
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 37, Number 3, 2007

ON PRIME SUBMODULES

MUSTAFA ALKAN AND YÜCEL TIRAŞ

Throughout this paper R will denote a commutative ring with iden-
tity and M a unital module. Several authors have extended the notion
of prime ideal to modules, see, for example [1, 2]. In this paper, we
continue these investigations.

A proper submodule N of M is prime if for any r ∈ R and m ∈ M
such that rm ∈ N , either rM ⊆ N or m ∈ N . It is easy to show that
if N is a prime submodule of M then the annihilator P of the module
M/N is a prime ideal of R. Also it is not difficult to see that N is
a prime submodule of M if and only if (N : K) = (N : M) for all
submodules K of M properly containing N .

It is well known that a submodule N of M is prime if and only if
P = (N : M) is a prime ideal of R and the (R/P )-module M/N is fully
faithful. For a prime ideal P of R, McCasland and Smith [8] defined
the set M(P ) and asked the question: When does M = M(P )? In
this paper we give an answer to this question and also describe the
interrelation between the attached primes and prime submodules of an
Artinian R-module.

Let N be a proper submodule of an R-module M . The radical of
N in M , denoted by radMN , is defined to be the intersection of all
prime submodules of M containing N . Should there be no prime
submodule of M containing N , then we put radMN = M . On the
other hand, radR denotes the intersection of all prime ideals of R. Let
I be an ideal of R. Then it is well known that

√
I = {r ∈ R : rn ∈

I for some n ∈ N}. The envelope submodule REM (N) of N in M is a
submodule of M generated by the set EM (N) = {rm : r ∈ R and m ∈
M such that rnm ∈ N for some n ∈ N}.
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We will call N a McCasland submodule in M if it satisfies the
radical formula, that is, if radMN = REM (N). Likewise, M will be
called a McCasland module if every submodule of M is a McCasland
submodule. A ring R is said to satisfy the radical formula if every R-
module M is a McCasland module, equivalently, if radM0 = REM (0).
The question as to what kinds of module are McCasland modules has
been considered in [4, 5, 7, 8, 10]. In this paper we continue the
investigation begun in [7] into conditions under which a submodule
satisfies the radical formula. In the first section we deal with the
question as to when a representable module is a McCasland module.

Recall that M is called a multiplication module provided that for each
submodule N of M there exists an ideal I of R such that N = IM .
It is also known that radRM ⊆ REM (0) ⊆ radM0. Example 2.4
shows that they are not equal in general, but the equality holds if
M is a multiplication R-module. We also prove, in Section 2, see
Theorem 2.6, that the equality is true if M is a projective module.
We also characterize the radical of a submodule N of an R-module
M with M/N a projective R-module, as radMN = radRM + N =
REM (N). We show that if the ring R has R/rad R semi simple and
N is a submodule of an R-module M , then radMN = radRM + N =
REM (N) =

√
(N : M)M + N .

In [5], Leung and Man proved that any Artinian ring satisfies the
radical formula. Also it is well known that for any Artinian ring R,
R/rad R is semi simple. On the other hand, there are many examples
showing that the converse is not true in general. We prove in the last
section that if R/radR is semi simple for any ring R, then R satisfies
the radical formula.

In [7], McCasland and Moore proved that if N is a submodule
of a finitely generated multiplication R-module M, then radMN =√

(N : M)M . They concluded their paper by mentioning that for
any R-module M and a submodule N of M one has in general√

(N : M)M ⊆ REM (N) ⊆ radMN and asking when equality holds.
At the end of this note we also give necessary and sufficient conditions
for this equality to hold.
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1. Secondary modules. Let P be a prime ideal of a ring R. We
recall from [8] the subset M(P ) of M defined by

M(P ) = {m ∈ M | Bm ⊆ PM for some ideal B � P}.
We will need the following lemma from [8].

Lemma 1.1, (1) Let I be an ideal of R. Then there exists a proper
submodule N of M such that I = (N : M) if and only if IM �= M and
I = (IM : M).

(2) For a prime ideal P of R let N = M(P ). Then N = M or N is
a prime submodule of M such that P = (N : M).

Let us recall from [11] what it means for M to have a secondary
representation.

Definition 1.2. A nonzero R-module M is said to be secondary if
for all x ∈ R, either xM = M or there exists n ∈ N such that xnM = 0.
If M is a secondary R-module then

√
0 : M = P is a prime ideal of R

and M is then called P -secondary.

Definition 1.3. A secondary representation for an R-module M is
an expression of the form M = M1 + · · · + Mr, r ≥ 0, where Mi is
a secondary submodule of M for all i = 1, . . . , r. We say that the
secondary representation is minimal if

(i) For Pi =
√

0 : Mi, i = 1, . . . , r, the P1, . . . , Pr are all distinct,
and

(ii) No term in the sum is redundant.

The set {P1, . . . , Pr} of prime ideals of R is independent of the choice
of minimal secondary representation for M and is called the set of
attached primes of M , denoted by Att (M). In this case M is said to
be a representable module.

In this section, we study the relation between Att (M) and the prime
submodule of M . We also give a condition for a representable module
to be a McCasland module.



712 M. ALKAN AND Y. TIRAŞ

Let N be a submodule of an R-module M such that (N : M) is a
prime ideal in R. Then N need not be a prime submodule of M and
also for any prime ideal P of R there may be no prime submodule N
such that P = (N : M). Now we give the following:

Theorem 1.4. Let M be an Artinian R-module and M = M1 +
· · ·+Mr a minimal secondary representation with

√
0 : Mi = Pi for all

i = 1, . . . , r. Also suppose that M/PiM is finitely generated for some i,
1 ≤ i ≤ r. Then M has a prime submodule N such that Pi = (N : M).

Proof. Since M/PiM is finitely generated we have M/PiM =
Rx̄1 + · · · + Rx̄n, where xi ∈ M for all i = 1, . . . , n. Then we get
M = Rx1 + Rx2 + · · · + Rxn + PiM . Since Pi ∈ Att (M), by [11,
Corollary 2.6], M has a nonzero homomorphic image with annihilator
Pi. Thus M has a proper submodule N such that Pi = (N : M) and so
we obtain Pi = (PiM : M). Now we claim that M �= M(P ). Otherwise,
for each i there exists an ideal Bi with Bi � Pi such that Bixi ⊆ PiM .
Let B = ∩n

i=1Bi. Then BM ⊆ PiM , which is a contradiction. The
result now follows from Lemma 1.1.

Let M be a nonzero Artinian module. Then for the reverse relation-
ship between the attached primes of M and the prime submodule of
M , we suppose that N is a prime submodule of the Artinian R-module
M . Then P = (N : M) is a prime ideal of R and so by [11, Corollary
2.6], P belongs to Att (M).

Now we show that the condition in Theorem 1.4, that M/PiM is
a finitely generated R-module for some Pi ∈ Att (M), is necessary.
Let M = Z(p∞) be an Artinian Z-module, whence M has a minimal
secondary representation. If M/qiM were a finitely generated Z-
module for some qi ∈ Att (M), then by Theorem 1.4, M(qi) would
be a prime submodule of M . But this is impossible, as we show in the
following example.

Example 1.5. Let M = Z(p∞) be an Artinian Z-module. Then we
claim that for any prime ideal q in Z, M(q) = M .
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Let r/pn +Z ∈ Z(p∞) for some r ∈ Z, n ∈ N. If r ∈ q, then it is clear
that r/pn +Z ∈ M(q). If r /∈ q, then take A = (r) and so A � q. There
exist elements u and s in Z such that qu+spn = 1 and so r = rqu+rspn.
Let rt ∈ A. Then rt((r/pn)+Z) = (tr2u)/pn +Z ∈ qZ(p∞), and so we
have M(q) = M .

This example also gives a partial answer to the question raised in [8,
Proposition 1.7], namely when does M = M(P )?

Let Spec
P
(M) denote the collection of all prime submodules K of M

such that P = (K : M), together with the module M . Let M be an
Artinian R-module. Suppose that M = M1 + · · · + Mr is a minimal
secondary representation for M with

√
0 : Mi = Pi for all i = 1, . . . , r.

Then by Theorem 1.4 and [14], all prime submodules of M can be
classified as the set {Spec

Pi
(M) : Pi ∈ Att (M)}.

Recall from [10] that an R-module M is called special if, for each
m ∈ M and each element a of any maximal ideal M, there exists n ∈ N
and c ∈ R\M such that canm = 0. Also a module M is called semi-
artinian if every homomorphic image of M has a nonzero socle. In [10],
Pusat and Smith proved that every semi-artinian module is special.
They also proved that any special module is a McCasland module.
This gives us that any Artinian module is a McCasland module. The
class of representable R-modules is, in general, larger than the class
of Artinian R-modules. Hence we investigate when a representable
R-module M is a McCasland module. First we prove that, if M is
Noetherian representable over a one dimensional domain R, then M is
a McCasland module.

It is well known that if M is a McCasland module then so is any
homomorphic image of M . Although the proof of the following lemma
is very similar to the proof of [10, Theorem 2.2], it is given for
completeness.

Lemma 1.6. Let R be a domain and M = M1 + M2 an R-module.
If M1 is a McCasland module and M2 a divisible module, then M is a
McCasland module.
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Proof. The mapping α from M1 to M/M2 defined by α(s1) = s1+M2

is an epimorphism and so M/M2 is a McCasland module. Let N be a
submodule of M and m ∈ radMN . Then m = s1 + s2, whence

m + M2 ∈ (radMN + M2)/M2 = radM/M2(N + M2/M2)
= REM/M2(N + M2/M2)

and so
s1 + M2 = r1(k1 + M2) + · · · + rn(kn + M2),

where rti
i (ki + M2) ∈ N + M2/M2, and so rti

i ki ∈ N + M2. Then there
exist ni ∈ N , di ∈ M2 such that rti

i ki = ni + di for ti ∈ N. Since M2 is
divisible, di = rti

i ci for some ci ∈ M2 for all i, and so rti
i (ki − ci) ∈ N ,

1 ≤ i ≤ n. Therefore, we have

s1 + s2 = r1(k1 − c1) + · · · + rn(kn − cn) + x

for some x ∈ M2. It follows that x ∈ radMN . There exist a nonzero
c ∈ R and y ∈ M2 such that cx ∈ N and x = cy. Hence it follows that
c2y ∈ N and so x = cy ∈ REM (N). Therefore radMN = REM (N).

Let T be a multiplicatively closed subset of R, and let S be a P-
secondary R-module. If P ∩ T �= ∅ then clearly T−1S = 0. Otherwise,
T−1S is a T−1P-secondary T−1R-module. By Lemma 1.6 any divisible
R-module over a domain is a McCasland module and by [10, Theorem
4.8], any special R-module over a domain is a McCasland module.
Therefore, if R is a local domain with dimR = 1 then any secondary
R-module is a McCasland module. Hence we have the following.

Theorem 1.7. Let R be a domain with dimR = 1. If M is a
Noetherian representable R-module, then M is a McCasland module.

Proof. Let M = M1 + · · ·+Mn be the minimal secondary representa-
tion with

√
(0 : Mi) = Pi for i = 1, . . . , n. Let M be a maximal ideal

of R. Then MM = M1M + · · · + MnM. Assume that Pk = 0 for at
least for one k, 1 ≤ k ≤ n. Without loss of generality let k = 1. In this
case M1 is a divisible R-module. Now we have the following two cases:
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(i) M = Pj for some j. Then MiM = 0 for all i �= j, 2 ≤ i ≤ n and
so we have MM = M1M + MjM . Hence MM is a McCasland module.

(ii) Let M �= Pi for all i = 2, . . . , n. In this case MiM = 0 and so
MM = M1M is again a McCasland module.

If Pi �= 0 for all i, then MPi
is a McCasland module since dimR = 1.

Therefore M is a McCasland module is all cases.

Now we continue our investigation of the conditions under which a
representable module is a McCasland module.

Lemma 1.8. Let R be a domain and M = M1 + M2 an R-module
with representable submodule M2. Let N be a submodule of M . If
rtk + d ∈ N , where r ∈ R, k ∈ M1, d ∈ M2 and t ∈ N, then
r(k + c) ∈ REM (N) for some c ∈ M2.

Proof. Assume that M2 = L1 + · · · + Ln is a minimal secondary
representation with

√
0 : Li = Pi for all i = 1, . . . , n. Then d can be

written as d = xi1 + · · · + xit
for xij

∈ Lij
, 1 ≤ j ≤ t. Now we use

induction on t. Let t = 1.

(a) If rL1 = L1, then we have d = rtc for some c ∈ M2 and so
rt(k + c) ∈ N . Thus r(k + c) ∈ REM (N).

(b) If rlL1 = 0 for some l ∈ N, then rl(rtk + d) = rt+lk ∈ N and so
rk ∈ REM (N).

Suppose now that t > 1. We will divide the rest of the proof into two
parts:

1. Assume first that for at least one ij we have l ∈ N such that
rlxij

= 0. Without loss of generality we may assume ij = it. Then

rl(rtk + d) = rt+lk + (rlxi1 + · · · + rlxit−1) ∈ N

and, by hypothesis, r(k + c) ∈ REM (N) for some c ∈ M2.

2. Now assume that rlxi �= 0 for all i, 1 ≤ i ≤ t, and for all l in
N. Then rlLi = Li and so there exists cij

∈ Lij
such that xij

= rlcij

for all i, 1 ≤ i ≤ t. It follows that rt(k + ci1 + · · · + cit
) ∈ N and so

r(k + ci1 + · · · + cit
) ∈ REM (N).
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Let N be a submodule of an R-module M . We say that N satisfies
(∗) if for x ∈ radMN and c ∈ R such that cx ∈ EM (0) ∩ N implies
x ∈ REM (N). M is said to satisfy (∗) if every submodule of M satisfies
(∗). Clearly any torsion free R-module over a domain satisfies (∗). By
using the same argument as in the proof of Lemma 1.8, we have the
following lemma:

Lemma 1.9. Let M = M1 + M2 be an R-module over a domain
satisfying (∗) and M2 a representable submodule of M . Let N be a
submodule of M . If c ∈ R and x ∈ radMN ∩ M2 are such that cx ∈ N
then x ∈ REM (N).

Theorem 1.10. Let M = M1 + M2 be an R-module over a domain
satisfying (∗). If M1 is a McCasland module and M2 a representable
submodule of M , then M is a McCasland module.

Proof. Let N be a submodule of M . Take m ∈ radMN . Then
m = m1 + m2 where m1 ∈ M1 and m2 ∈ M2. As in the proof of
Lemma 1.6, we have

m1 + M2 = r1(k1 + M2) + · · · + rn(kn + M2)

for some n ∈ N, ri ∈ R, ki ∈ M , (1 ≤ i ≤ n), and there exist t ∈ N,
ui ∈ N and vi ∈ M2, (1 ≤ i ≤ n), such that

rti
i ki = ui + vi, 1 ≤ i ≤ n.

By Lemma 1.8, ri(ki + ci) ∈ REM (N) for some ci ∈ M2 and each
1 ≤ i ≤ n. Thus

m = r1(k1 + c1) + · · · + rn(kn + cn) + x

for some x ∈ M2, whence there exists a c ∈ R such that cx ∈ N .
Therefore by Lemma 1.9 we get x ∈ REM (N). This completes the
proof.

We do not know if Lemma 1.9 remains true when M = M1 + M2 is
an arbitrary R-module. If so then Theorem 1.10 could be extended in
the natural way.
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2. The radicals of a submodule. In this section we characterize
the radicals and envelopes for a certain class of submodules. Also we
prove that a ring R for which with R/rad R is semi simple satisfies the
radical formula. We begin this section with the following simple-known
lemma.

Lemma 2.1. Let N1 and N2 be submodules of an R-module M with
N1 ⊆ N2. Then

(i) REM/N1(N2/N1) = REM (N2)/N1.

(ii) radM/N1(N2/N1) = radM (N2)/N1.

In [4], James and Smith proved that if M is an R-module such that
radM0 = REM (0) then so is any direct sum of M . Now we will show
that if M is a McCasland module then any direct summand N of M
is a McCasland module. Let M be direct sum of the R-modules Mi,
i ∈ I. Let N = ⊕Ni be a submodule of M such that Ni is a submodule
of Mi for all i ∈ I.

Lemma 2.2. Let M and N be as above. Assume that P is a
prime ideal of R. Then N is a P -prime submodule of M if and only if
whenever Ni �= Mi, Ni is a P -prime submodule of Mi for all i ∈ I.

Proof. Let N = ⊕Ni, where Ni is a submodule of Mi, i ∈ I. Then
N is a P -prime submodule of M if and only if M/N = ⊕Mi/ ⊕ Ni

∼=
⊕(Mi/Ni) is a torsion free (R/P )-module if and only if Mi/Ni is a
torsion-free R/P -module for all i ∈ I if and only if Ni is a P -prime
submodule of Mi for all i ∈ I such that Ni �= Mi.

Now we show the condition in Lemma 2.2, that for all i ∈ I, Ni

should be a P -prime submodule of Mi, is necessary: Let R = Z and
assume that M is the R-module Z ⊕ Z and N = 3Z ⊕ 2Z. Then it is
easy to see that (N : M) = 6Z and so N is not a prime submodule of
M .

Lemma 2.3. Let M and N be as above. Then we have

(i) REM (N) = ⊕i∈IREMi
(Ni).
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(ii) radMN = ⊕ radMi
Ni.

(iii) radMi
Ni = REMi

(Ni) for all i ∈ I if and only if radMN =
REM (N).

Proof. (i) Suppose that rm ∈ REM (N), where m = (mi) ∈ ⊕Mi

and r ∈ R. Then for some integer k, rkm ∈ N and so we have
rkm = (rkmi) ∈ ⊕i∈INi. This means that rkmi ∈ Ni and rmi ∈
REMi

(Ni) for all i ∈ I and then (rmi) ∈ ⊕i∈IREMi
(Ni). Therefore,

REM (N) = ⊕i∈IREMi
(Ni).

(ii) Suppose that m ∈ radMN and m /∈ ⊕ radMi
Ni. Let πi denote

the projection map from M to Mi. Then there exists i ∈ I such that
πi(m) /∈ radMi

Ni. This means that there exists a prime submodule Pi

of Mi such that Ni ⊆ Pi but πi(m) /∈ Pi. Then K = Pi ⊕ (⊕i �=jMj)
is a prime submodule of M such that N ⊆ K and m /∈ K. Thus
m /∈ radMN , a contradiction. Hence, radMN ⊆ ⊕ radMi

Ni.

(iii) This is clear from (i) and (ii).

It is well known that radRM ⊆ REM (0) ⊆ radM0 for any R-module
M . In general we do not have equality, as is seen from Example 2.4.
However equality is known to hold for a multiplication module, and we
will prove that it holds for a projective R-module also.

Example 2.4 [13]. Suppose that R denotes the polynomial ring Z[x],
and let M = R⊕R. Let N be the submodule N = R(x, 4) + R(0, x) +
x2M of M . It is easy to check REM (N) = N + xM = R(0, 4) + xM
and radMN = R(0, 2) + xM . Let M = M/N . Then by Lemma 2.1,
we have rad RM = 0, REM(0) = (R(x, 4) + xM)/N and radM0 =
(R(x, 2) + xM)/N .

Now we give the following simple lemma.

Lemma 2.5. Let M and N be R-modules, and let α be an epimor-
phism from M to N . Then we have
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(i) Let Pi, i ∈ I, be submodules of M satisfying Kerα ⊆ Pi for all
i ∈ I. Then α(∩Pi) = ∩α(Pi).

(ii) α(radMKer α) = radN0. In particular, α(radM0) ⊆ radN0.

Proposition 2.6. Let M be a projective R-module. Then rad RM =
REM (0) = radM0.

Proof. Let M be a projective R-module. Then there exists a free
R-module F and an R-module A such that F = M ⊕ A.

First we prove that our claim is true for F . Let {xi | i ∈ I} be
a basis for F . Then F = ⊕Rxi and so each x ∈ F has a unique
expansion x =

∑
rixi where ri ∈ R and almost all ri = 0. Define

a homomorphism αi from F to R by αi(x) = ri. Then αi is an
epimorphism for all i ∈ I and we obtain x =

∑
i∈I αi(x)xi.

Let u ∈ radF 0. Then u =
∑

rixi =
∑

αi(u)xi, where ri ∈ R and
almost all ri = 0. Hence, by Lemma 2.5 we have u =

∑
αi(u)xi ∈

radF . Now we have radF 0 ⊆ radF and so radF 0 = radF .

Take m ∈ radM0. By Lemma 2.3, it follows that radF 0 = radM0 ⊕
radA0 and so we have m ∈ radF 0 = radRF = radR(M ⊕ A) =
rad RM ⊕ radRA. This implies that m =

∑
rimi +

∑
kjaj , where

ri, kj ∈ rad R, mi ∈ M and aj ∈ A. Therefore, m =
∑

rimi ∈
rad RM . This completes the proof.

The following theorem can be obtained using Lemma 2.1 and Propo-
sition 2.6.

Theorem 2.7. Let N be a submodule of an R-module M such that
M/N is projective. Then radMN = REM (rad RM+N) = radRM+N .

Let N be a prime submodule of an R-module M . Then (N : M) is a
prime ideal of R and N = REM (N) = radMN . But the converse is not
true in general. (Consider the Z-module Z ⊕ Z). Thus Theorem 2.7
has the following immediate consequences.
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Corollary 2.8. Let N be a submodule of an R-module M such that
M/N is a projective R-module and rad RM ⊆ N . Then radMN =
REM (N) = N .

Denote R/rad R by R, M/rad RM by M and consider a ring R such
that R is semi simple.

Theorem 2.9. Let R be a ring such that R is semi simple, and
let N be a submodule of an R-module M . Then we have radMN =
REM (N) =

√
(N : M)M + N = radRM + N .

Proof. First assume that N = 0. Then it will be enough to show
that radM0 = radRM . Since R is semi simple, M is a semi simple
R-module and so rad RM = radM0 = 0. On the other hand, since
rad RM ⊆ radM0, we have

radM0 = (radM0)/rad RM = 0.

This means that radM0 = radRM =
√

(0 : M) M .

Now let N �= 0. Then we have

radM/N0 = radR(M/N) =
√

(0 : M/N) M/N.

Therefore, radMN = radRM + N =
√

(N : M) M + N = REM (N).

Corollary 2.10. Let R be a ring such that R is semi simple. Then
R satisfies the radical formula.

Proof. Let M be any R-module. Then by Theorem 2.9, radM0 =√
(0 : M)M = radRM . As rad RM ⊆ REM (0) ⊆ radM0, we get

rad RM = REM (0) = radM0. This means that M is a McCasland
module, hence the result.

We conclude this note by making the following observations. Let N
be a submodule of an R-module M . It is easy to check that

rad RM ⊆
√

(N : M)M ⊆ REM (N) ⊆ radMN
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for any submodule N of an R-module M . In [7] McCasland and
Moore ask when

√
(N : M)M = REM (N) = radM (N). Now we can

give an answer to their question. If the hypothesis of Theorem 2.7,
or Theorem 2.9, are satisfied, then N ⊆ √

(N : M) M if and only if√
(N : M) M = REM (N) = radMN . (In general N �

√
(N : M)M).
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