyclicity. In this section, we make a general study of the
higher homology groups Hn(R), n > 0; in particular, we give various
conditions sufficient for these groups to be zero.

Towards this end, it is convenient to introduce some notation: if
Ij0 , . . . , Ijm

(j = 1 . . . , r) and J0, . . . , Jn are mutually distinct ideals of
a ring R such that [Ij0 , . . . , Ijm

] ∈ Tm(R) for each j and [J0, . . . , Jn] ∈
Tn(R), and also Ij0 · · · Ijm

J0 · · ·Jn �= 0, for each j, we write:

r∑
j=1

[Ij0 , . . . , Ijm
] × [J0, . . . , Jn] =

r∑
j=1

[Ij0 , . . . , Ijm
, J0, . . . , Jn].

Lemma 5.1 (Acyclicity lemma). Suppose n > 0 and α =∑r
j=1[Ij0 , . . . , Ijn

] ∈ ker(∂n−1). If there exists an ideal J /∈ {Ijk
:

1 ≤ j ≤ r, 0 ≤ k ≤ n} such that JIj0 · · · Ijn
�= 0 for all j, 1 ≤ j ≤ r,

then α ∈ Im (∂n). Thus the class of α in Hn(R) is zero.
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Proof. If such J exists, then

∂n((−1)n+1
r∑

j=1

[Ij0 , . . . , Ijn
] × [J ])

= (−1)n+1
n∑

i=0

r∑
j=1

(−1)n[Ij0 , . . . , Îji
, . . . , Ijn

, J ] + α

= −∂n−1(α) × [J ] + α = α.

So indeed α ∈ Im (∂n), as desired.

Theorem 5.2. Let R be a ring satisfying at least one of the following
conditions :

• There exists a nonzero element x ∈ R which is neither a unit nor
a zero-divisor.

• R has infinitely many maximal ideals.

• R is reduced, Noetherian, and of positive (Krull) dimension.

Then Hn(R) = 0 for all n > 0.

Proof. First, suppose x ∈ R is a nonzero element which is neither
a unit nor a zero-divisor. Then it is easy to see that xi and xj are
associate if and only if i = j. Thus,

(x) ⊃ (x2) ⊃ (x3) ⊃ · · ·
is a descending chain of distinct ideals. Furthermore, if I is a nonzero
ideal, then (xi)I �= 0, for any i ≥ 1 because x (and hence xi) is not a
zero-divisor. Given any n > 0 and α =

∑r
j=1[Ij0 , . . . , Ijn

] ∈ ker(∂n−1)
as in Lemma 5.1, choose m such that (xm) �= Ijk

for all j, k. Then
J = (xm) satisfies the hypotheses of the lemma and the assertion
follows.

Now suppose R has infinitely many maximal ideals, and suppose α
is as above. For each j, let Aj = ann (Ij0 · · · Ijn

); Aj is a proper ideal
of R, so choose some maximal ideal mj such that Aj ⊆ mj . For each
j, 1 ≤ j ≤ r and k, 1 ≤ k ≤ n, choose a maximal ideal mjk such that
Ijk

⊆ mjk. Now let

D =
r⋃

j=1

mj ∪
r⋃

j=1

n⋃
k=1

mjk.
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Let m be some other maximal ideal of R not equal to any mj or mjk.
By [4, Proposition 1.11], m �⊆ D. Choose x ∈ m − D. Evidently, (x) is
a proper ideal of R. Furthermore, since x /∈ mjk, (x) �= Ijk

for any j, k.
Finally, x /∈ mj ⊇ Aj implies that (x)Ij0 · · · Ijn

�= 0 for all j. Thus,
J = (x) satisfies the hypotheses of Lemma 5.1, and the assertion is
proved.

Last, suppose R is reduced, Noetherian, and dim R > 0. Let p0

be a minimal prime ideal of R which is not also maximal. Then
dim(R/p0) > 0, so in particular R/p0 is not Artinian. Thus, there
is a strictly descending sequence of ideals of R:

R ⊇ J1 ⊇ J2 ⊇ · · ·

each of which strictly contains p0.

Let p0, . . . , pn be the minimal prime ideals of R; there are only finitely
many of them because R is Noetherian ([4, Chapter 6, Exercise 9]). It
is well-known (cf. [4, Proposition 1.8]) that the nilradical of R is the
intersection of the prime ideals of R, hence also of the minimal prime
ideals of R. Thus in our case, ∩n

i=0pi = 0.

We claim that IJm �= 0 for any nonzero ideal I and any m ≥ 1.
Suppose to the contrary that IJm = 0. Since ∩n

i=0pi = 0, this means
pi ⊇ IJm for each i. Since pi is prime, pi ⊇ I or pi ⊇ Jm. In the latter
case, pi ⊇ Jm ⊇ p0, so by minimality of pi, we must have pi = Jm = p0.
However, Jm strictly contains p0, so this is impossible. Thus, we must
have pi ⊇ I for each i; hence, 0 = ∩n

i=0pi ⊇ I and so I = 0.

Continuing with the proof of Theorem 5.2, suppose n > 0 and
α =

∑r
j=1[Ij0 , . . . , Ijn

] ∈ ker(∂n−1) as in Lemma 5.1. Choose m ≥ 1
such that Jm /∈ {Ijk

: 1 ≤ j ≤ r, 0 ≤ k ≤ n}. Then the previous
paragraph shows that for any j, 1 ≤ j ≤ r, JIj0 · · · Ijn

�= 0; thus we
may take J = Jm and apply Lemma 5.1 to conclude.

6. χ for finite rings. Theorem 5.2 establishes that the higher
homology groups are uninteresting for a large class of rings. Finite
rings, on the other hand, satisfy none of the conditions of the theorem;
in this section we examine these rings more closely. While the prospect
of computing the actual homology groups seems daunting, the Euler
characteristic turns out to be a much more tractable object. In
particular, if R is a finite ring, hence having only finitely many ideals,
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it is clear from the definition that each Tn(R) has finite rank and
that Tn(R) = 0 for sufficiently large n. Hence the hypotheses of
Proposition 2.2 are satisfied and we may use it to compute the Euler
characteristic. In particular, let Un = Un(R) denote the number of
unordered (n + 1)-tuples {I0, . . . , In} of distinct ideals whose product
is nonzero. Then we have the convenient formula

χ(R) =
∞∑

n=0

(−1)n|Un|.

Throughout this section, if a set is denoted by an uppercase letter, we
will use the corresponding lower case letter for the number of elements
in that set. For example, we will write un for |Un| as defined above.

We begin by examining the same rings encountered in Section 4,
namely those of the form R = Z/pr

Z where p is a prime and r ≥ 1 is
some integer. Recall that for each i, 1 ≤ i ≤ r − 1, there is an ideal Ii

of R generated by (the class of) (pi) and that these are all the proper
ideals of R. In the following, we implicitly identify the ideal Ii with the
integer i. Since Un is the set of unordered (n + 1)-tuples {I0, . . . , In}
of distinct proper ideals of R, we have

un =
r−1∑
k=1

P (k, n + 1)

where P (k, n + 1) represents the number of partitions of k into (n + 1)
distinct positive integer parts. Hence

χ(R) =
∞∑

n=0

(−1)nsn =
∞∑

n=0

(−1)n
r−1∑
k=1

P (k, n + 1)

=
r−1∑
k=1

∞∑
n=1

(−1)n+1P (k, n).

We may interpret the inner sum

∞∑
n=1

(−1)n+1P (k, n) = −
∞∑

n=1

(−1)nP (k, n)
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as the coefficient of xk in the power series:

−(1 − x)(1 − x2)(1 − x3) · · · .

By Euler’s pentagonal theorem, we have:

− (1 − x)(1 − x2)(1 − x3) · · ·
= −1 + x + x2 − x5 − x7 + x12 + x15 − x22 − x26 + · · · ,

where the pattern of signs on the right (from the second term forth) is
++−− and the exponents alternate between the “pentagonal” numbers
of the form

Pm =
m(3m − 1)

2

and the related numbers

Qm =
m(3m + 1)

2
,

where m = 1, 2, 3, . . . .

Hence

χ(R) = −
r−1∑
k=1

∞∑
n=1

(−1)nP (k, n)

is the sum of the coefficients of the terms x, x2, . . . , xr−1 appearing in
the above series. It is clear from the sign pattern that this sum is either
0, 1, or 2, depending on the value of r in relation to the numbers Pm

and Qm.

We summarize our findings in the following:

Theorem 6.1. Let p be a prime and r ≥ 1 an integer. Then
χ(Z/pr

Z) is equal to 0, 1, or 2, depending on the value of r in relation
to the various pentagonal numbers m(3m − 1)/2 and the associated
numbers m(3m + 1)/2.

By being careful with counting methods, we can prove the following
theorem, whose proof is facilitated by the paucity of ideals in a field.
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Theorem 6.2. Let R be a finite ring and F a field. Then

χ(R × F ) = 2 − χ(R).

Proof. Let π1, π2 denote the projection maps onto the respective
factors of R × F . Recall that for any n ≥ 0, the typical element
Un(R×F ) is an unordered (n+1)-tuple {I0, . . . , In} where I0 · · · In �= 0.
Moreover, each Ii = Ai ×Bi, with Ai = π1(Ii) being an ideal of R and
Bi = π2(Ii) an ideal of F , i.e. Bi = 0 or Bi = fF . In order to have
I0 · · · In �= 0, at least one of

∏n
i=0 Ai �= 0 or

∏n
i=0 Bi �= 0. Define:

U1
n(R × F ) =

{
{I0, . . . , In} ∈ Un(R × F ) :

n∏
i=0

Ai �= 0
}

U2
n(R × F ) =

{
{I0, . . . , In} ∈ Un(R × F ) :

n∏
i=0

Bi �= 0
}

=
{
{I0, . . . , In} ∈ Un : Bi = F for each i

}
U3

n(R × F ) = U1
n(R × F ) ∩ U2

n(R × F )

=
{
{I0, . . . , In} ∈ Un(R × F ) : Bi = F

for each i and (A0, . . . , An) ∈ Un(R)
}
.

Thus we have un = u1
n + u2

n − u3
n.

It is clear from the above description that u3
n(R × F ) = un(R)

and furthermore that if {I0, . . . , In} ∈ U2
n(R × F ), then A0, . . . , An

are allowed to be any (mutually distinct) proper ideals of R; hence,
u2

n(R × F ) =
(

ρ
n+1

)
, where ρ is the number of proper ideals in R.

The set U1
n is slightly more difficult to analyze: define

U1,0
n (R × F ) =

{
{I0, . . . , In} ∈ U1

n(R × F ) : Ii �= R × 0

for all i, 0 ≤ i ≤ n
}

U1,1
n (R × F ) = U1

n(R × F ) − U1,0
n (R × F ).

Clearly u1,0
n (R × F ) + u1,1

n (R × F ) = u1
n(R × F ). Somewhat more

subtly, there is a natural bijective map U1,0
n (R × F ) → U1,1

n+1(R × F )
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sending {I0, . . . , In} �→ {I0, . . . , In, R × 0}, so it is also true that
u1,0

n (R × F ) = u1,1
n+1(R × F ).

Combining all these relations, we have:

χ (R × F )

=
∞∑

n=0

(−1)nun(R × F )

=
∞∑

n=0

(−1)n(u1
n(R × F ) + u2

n(R × F ) − u3
n(R × F ))

=
∞∑

n=0

(−1)n(u1,0
n (R × F ) + u1,1

n (R × F ) +
(

ρ

n + 1

)
− un(R))

=
∞∑

n=0

(−1)nu1,0
n (R × F ) +

∞∑
n=0

(−1)nu1,1
n (R × F )

+
∞∑

n=0

(−1)n

(
ρ

n + 1

)
−

∞∑
n=0

(−1)nun(R))

=
∞∑

n=0

(−1)nu1,1
n+1(R × F ) +

∞∑
n=0

(−1)nu1,1
n (R × F ) + 1 − χ(R)

= u1,1
0 (R × F ) + 1 − χ(R)

= 2 − χ(R)

Corollary 6.3. Let F1, . . . , Fn be fields. Then

χ(F1 × · · · × Fn) = 1 + (−1)n.

We have not yet found a general method for computing χ(Z/nZ),
where n > 0 is an arbitrary integer. However, it is possible to analyze
some specific examples using idiosyncratic counting methods:

Theorem 6.4. Let p, q be primes and r ≥ 2 an integer. Then

χ(Z/pr
Z × Z/q2

Z) = 2 − χ(Z/pr
Z) +

r−1∑
k=1

χ(Z/pk
Z).
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Proof. For convenience, set R = Z/pr
Z and S = Z/q2

Z; to ease
notation, we denote the unique proper ideal of S by (q). As in
Theorem 6.2, let π1, π2 be the projection maps onto the respective
factors of R×S. As before, for any n ≥ 0, the typical element Un(R×S)
is an unordered (n + 1)-tuple {I0, . . . , In} where I0 · · · In �= 0 and
Ii = Ai × Bi, where Ai = π1(Ii) an ideal of R and Bi = π2(Ii) an
ideal of S. In this situation, Bi may either be 0, (q) or S. As before,∏n

i=0 Ai �= 0 or
∏n

i=0 Bi �= 0.

U1
n(R × S) =

{
{I0, . . . , In} ∈ Un(R × S) :

n∏
i=0

Ai �= 0
}

U2
n(R × S) =

{
{I0, . . . , In} ∈ Un(R × S) :

n∏
i=0

Bi �= 0
}

=
{
{I0, . . . , In} ∈ Un : there exists some i0 such that

Bi0 = S or Bi0 = (q) and Bi = S for all i �= i0
}

U3
n(R × S) = U1

n(R × S) ∩ U2
n(R × S).

Now define

U1,0
n (R × S) =

{
{I0, . . . , In} ∈ U1

n(R × S) : Ii �= R × 0 for all i,

0 ≤ i ≤ n
}

U1,1
n (R × S) = U1

n(R × S) − U1,0
n (R × S)

U3,q
n (R × S) =

{
{I0, . . . , In} ∈ U3

n(R × S) : there exists i0 such that

Bi0 = (q) and Bi = S for all i �= i0
}

U3,S
n (R × S) = U3

n(R × S) − U3,q
n (R × S)

=
{
{I0, . . . , In} ∈ U3

n(R×S) : Bi = S for all i, 0≤ i≤n
}
.

It follows immediately from the above definitions that un(R × S) =
u1

n(R × S) + u2
n(R × S) − u3

n(R × S).

The map U1,0
n (R × S) → U1,1

n+1(R × S) sending {I0, . . . , In} �→
{I0, . . . , In, R×0} establishes a bijection, so u1,0

n (R×S) = u1,1
n+1(R×S).

Now let ρ denote the number of proper ideals in R. Evidently, by the
description given above,

u2
n(R × S) = ρ

(
ρ

n

)
+

(
ρ

n + 1

)
.
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Finally, it is clear that u3,S
n (R × S) = un(R). Observe that, given a

typical element {I0, . . . , In} of U3,q
n (R × S), we may assume without

loss of generality that Bj = S for all j > 0 and that B0 = (pk) × (q)
for some k, 1 ≤ k ≤ r − 1. (This is the only place in the proof where
we use the fact that R has the form Z/pr

Z.) Thus, in order to have∏n
i=0 Ai �= 0, we must have {A1, . . . , An} ∈ Un−1(Z/pr−k

Z). Hence,
u3,q

n (R × S) =
∑r−1

k=1 un−1(Z/pk
Z).

Collecting this information together, we have:

χ (R × S)

=
∞∑

n=0

(−1)nun(R × S)

=
∞∑

n=0

(−1)n(u1
n(R × S) + u2

n(R × S) − u3
n(R × S))

=
∞∑

n=0

(−1)n
(
u1,0

n (R × S) + u1,1
n (R × S)

+ ρ

(
ρ

n

)
+

(
ρ

n + 1

)
− un(R) −

r−1∑
k=1

un−1(Z/pk
Z)

)

=
∞∑

n=0

(−1)n(u1,0
n (R × S) + u1,1

n+1(R × S))

+
∞∑

n=0

(−1)n
(
ρ

(
ρ

n

)
+

(
ρ

n + 1

))

−
∞∑

n=0

(−1)nun(R) −
∞∑

n=1

(−1)n
r−1∑
k=1

un−1(Z/pk
Z))

= u1,1
0 (R × S) + 1 − χ(R) +

r−1∑
k=1

∞∑
n=1

(−1)n−1un−1(Z/pk
Z)

= 2 − χ(R) +
r−1∑
k=1

χ(Z/pk
Z).
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Thus,

χ(Z/pr
Z × Z/q2

Z) = 2 − χ(Z/pr
Z) +

r−1∑
k=1

χ(Z/pk
Z).

From Theorem 6.4 and Theorem 6.1, we see that the value of
χ(Z/pr

Z) may be made arbitrary large by choosing r large enough.
By Theorem 6.2, we see that by taking the product with a field, we can
obtain a ring whose Euler characteristic is arbitrary large and negative.
Summarizing, we have:

Corollary 6.5. The value of χ(R) is unbounded in both the positive
and negative directions as R ranges over the set of finite rings.

It is not difficult to develop ad hoc counting methods along similar
lines to compute χ(Z/pr

Z×Z/q3
Z), but it is not clear how to generalize

this method to compute χ(Z/pr
Z × Z/qs

Z) for arbitrary s ≥ 1.
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