ON PRIME SUBMODULES

MUSTAFA ALKAN AND YÜCEL TIRAŞ

Throughout this paper R will denote a commutative ring with identity and M a unital module. Several authors have extended the notion of prime ideal to modules, see, for example $[\mathbf{1}, \mathbf{2}]$. In this paper, we continue these investigations.

A proper submodule N of M is prime if for any $r \in R$ and $m \in M$ such that $r m \in N$, either $r M \subseteq N$ or $m \in N$. It is easy to show that if N is a prime submodule of M then the annihilator P of the module M / N is a prime ideal of R. Also it is not difficult to see that N is a prime submodule of M if and only if $(N: K)=(N: M)$ for all submodules K of M properly containing N.

It is well known that a submodule N of M is prime if and only if $P=(N: M)$ is a prime ideal of R and the (R / P)-module M / N is fully faithful. For a prime ideal P of $R, \mathrm{McCasland}$ and Smith [8] defined the set $M(P)$ and asked the question: When does $M=M(P)$? In this paper we give an answer to this question and also describe the interrelation between the attached primes and prime submodules of an Artinian R-module.

Let N be a proper submodule of an R-module M. The radical of N in M, denoted by $\operatorname{rad}_{M} N$, is defined to be the intersection of all prime submodules of M containing N. Should there be no prime submodule of M containing N, then we put $\operatorname{rad}_{M} N=M$. On the other hand, $\operatorname{rad} R$ denotes the intersection of all prime ideals of R. Let I be an ideal of R. Then it is well known that $\sqrt{I}=\left\{r \in R: r^{n} \in\right.$ I for some $n \in \mathbf{N}\}$. The envelope submodule $R E_{M}(N)$ of N in M is a submodule of M generated by the set $E_{M}(N)=\{r m: r \in R$ and $m \in$ M such that $r^{n} m \in N$ for some $\left.n \in \mathbf{N}\right\}$.

[^0]We will call N a $M c$ Casland submodule in M if it satisfies the radical formula, that is, if $\operatorname{rad}_{M} N=R E_{M}(N)$. Likewise, M will be called a McCasland module if every submodule of M is a McCasland submodule. A ring R is said to satisfy the radical formula if every R module M is a McCasland module, equivalently, if $\operatorname{rad}_{M} 0=R E_{M}(0)$. The question as to what kinds of module are McCasland modules has been considered in $[\mathbf{4}, \mathbf{5}, \mathbf{7}, \mathbf{8}, \mathbf{1 0}]$. In this paper we continue the investigation begun in [7] into conditions under which a submodule satisfies the radical formula. In the first section we deal with the question as to when a representable module is a McCasland module.

Recall that M is called a multiplication module provided that for each submodule N of M there exists an ideal I of R such that $N=I M$. It is also known that $\operatorname{rad} R M \subseteq R E_{M}(0) \subseteq \operatorname{rad}_{M} 0$. Example 2.4 shows that they are not equal in general, but the equality holds if M is a multiplication R-module. We also prove, in Section 2, see Theorem 2.6, that the equality is true if M is a projective module. We also characterize the radical of a submodule N of an R-module M with M / N a projective R-module, as $\operatorname{rad}_{M} N=\operatorname{rad} R M+N=$ $R E_{M}(N)$. We show that if the ring R has $R / \operatorname{rad} R$ semi simple and N is a submodule of an R-module M, then $\operatorname{rad}_{M} N=\operatorname{rad} R M+N=$ $R E_{M}(N)=\sqrt{(N: M)} M+N$.
In [5], Leung and Man proved that any Artinian ring satisfies the radical formula. Also it is well known that for any Artinian ring R, $R / \operatorname{rad} R$ is semi simple. On the other hand, there are many examples showing that the converse is not true in general. We prove in the last section that if $R / \operatorname{rad} R$ is semi simple for any ring R, then R satisfies the radical formula.
In [7], McCasland and Moore proved that if N is a submodule of a finitely generated multiplication R-module M, then $\operatorname{rad}_{M} N=$ $\sqrt{(N: M)} M$. They concluded their paper by mentioning that for any R-module M and a submodule N of M one has in general $\sqrt{(N: M)} M \subseteq R E_{M}(N) \subseteq \operatorname{rad}_{M} N$ and asking when equality holds. At the end of this note we also give necessary and sufficient conditions for this equality to hold.

1. Secondary modules. Let P be a prime ideal of a ring R. We recall from [8] the subset $M(P)$ of M defined by

$$
M(P)=\{m \in M \mid B m \subseteq P M \text { for some ideal } B \nsubseteq P\}
$$

We will need the following lemma from [8].

Lemma 1.1, (1) Let I be an ideal of R. Then there exists a proper submodule N of M such that $I=(N: M)$ if and only if $I M \neq M$ and $I=(I M: M)$.
(2) For a prime ideal P of R let $N=M(P)$. Then $N=M$ or N is a prime submodule of M such that $P=(N: M)$.

Let us recall from [11] what it means for M to have a secondary representation.

Definition 1.2. A nonzero R-module M is said to be secondary if for all $x \in R$, either $x M=M$ or there exists $n \in \mathbf{N}$ such that $x^{n} M=0$. If M is a secondary R-module then $\sqrt{0: M}=P$ is a prime ideal of R and M is then called P-secondary.

Definition 1.3. A secondary representation for an R-module M is an expression of the form $M=M_{1}+\cdots+M_{r}, r \geq 0$, where M_{i} is a secondary submodule of M for all $i=1, \ldots, r$. We say that the secondary representation is minimal if
(i) For $P_{i}=\sqrt{0: M_{i}}, i=1, \ldots, r$, the P_{1}, \ldots, P_{r} are all distinct, and
(ii) No term in the sum is redundant.

The set $\left\{P_{1}, \ldots, P_{r}\right\}$ of prime ideals of R is independent of the choice of minimal secondary representation for M and is called the set of attached primes of M, denoted by $\operatorname{Att}(M)$. In this case M is said to be a representable module.

In this section, we study the relation between $\operatorname{Att}(M)$ and the prime submodule of M. We also give a condition for a representable module to be a McCasland module.

Let N be a submodule of an R-module M such that $(N: M)$ is a prime ideal in R. Then N need not be a prime submodule of M and also for any prime ideal P of R there may be no prime submodule N such that $P=(N: M)$. Now we give the following:

Theorem 1.4. Let M be an Artinian R-module and $M=M_{1}+$ $\cdots+M_{r}$ a minimal secondary representation with $\sqrt{0: M_{i}}=P_{i}$ for all $i=1, \ldots, r$. Also suppose that $M / P_{i} M$ is finitely generated for some i, $1 \leq i \leq r$. Then M has a prime submodule N such that $P_{i}=(N: M)$.

Proof. Since $M / P_{i} M$ is finitely generated we have $M / P_{i} M=$ $R \bar{x}_{1}+\cdots+R \bar{x}_{n}$, where $x_{i} \in M$ for all $i=1, \ldots, n$. Then we get $M=R x_{1}+R x_{2}+\cdots+R x_{n}+P_{i} M$. Since $P_{i} \in \operatorname{Att}(M)$, by [11, Corollary 2.6], M has a nonzero homomorphic image with annihilator P_{i}. Thus M has a proper submodule N such that $P_{i}=(N: M)$ and so we obtain $P_{i}=\left(P_{i} M: M\right)$. Now we claim that $M \neq M(P)$. Otherwise, for each i there exists an ideal B_{i} with $B_{i} \nsubseteq P_{i}$ such that $B_{i} x_{i} \subseteq P_{i} M$. Let $B=\cap_{i=1}^{n} B_{i}$. Then $B M \subseteq P_{i} M$, which is a contradiction. The result now follows from Lemma 1.1.

Let M be a nonzero Artinian module. Then for the reverse relationship between the attached primes of M and the prime submodule of M, we suppose that N is a prime submodule of the Artinian R-module M. Then $P=(N: M)$ is a prime ideal of R and so by [11, Corollary 2.6], P belongs to $\operatorname{Att}(M)$.

Now we show that the condition in Theorem 1.4, that $M / P_{i} M$ is a finitely generated R-module for some $P_{i} \in \operatorname{Att}(M)$, is necessary. Let $M=\mathbf{Z}\left(p^{\infty}\right)$ be an Artinian \mathbf{Z}-module, whence M has a minimal secondary representation. If $M / q_{i} M$ were a finitely generated \mathbf{Z} module for some $q_{i} \in \operatorname{Att}(M)$, then by Theorem 1.4, $M\left(q_{i}\right)$ would be a prime submodule of M. But this is impossible, as we show in the following example.

Example 1.5. Let $M=\mathbf{Z}\left(p^{\infty}\right)$ be an Artinian \mathbf{Z}-module. Then we claim that for any prime ideal q in $\mathbf{Z}, M(q)=M$.

Let $r / p^{n}+\mathbf{Z} \in \mathbf{Z}\left(p^{\infty}\right)$ for some $r \in \mathbf{Z}, n \in \mathbf{N}$. If $r \in q$, then it is clear that $r / p^{n}+\mathbf{Z} \in M(q)$. If $r \notin q$, then take $A=(r)$ and so $A \nsubseteq q$. There exist elements u and s in \mathbf{Z} such that $q u+s p^{n}=1$ and so $r=r q u+r s p^{n}$. Let $r t \in A$. Then $r t\left(\left(r / p^{n}\right)+\mathbf{Z}\right)=\left(t r^{2} u\right) / p^{n}+\mathbf{Z} \in q \mathbf{Z}\left(p^{\infty}\right)$, and so we have $M(q)=M$.

This example also gives a partial answer to the question raised in [8, Proposition 1.7], namely when does $M=M(P)$?

Let $\operatorname{Spec}_{P}(M)$ denote the collection of all prime submodules K of M such that $P=(K: M)$, together with the module M. Let M be an Artinian R-module. Suppose that $M=M_{1}+\cdots+M_{r}$ is a minimal secondary representation for M with $\sqrt{0: M_{i}}=P_{i}$ for all $i=1, \ldots, r$. Then by Theorem 1.4 and [14], all prime submodules of M can be classified as the set $\left\{\operatorname{Spec}_{P_{i}}(M): P_{i} \in \operatorname{Att}(M)\right\}$.

Recall from [10] that an R-module M is called special if, for each $m \in M$ and each element a of any maximal ideal \mathcal{M}, there exists $n \in \mathbf{N}$ and $c \in R \backslash \mathcal{M}$ such that $c a^{n} m=0$. Also a module M is called semiartinian if every homomorphic image of M has a nonzero socle. In [10], Pusat and Smith proved that every semi-artinian module is special. They also proved that any special module is a McCasland module. This gives us that any Artinian module is a McCasland module. The class of representable R-modules is, in general, larger than the class of Artinian R-modules. Hence we investigate when a representable R-module M is a McCasland module. First we prove that, if M is Noetherian representable over a one dimensional domain R, then M is a McCasland module.

It is well known that if M is a McCasland module then so is any homomorphic image of M. Although the proof of the following lemma is very similar to the proof of [10, Theorem 2.2], it is given for completeness.

Lemma 1.6. Let R be a domain and $M=M_{1}+M_{2}$ an R-module. If M_{1} is a McCasland module and M_{2} a divisible module, then M is a McCasland module.

Proof. The mapping α from M_{1} to M / M_{2} defined by $\alpha\left(s_{1}\right)=s_{1}+M_{2}$ is an epimorphism and so M / M_{2} is a McCasland module. Let N be a submodule of M and $m \in \operatorname{rad}_{M} N$. Then $m=s_{1}+s_{2}$, whence

$$
\begin{aligned}
& m+M_{2} \in\left(\operatorname{rad}_{M} N+M_{2}\right) / M_{2}=\operatorname{rad}_{M / M_{2}}\left(N+M_{2} / M_{2}\right) \\
&=R E_{M / M_{2}}\left(N+M_{2} / M_{2}\right)
\end{aligned}
$$

and so

$$
s_{1}+M_{2}=r_{1}\left(k_{1}+M_{2}\right)+\cdots+r_{n}\left(k_{n}+M_{2}\right)
$$

where $r_{i}^{t_{i}}\left(k_{i}+M_{2}\right) \in N+M_{2} / M_{2}$, and so $r_{i}^{t_{i}} k_{i} \in N+M_{2}$. Then there exist $n_{i} \in N, d_{i} \in M_{2}$ such that $r_{i}^{t_{i}} k_{i}=n_{i}+d_{i}$ for $t_{i} \in \mathbf{N}$. Since M_{2} is divisible, $d_{i}=r_{i}^{t_{i}} c_{i}$ for some $c_{i} \in M_{2}$ for all i, and so $r_{i}^{t_{i}}\left(k_{i}-c_{i}\right) \in N$, $1 \leq i \leq n$. Therefore, we have

$$
s_{1}+s_{2}=r_{1}\left(k_{1}-c_{1}\right)+\cdots+r_{n}\left(k_{n}-c_{n}\right)+x
$$

for some $x \in M_{2}$. It follows that $x \in \operatorname{rad}_{M} N$. There exist a nonzero $c \in R$ and $y \in M_{2}$ such that $c x \in N$ and $x=c y$. Hence it follows that $c^{2} y \in N$ and so $x=c y \in R E_{M}(N)$. Therefore $\operatorname{rad}_{M} N=R E_{M}(N)$. -

Let T be a multiplicatively closed subset of R, and let S be a \mathcal{P} secondary R-module. If $\mathcal{P} \cap T \neq \varnothing$ then clearly $T^{-1} S=0$. Otherwise, $T^{-1} S$ is a $T^{-1} \mathcal{P}$-secondary $T^{-1} R$-module. By Lemma 1.6 any divisible R-module over a domain is a McCasland module and by [10, Theorem 4.8], any special R-module over a domain is a McCasland module. Therefore, if R is a local domain with $\operatorname{dim} R=1$ then any secondary R-module is a McCasland module. Hence we have the following.

Theorem 1.7. Let R be a domain with $\operatorname{dim} R=1$. If M is a Noetherian representable R-module, then M is a $M c C a s l a n d$ module.

Proof. Let $M=M_{1}+\cdots+M_{n}$ be the minimal secondary representation with $\sqrt{\left(0: M_{i}\right)}=\mathcal{P}_{i}$ for $i=1, \ldots, n$. Let \mathcal{M} be a maximal ideal of R. Then $M_{\mathcal{M}}=M_{1 \mathcal{M}}+\cdots+M_{n \mathcal{M}}$. Assume that $\mathcal{P}_{k}=0$ for at least for one $k, 1 \leq k \leq n$. Without loss of generality let $k=1$. In this case M_{1} is a divisible R-module. Now we have the following two cases:
(i) $\mathcal{M}=\mathcal{P}_{j}$ for some j. Then $M_{i \mathcal{M}}=0$ for all $i \neq j, 2 \leq i \leq n$ and so we have $M_{\mathcal{M}}=M_{1_{\mathcal{M}}}+M_{j_{\mathcal{M}}}$. Hence $M_{\mathcal{M}}$ is a McCasland module.
(ii) Let $\mathcal{M} \neq \mathcal{P}_{i}$ for all $i=2, \ldots, n$. In this case $M_{i_{\mathcal{M}}}=0$ and so $M_{\mathcal{M}}=M_{1_{\mathcal{M}}}$ is again a McCasland module.
If $\mathcal{P}_{i} \neq 0$ for all i, then $M_{\mathcal{P}_{i}}$ is a McCasland module since $\operatorname{dim} R=1$. Therefore M is a McCasland module is all cases.

Now we continue our investigation of the conditions under which a representable module is a McCasland module.

Lemma 1.8. Let R be a domain and $M=M_{1}+M_{2}$ an R-module with representable submodule M_{2}. Let N be a submodule of M. If $r^{t} k+d \in N$, where $r \in R, k \in M_{1}, d \in M_{2}$ and $t \in \mathbf{N}$, then $r(k+c) \in R E_{M}(N)$ for some $c \in M_{2}$.

Proof. Assume that $M_{2}=L_{1}+\cdots+L_{n}$ is a minimal secondary representation with $\sqrt{0: L_{i}}=P_{i}$ for all $i=1, \ldots, n$. Then d can be written as $d=x_{i_{1}}+\cdots+x_{i_{t}}$ for $x_{i_{j}} \in L_{i_{j}}, 1 \leq j \leq t$. Now we use induction on t. Let $t=1$.
(a) If $r L_{1}=L_{1}$, then we have $d=r^{t} c$ for some $c \in M_{2}$ and so $r^{t}(k+c) \in N$. Thus $r(k+c) \in R E_{M}(N)$.
(b) If $r^{l} L_{1}=0$ for some $l \in \mathbf{N}$, then $r^{l}\left(r^{t} k+d\right)=r^{t+l} k \in N$ and so $r k \in R E_{M}(N)$.

Suppose now that $t>1$. We will divide the rest of the proof into two parts:

1. Assume first that for at least one i_{j} we have $l \in \mathbf{N}$ such that $r^{l} x_{i_{j}}=0$. Without loss of generality we may assume $i_{j}=i_{t}$. Then

$$
r^{l}\left(r^{t} k+d\right)=r^{t+l} k+\left(r^{l} x_{i_{1}}+\cdots+r^{l} x_{i_{t-1}}\right) \in N
$$

and, by hypothesis, $r(k+c) \in R E_{M}(N)$ for some $c \in M_{2}$.
2. Now assume that $r^{l} x_{i} \neq 0$ for all $i, 1 \leq i \leq t$, and for all l in \mathbf{N}. Then $r^{l} L_{i}=L_{i}$ and so there exists $c_{i_{j}} \in L_{i_{j}}$ such that $x_{i_{j}}=r^{l} c_{i_{j}}$ for all $i, 1 \leq i \leq t$. It follows that $r^{t}\left(k+c_{i_{1}}+\cdots+c_{i_{t}}\right) \in N$ and so $r\left(k+c_{i_{1}}+\cdots+c_{i_{t}}\right) \in R E_{M}(N)$.

Let N be a submodule of an R-module M. We say that N satisfies $(*)$ if for $x \in \operatorname{rad}_{M} N$ and $c \in R$ such that $c x \in E_{M}(0) \cap N$ implies $x \in R E_{M}(N) . M$ is said to satisfy $(*)$ if every submodule of M satisfies $(*)$. Clearly any torsion free R-module over a domain satisfies ($*$). By using the same argument as in the proof of Lemma 1.8, we have the following lemma:

Lemma 1.9. Let $M=M_{1}+M_{2}$ be an R-module over a domain satisfying (*) and M_{2} a representable submodule of M. Let N be a submodule of M. If $c \in R$ and $x \in \operatorname{rad}_{M} N \cap M_{2}$ are such that $c x \in N$ then $x \in R E_{M}(N)$.

Theorem 1.10. Let $M=M_{1}+M_{2}$ be an R-module over a domain satisfying (*). If M_{1} is a $M c$ Casland module and M_{2} a representable submodule of M, then M is a McCasland module.

Proof. Let N be a submodule of M. Take $m \in \operatorname{rad}_{M} N$. Then $m=m_{1}+m_{2}$ where $m_{1} \in M_{1}$ and $m_{2} \in M_{2}$. As in the proof of Lemma 1.6, we have

$$
m_{1}+M_{2}=r_{1}\left(k_{1}+M_{2}\right)+\cdots+r_{n}\left(k_{n}+M_{2}\right)
$$

for some $n \in \mathbf{N}, r_{i} \in R, k_{i} \in M,(1 \leq i \leq n)$, and there exist $t \in \mathbf{N}$, $u_{i} \in N$ and $v_{i} \in M_{2},(1 \leq i \leq n)$, such that

$$
r_{i}^{t_{i}} k_{i}=u_{i}+v_{i}, \quad 1 \leq i \leq n .
$$

By Lemma 1.8, $r_{i}\left(k_{i}+c_{i}\right) \in R E_{M}(N)$ for some $c_{i} \in M_{2}$ and each $1 \leq i \leq n$. Thus

$$
m=r_{1}\left(k_{1}+c_{1}\right)+\cdots+r_{n}\left(k_{n}+c_{n}\right)+x
$$

for some $x \in M_{2}$, whence there exists a $c \in R$ such that $c x \in N$. Therefore by Lemma 1.9 we get $x \in R E_{M}(N)$. This completes the proof.

We do not know if Lemma 1.9 remains true when $M=M_{1}+M_{2}$ is an arbitrary R-module. If so then Theorem 1.10 could be extended in the natural way.
2. The radicals of a submodule. In this section we characterize the radicals and envelopes for a certain class of submodules. Also we prove that a ring R for which with $R / \operatorname{rad} R$ is semi simple satisfies the radical formula. We begin this section with the following simple-known lemma.

Lemma 2.1. Let N_{1} and N_{2} be submodules of an R-module M with $N_{1} \subseteq N_{2}$. Then
(i) $R E_{M / N_{1}}\left(N_{2} / N_{1}\right)=R E_{M}\left(N_{2}\right) / N_{1}$.
(ii) $\operatorname{rad}_{M / N_{1}}\left(N_{2} / N_{1}\right)=\operatorname{rad}_{M}\left(N_{2}\right) / N_{1}$.

In [4], James and Smith proved that if M is an R-module such that $\operatorname{rad}_{M} 0=R E_{M}(0)$ then so is any direct sum of M. Now we will show that if M is a McCasland module then any direct summand N of M is a McCasland module. Let M be direct sum of the R-modules M_{i}, $i \in I$. Let $N=\oplus N_{i}$ be a submodule of M such that N_{i} is a submodule of M_{i} for all $i \in I$.

Lemma 2.2. Let M and N be as above. Assume that P is a prime ideal of R. Then N is a P-prime submodule of M if and only if whenever $N_{i} \neq M_{i}, N_{i}$ is a P-prime submodule of M_{i} for all $i \in I$.

Proof. Let $N=\oplus N_{i}$, where N_{i} is a submodule of $M_{i}, i \in I$. Then N is a P-prime submodule of M if and only if $M / N=\oplus M_{i} / \oplus N_{i} \cong$ $\oplus\left(M_{i} / N_{i}\right)$ is a torsion free (R / P)-module if and only if M_{i} / N_{i} is a torsion-free R / P-module for all $i \in I$ if and only if N_{i} is a P-prime submodule of M_{i} for all $i \in I$ such that $N_{i} \neq M_{i}$.

Now we show the condition in Lemma 2.2, that for all $i \in I, N_{i}$ should be a P-prime submodule of M_{i}, is necessary: Let $R=\mathbf{Z}$ and assume that M is the R-module $\mathbf{Z} \oplus \mathbf{Z}$ and $N=3 \mathbf{Z} \oplus 2 \mathbf{Z}$. Then it is easy to see that $(N: M)=6 \mathbf{Z}$ and so N is not a prime submodule of M.

Lemma 2.3. Let M and N be as above. Then we have
(i) $R E_{M}(N)=\oplus_{i \in I} R E_{M_{i}}\left(N_{i}\right)$.
(ii) $\operatorname{rad}_{M} N=\oplus \operatorname{rad}_{M_{i}} N_{i}$.
(iii) $\operatorname{rad}_{M_{i}} N_{i}=R E_{M_{i}}\left(N_{i}\right)$ for all $i \in I$ if and only if $\operatorname{rad}_{M} N=$ $R E_{M}(N)$.

Proof. (i) Suppose that $r m \in R E_{M}(N)$, where $m=\left(m_{i}\right) \in \oplus M_{i}$ and $r \in R$. Then for some integer $k, r^{k} m \in N$ and so we have $r^{k} m=\left(r^{k} m_{i}\right) \in \oplus_{i \in I} N_{i}$. This means that $r^{k} m_{i} \in N_{i}$ and $r m_{i} \in$ $R E_{M_{i}}\left(N_{i}\right)$ for all $i \in I$ and then $\left(r m_{i}\right) \in \oplus_{i \in I} R E_{M_{i}}\left(N_{i}\right)$. Therefore, $R E_{M}(N)=\oplus_{i \in I} R E_{M_{i}}\left(N_{i}\right)$.
(ii) Suppose that $m \in \operatorname{rad}_{M} N$ and $m \notin \oplus \operatorname{rad}_{M_{i}} N_{i}$. Let π_{i} denote the projection map from M to M_{i}. Then there exists $i \in I$ such that $\pi_{i}(m) \notin \operatorname{rad}_{M_{i}} N_{i}$. This means that there exists a prime submodule P_{i} of M_{i} such that $N_{i} \subseteq P_{i}$ but $\pi_{i}(m) \notin P_{i}$. Then $K=P_{i} \oplus\left(\oplus_{i \neq j} M_{j}\right)$ is a prime submodule of M such that $N \subseteq K$ and $m \notin K$. Thus $m \notin \operatorname{rad}_{M} N$, a contradiction. Hence, $\operatorname{rad}_{M} N \subseteq \oplus \operatorname{rad}_{M_{i}} N_{i}$.
(iii) This is clear from (i) and (ii).

It is well known that $\operatorname{rad} R M \subseteq R E_{M}(0) \subseteq \operatorname{rad}_{M} 0$ for any R-module M. In general we do not have equality, as is seen from Example 2.4. However equality is known to hold for a multiplication module, and we will prove that it holds for a projective R-module also.

Example 2.4 [13]. Suppose that R denotes the polynomial ring $\mathbf{Z}[x]$, and let $M=R \oplus R$. Let N be the submodule $N=R(x, 4)+R(0, x)+$ $x^{2} M$ of M. It is easy to check $R E_{M}(N)=N+x M=R(0,4)+x M$ and $\operatorname{rad}_{M} N=R(0,2)+x M$. Let $\mathcal{M}=M / N$. Then by Lemma 2.1, we have $\operatorname{rad} R \mathcal{M}=0, R E_{\mathcal{M}}(0)=(R(x, 4)+x M) / N$ and $\operatorname{rad}_{\mathcal{M}} 0=$ $(R(x, 2)+x M) / N$.

Now we give the following simple lemma.

Lemma 2.5. Let M and N be R-modules, and let α be an epimorphism from M to N. Then we have
(i) Let $P_{i}, i \in I$, be submodules of M satisfying $\operatorname{Ker} \alpha \subseteq P_{i}$ for all $i \in I$. Then $\alpha\left(\cap P_{i}\right)=\cap \alpha\left(P_{i}\right)$.
(ii) $\alpha\left(\operatorname{rad}_{M} \operatorname{Ker} \alpha\right)=\operatorname{rad}_{N} 0$. In particular, $\alpha\left(\operatorname{rad}_{M} 0\right) \subseteq \operatorname{rad}_{N} 0$.

Proposition 2.6. Let M be a projective R-module. Then $\operatorname{rad} R M=$ $R E_{M}(0)=\operatorname{rad}_{M} 0$.

Proof. Let M be a projective R-module. Then there exists a free R-module F and an R-module A such that $F=M \oplus A$.
First we prove that our claim is true for F. Let $\left\{x_{i} \mid i \in I\right\}$ be a basis for F. Then $F=\oplus R x_{i}$ and so each $x \in F$ has a unique expansion $x=\sum r_{i} x_{i}$ where $r_{i} \in R$ and almost all $r_{i}=0$. Define a homomorphism α_{i} from F to R by $\alpha_{i}(x)=r_{i}$. Then α_{i} is an epimorphism for all $i \in I$ and we obtain $x=\sum_{i \in I} \alpha_{i}(x) x_{i}$.

Let $u \in \operatorname{rad}_{F} 0$. Then $u=\sum r_{i} x_{i}=\sum \alpha_{i}(u) x_{i}$, where $r_{i} \in R$ and almost all $r_{i}=0$. Hence, by Lemma 2.5 we have $u=\sum \alpha_{i}(u) x_{i} \in$ $\operatorname{rad} F$. Now we have $\operatorname{rad}_{F} 0 \subseteq \operatorname{rad} F$ and so $\operatorname{rad}_{F} 0=\operatorname{rad} F$.
Take $m \in \operatorname{rad}_{M} 0$. By Lemma 2.3, it follows that $\operatorname{rad}_{F} 0=\operatorname{rad}_{M} 0 \oplus$ $\operatorname{rad}_{A} 0$ and so we have $m \in \operatorname{rad}_{F} 0=\operatorname{rad} R F=\operatorname{rad} R(M \oplus A)=$ $\operatorname{rad} R M \oplus \operatorname{rad} R A$. This implies that $m=\sum r_{i} m_{i}+\sum k_{j} a_{j}$, where $r_{i}, k_{j} \in \operatorname{rad} R, m_{i} \in M$ and $a_{j} \in A$. Therefore, $m=\sum r_{i} m_{i} \in$ $\operatorname{rad} R M$. This completes the proof.

The following theorem can be obtained using Lemma 2.1 and Proposition 2.6.

Theorem 2.7. Let N be a submodule of an R-module M such that M / N is projective. Then $\operatorname{rad}_{M} N=R E_{M}(\operatorname{rad} R M+N)=\operatorname{rad} R M+N$.

Let N be a prime submodule of an R-module M. Then $(N: M)$ is a prime ideal of R and $N=R E_{M}(N)=\operatorname{rad}_{M} N$. But the converse is not true in general. (Consider the \mathbf{Z}-module $\mathbf{Z} \oplus \mathbf{Z}$). Thus Theorem 2.7 has the following immediate consequences.

Corollary 2.8. Let N be a submodule of an R-module M such that M / N is a projective R-module and $\operatorname{rad} R M \subseteq N$. Then $\operatorname{rad}_{M} N=$ $R E_{M}(N)=N$.

Denote $R / \operatorname{rad} R$ by $\bar{R}, M / \operatorname{rad} R M$ by \bar{M} and consider a ring R such that \bar{R} is semi simple.

Theorem 2.9. Let R be a ring such that \bar{R} is semi simple, and let N be a submodule of an R-module M. Then we have $\operatorname{rad}_{M} N=$ $R E_{M}(N)=\sqrt{(N: M)} M+N=\operatorname{rad} R M+N$.

Proof. First assume that $N=0$. Then it will be enough to show that $\operatorname{rad}_{M} 0=\operatorname{rad} R M$. Since \bar{R} is semi simple, \bar{M} is a semi simple R-module and so $\operatorname{rad} R \bar{M}=\operatorname{rad}_{\bar{M}} 0=0$. On the other hand, since $\operatorname{rad} R M \subseteq \operatorname{rad}_{M} 0$, we have

$$
\operatorname{rad}_{\bar{M}} 0=\left(\operatorname{rad}_{M} 0\right) / \operatorname{rad} R M=0
$$

This means that $\operatorname{rad}_{M} 0=\operatorname{rad} R M=\sqrt{(0: M)} M$.
Now let $N \neq 0$. Then we have

$$
\operatorname{rad}_{M / N} 0=\operatorname{rad} R(M / N)=\sqrt{(0: M / N)} M / N
$$

Therefore, $\operatorname{rad}_{M} N=\operatorname{rad} R M+N=\sqrt{(N: M)} M+N=R E_{M}(N)$.

Corollary 2.10. Let R be a ring such that \bar{R} is semi simple. Then R satisfies the radical formula.

Proof. Let M be any R-module. Then by Theorem $2.9, \operatorname{rad}_{M} 0=$ $\sqrt{(0: M)} M=\operatorname{rad} R M$. As $\operatorname{rad} R M \subseteq R E_{M}(0) \subseteq \operatorname{rad}_{M} 0$, we get $\operatorname{rad} R M=R E_{M}(0)=\operatorname{rad}_{M} 0$. This means that M is a McCasland module, hence the result.

We conclude this note by making the following observations. Let N be a submodule of an R-module M. It is easy to check that

$$
\operatorname{rad} R M \subseteq \sqrt{(N: M)} M \subseteq R E_{M}(N) \subseteq \operatorname{rad}_{M} N
$$

for any submodule N of an R-module M. In [7] McCasland and Moore ask when $\sqrt{(N: M)} M=R E_{M}(N)=\operatorname{rad}_{M}(N)$. Now we can give an answer to their question. If the hypothesis of Theorem 2.7, or Theorem 2.9, are satisfied, then $N \subseteq \sqrt{(N: M)} M$ if and only if $\sqrt{(N: M)} M=R E_{M}(N)=\operatorname{rad}_{M} N .($ In general $N \nsubseteq \sqrt{(N: M)} M)$.

Acknowledgments. The authors give their very special thanks to the referee whose comments have helped improve the exposition of this paper and for suggesting the name McCasland submodule for a submodule satisfying the radical formula.

REFERENCES

1. J. Dauns, Prime modules, J. Reine Angew. Math. 2 (1978), 156-181.
2. -, Prime modules and one-sided ideals, in Ring theory and algebra III, Proc. of the Third Oklahoma Conf. (B.R. McDonald, ed.), Dekker, New York, 1980, pp. 301-344.
3. K.R. Goodearl and R.B Warfield, An introduction to non commutative Noetherian rings, London Math. Soc. Stud. Texts, vol. 16, Cambridge Univ. Press, Cambridge, 1989.
4. J. Jenkins and P.F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra 20 (1992), 3593-9602.
5. K.H. Leung and H.S. Man, On Commutative Noetherian rings which satisfy the radical formula, Glasgow Math. J. 39 (1997), 285-293.
6. C.P. Lu, Prime submodules of modules, Comm. Math. Univ. Sancti Pauli 33 (1984), 61-69.
7. R.L. McCasland and M.E. Moore, On radicals of submodules, Comm. Algebra 19 (1991), 1327-1341.
8. R.L. McCasland and P.F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math 23 (1993), 1041-1062.
9. J.C. McConnell and J.C. Robson, Noncommutative Noetherian rings, Wiley, Chichester, 1987.
10. D. Pusat-Yilmaz and P.F. Smith, Modules which satisfy the radical formula, Acta Math Hungar. 95 (2002), 155-167.
11. R.Y. Sharp, A method for the study of Artinian modules with an application to asymptotic behaviour, Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 443-465.
12. -, Steps in commutative algebra, London Math. Soc. Stud. Texts, vol. 19, Cambridge Univ. Press, Cambridge, 1990.
13. P.F. Smith, Primary modules over commutative rings, Glasgow Math. J. 43 (2001), 103-111.
14. Y. Tıraş, A. Tercan and A.Harmancı, Prime modules, Honam Math. J. 18 (1996), 5-15.

Akdeniz University Department of Mathematics, 07058 Antalya, Turkey
E-mail address: alkan@akdeniz.edu.tr
Hacettepe University Department of Mathematics, 06532 Beytepe Ankara, Turkey
E-mail address: ytiras@hacettepe.edu.tr

[^0]: 2000 AMS Mathematics Subject Classification. Primary 13C12, 13E10, 13G05.
 Key words and phrases. Prime submodules, secondary modules, secondary representation, radical formula.

 The first author was supported by the Scientific Research Project Administration of Akdeniz University.

 Received by the editors on Oct. 15, 2003, and in revised form on Jan. 26, 2005.

