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PSEUDOSPHERE ARRANGEMENTS WITH
SIMPLE COMPLEMENTS

LEWIS PAKULA

ABSTRACT. A necessary and sufficient condition for the
complements of a general kind of topological sphere arrange-
ment (and those of all its subarrangements) to have homolog-
ically trivial components is that all intersection degeneracies
be nonnegative in a certain sense. Transverse intersections
are not assumed. This extends the domain of application of
formulas which count these components in terms of degenera-
cies. In dimension 2 we show that the union of pseudocircles
in an arrangement with possibly nontransverse intersections is
the same as the union of an arrangement with only transverse
intersections.

1. Introduction and main result. Formulas which count the
regions into which Rn is subdivided by a collection of Euclidean
hyperplanes in general position have long been known, see, e.g., [1],
but neat formulas when the hyperplanes are not in general position are
of surprisingly recent vintage [5, 6]. It turns out that such formulas
apply more generally to certain arrangements of topological spheres.
The formulas follow from additivity of the Euler characteristic once it
is established that complement components of the arrangement and its
subarrangements have the homology of a point. We will characterize
such arrangements.

We consider indexed families of subsets of an n-sphere which intersect
topologically like Euclidean spheres in a certain sense. Denote the index
set {1, . . . , k} by [k].

Suppose Ai is a closed subset of a topological n-sphere Sn for each
i ∈ [k], and let I ⊆ [k]. We denote ∩i∈IAi by AI for I �= ∅ and set
A∅ := Sn. If each AI (and, in particular, each Ai, i ∈ [k]) is either a
single point or is homeomorphic to a sphere of some dimension, we call
the indexed family A = {Ai : i ∈ [k]} a pseudosphere arrangement in
Sn. (The empty set is a sphere of dimension −1.)
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If AI is a topological sphere of dimension r ≥ −1, we will define
the corresponding degeneracy index dI to be r − (n − |I|), and if
AI is a point, we set dI = ∞. Note that we do not assume that
the spheres intersect transversally, nor do we make any additional
topological assumptions, e.g., cellular decompositions, differentiability.

In our discussion, H̃∗ denotes reduced singular homology and H̃∗

reduced Čech cohomology.

Suppose A is a pseudosphere arrangement in Sn and I, J ⊆ [k] with
AI not a point, and I ∩ J = ∅. Set

AI,J = {AI ∩Aj : j ∈ J}.
Then AI,J is a pseudosphere arrangement in AI which we will refer to
as a subarrangement of A. In particular, A = A∅,[k].

If A is a pseudosphere arrangement in Sn, we define C(A) :=
Sn \ ∪k

1Ai. Let us call an arrangement complement simple if each
(nonempty) component, K, of C(A) has the homology of a point, i.e.,
H̃q(K) = 0 for all q, and fully complement simple if AI,J is complement
simple for every disjoint I, J ⊆ [k] with AI not a point. Then we have
our main result.

Theorem 1. The pseudosphere arrangement A is fully complement
simple if and only if dI ≥ 0 for all I ⊆ [k].

The condition that dI ≥ 0 for any singleton set I = {i} implies
that each Ai is either a single point, a topological sphere of dimension
n− 1 or the whole sphere Sn, this last fact being a consequence of the
Brouwer invariance of domain theorem.

Note that being fully complement simple entails more than having
the arrangement induce a cell decomposition. For example, the ar-
rangement of 1-spheres in R2 ∪ {∞} ≈ S2 shown in Figure 1 is not
fully complement simple.

Some examples of pseudosphere arrangements satisfying dI ≥ 0 for
all I ⊆ [k] are the following.

1. Let A be a pseudosphere arrangement in Sn for which Ai is a
topological (n − 1)-sphere containing the north pole N and for each
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FIGURE 1.

I ⊆ [k], either AI = N or AI is a topological sphere of dimension
≥ n− |I| ≥ 0. The image of A in Rn, via stereographic projection, is
called an arrangement of pseudohyperplanes in [2]. Arrangements of
Euclidean hyperplanes are a special case.

2. An arrangement of k topological (n−1)-spheres in general position
in Sn, i.e., dI = 0 for |I| ≤ n and dI = −1− n+ |I| for |I| > n.
If A = {Ai : i ∈ [k]} is a fully complement simple sphere arrangement

and AI = {p} for some point p ∈ Sn, we will call p a pole of A
of order r = min{|I| : AI = {p}}. Thus a sphere arrangement
corresponding to an arrangement of pseudohyperplanes in Rn with no
common (finite) point has a pole at N and no others. On the other
hand, an arrangement of spheres in general position will have no poles.
The condition dI ≥ 0 imposes restrictions on poles as in the following
proposition.

Proposition 1. Let A = {Ai : i ∈ [k]} be a fully complement simple
arrangement in Sn, and suppose p is a pole of order r ≤ n− 1. Then
p ∈ Ai for all i ∈ [k].

Proof. Suppose AI = {p} with |I| = r. Now suppose l /∈ I and p /∈ Al,
and let J = I∪{l}. Then AJ = ∅ and |J | ≤ n so dJ = −1−(n−|J |) < 0
and the arrangement is not fully complement simple.

It will be useful to have some conditions equivalent to our basic
condition

(D) dI ≥ 0 for all I ⊆ [k].

In fact, (D) is equivalent to each of the following.

(C1) For all I ⊆ [k] and j ∈ [k] for which none of AI , Aj , AI∪{j} is a
point, either AI ⊆ Aj or dim (AI∪{j}) = dim (AI)− 1.
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(C2) For all I ⊆ [k] with AI not a point, there exists I ′ ⊆ I such that
AI = AI′ and dI′ = 0.

To see this, assume (D) holds. Then remembering that A∅ = Sn,
the conditions in (C1) and (C2) certainly hold for |I| = 0. Suppose
they hold whenever |I| < l, and let |I| = l, e.g., I = J ∪ {i}
for some J with |J | = l − 1. By induction, we can choose J ′ so
that AJ = AJ′ and dJ′ = 0. Apply (C1) to J (or J ′) and i: If
AJ ⊆ Ai, then AI = AJ = AJ′ so we can take I ′ = J ′ to satisfy
(C2). Otherwise, choose I ′ = J ′ ∪ {i}, for then AI′ = AI and
0 = dJ′ = dim (AJ′)−(n−|J ′|) = (dim (AI′)+1)−(n−(|I ′|−1)) = dI′

so we see the condition in (C2) holds when |I| = l. To see that the
condition in (C1) holds when |I| = l, choose I ′ as in (C2). If AI �⊆ Aj ,
then the topological sphere AI∪{j} is strictly contained in AI so, by
the Brouwer invariance of domain theorem dim (AI∪{j}) < dim (AI).
But then, by (D) and dI′ = 0, dim (AI∪{j}) = dim (AI′∪{j}) ≥
n − (|I ′| + 1) = dim (AI′) − 1 = dim (AI) − 1. On the other hand,
it is easy to verify that each of (C1) and (C2) imply (D).

We will need the Alexander duality theorem, see [3]: H̃q(Sn \K) ≈
H̃n−q−1(K).

Proof of Theorem 1. First note that both conditions in the statement
are inherited by subarrangements: If A is fully complement simple,
then so is any AI,J , immediately from the definition. On the other
hand, the condition (C1), equivalent to (D), holds in any AI,J with the
index set I in place of [k].

Write (n′, k′) ≺ (n, k) when either n′ < n, or n′ = n and k′ < k.
Equivalence of the two conditions in the theorem is clear for n = 1.
When k = 1, equivalence follows from Alexander duality which implies
that Sn \ A1 will have homologically trivial components if and only if
either A1 is a point, A1 ≈ Sn (so A1 = Sn), or A1 ≈ Sn−1. Assume
the result has been established for all (n′, k′) ≺ (n, k) and that n ≥ 2,
k ≥ 2.

Suppose A is a pseudosphere arrangement in Sn indexed by [k] and
satisfying (D). By equivalent condition (C1) with I = ∅, each Ai is
either a point or a sphere with dim (Ai) ≥ n−1. If any Ai = Sn we can
remove it without affecting (D), so the conclusion follows by induction.
If any Ai is a point it must be contained in all the other Aj ’s (since if
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Ai ∩Aj = ∅ for some j, n ≥ 2 would imply d{i,j} = −1− (n− 2) < 0).
If the Ai’s are all the same point there is nothing to prove. Hence we
can assume that at least one of the Ai’s, say A1 has dimension n− 1.

All proper subarrangements are fully complement simple by the
induction hypothesis and the hereditary nature of condition (D). We
need only show that the components of C(A) have the homology
of a point, and for this it suffices, via Alexander duality, to show
H̃q(∪k

1Ai) = 0 when q < n− 1.

Set

(1) X = A1, Y = ∪k
2Ai, A′

i = A1 ∩Ai+1 for i = 1, . . . , k − 1.

ThenX∩Y = ∪k−1
1 A′

i and, by induction, A{1},{2,... ,k} = {A′
1, . . . , A

′
k−1}

is fully complement simple so that H̃q(X ∩ Y ) = 0 for q < n− 2. Also,
by induction, H̃q(Y ) = 0 for q < n− 1, while H̃q(X) = 0 for q < n− 1
since X ≈ Sn−1. Then the exactness of the Mayer-Vietoris sequence
for H̃∗,

−→ H̃q−1(X ∩ Y ) −→ H̃q(X ∪ Y ) −→ H̃q(X)⊕ H̃q(Y ) −→,

implies H̃q(X ∪ Y ) = 0 for q < n− 1.

Now suppose that A is fully complement simple, and let I ⊆ [k].
We show dI ≥ 0. If any Ai is a point, it must be contained in all
the other Aj ’s (since Ai ∩ Aj = ∅ for some j, n ≥ 2 would imply that
Sn\(Ai∪Aj) is not homologically trivial) and if the Ai’s are all the same
point there is nothing to prove. So we can assume that I = {1, . . . , l}
and that A1 ≈ Sn−1. Define A′

i as in (1), replacing k by l. The
arrangement A{1},{2,... ,l} = {A′

1, . . . , A
′
l−1} is fully complement simple,

so by induction, dim (∩l−1
1 A′

i) ≥ (n− 1)− (l− 1). But ∩l
1Ai = ∩l−1

1 A′
i

so dim (AI) ≥ n− l.

Following [6, 7] we consider the lattice of intersections of the ar-
rangement A. We assume here that Ai ≈ Sn−1 for all i. Set
L = L[A] = {AI : I ⊆ [k]}. We order L by reverse inclusion, so
that for s = AI and t = AJ , s ≤ t in L means AJ ⊆ AI . Remembering
that A∅ = Sn by definition, we denote this element of L by 0. Let
L′ = {s ∈ L : s is not a point}.
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For s ∈ L′, let λ(s) := n−dim (s), so if s = AI we have dI = |I|−λ(s).
If r ∈ L′ and s, t are in the order interval [0, r] in L then s, t ∈ L′. Note
that s ∨ t is the intersection, s ∩ t, of the sets s, t, while s ∧ t is the
intersection of all members of L containing both s and t. Our condition
(D) is then equivalent to condition

(M) r ∈ L′, s, t ∈ [0, r] ⇒ λ(s∨t)+λ(s∧t) ≤ λ(s)+λ(t) (equivalently
dim (s) + dim (t) ≤ dim (s ∨ t) + dim (s ∧ t)).
To see that (D) implies (M), note that this is clear for n = 1 and

assume it is true for n − 1. If dim (s ∧ t) < n, then s = AK for some
|K| < k with dim (s) < n and (D) holds as well in the subarrangement
AK,[k]\K . By the induction hypothesis, (M) holds in the lattice of
this subarrangement, in which s and t appear. Also s ∧ t in the
subarrangement lattice has dimension no larger than s∧t in the original
lattice, so the conclusion of (M) follows.

Now suppose dim (s ∧ t) = n. We can write s = AI , t = AJ , with
dim (s) = n − |I| and dim (t) = n − |J | and with I ∩ J = ∅. Now
s∩ t = AI∪J so dI∪J ≥ 0 implies dim (s∨ t) = dim (s∩ t) ≥ n−|I|−|J |,
which gives the conclusion of (M).

Conversely, assume (M). Let s = AI and t = Al be in L. If s ⊆ t,
then dim (AI∪{l}) = dim (AI). Otherwise, s ∧ t = Sn, and (M) gives
dim (AI∪{l}) ≥ dim (AI) − 1. Thus condition (C1), equivalent to (D),
holds.

Let µ(s, t) denote the Möbius function of the lattice L; see, e.g., [4].
Then

µ(0, t) =
∑

AI=t

(−1)|I|.

To see this, we need only verify the two defining conditions for µ(0, t),
namely, i) µ(0, 0) = 1 and ii)

∑
0≤s≤t µ(0, s) = 0. Condition (i) is

obvious; we now check ii). Let J = {i : t ⊆ Ai}. Then AI = s ≤ t if
and only if I ⊆ J . Thus∑

0≤s≤t

µ(0, s) =
∑

0≤s≤t

∑
AI=s

(−1)|I| =
∑

0≤AI≤t

(−1)|I| =
∑
I⊆J

(−1)|I| = 0,

the last equality following from the binomial theorem.

Since we have seen, for s ∈ L′, that the order interval [0, s] is a semi-
modular lattice with rank function λ, [4, Proposition 3.10.1] implies
that µ(0, t) alternates in sign.
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2. Counting complement components. Let χ(A) denote the
Euler characteristic of A, and let χ̃ = χ − 1 be the reduced Euler
characteristic. If A is a sphere arrangement, then additivity of χ, i.e.,
χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B), and likewise χ̃, gives

(2) χ̃

( k⋃
i=1

Ai

)
=

∑
I �=∅

(−1)|I|+1χ̃(AI).

By Alexander duality,

(3) χ(Sn \K) = (−1)n−1χ̃(K) + 1.

Now χ̃(AI) = (−1)r = (−1)dI+n−|I| when AI ≈ Sr and χ̃(AI) = 0
if AI is a point. Thus, recalling that d∅ = 0, we have χ(C(A)) =∑

I �=∅, dI<∞(−1)dI + 1 =
∑

dI<∞(−1)dI .

See [2] for topological details.

If A is a complement simple arrangement, then χ(C(A)) is the num-
ber of components, n(A), of C(A) so we have the following generaliza-
tion of formulas of Winder and Zaslavsky [5, 6].

Corollary 1. If A is a complement simple pseudosphere arrange-
ment, then

n(A) =
∑

dI<∞
(−1)dI .

Remark. If A is a pseudosphere arrangement for which the counting
formula in Corollary 1 holds for each subarrangement, then in fact we
must have dI ≥ 0 for every I ⊆ [1 : k]. For suppose dI < 0, where
say, I = {1, 2, . . . , l}, then there is some index j ∈ [2 : l] such that
dim (A[1:j]) ≤ dim (A[1:j−1])−2 so Aj has codimension at least 2 in the
sphere A[1:j−1]. But A[1:j−1] \ Aj then has only one component. But
the counting formula applied to the subarrangement A[1:j−1],{j} would
give the number of complement components as (−1)d∅ +(−1)d{j} �= 1.

In special cases, like pseudohyperplane arrangements or spheres in
general position, explicit formulas for n(A) in terms of n and k can be
found by elementary combinatorial arguments.
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If a sphere arrangement is fully complement simple, we can write
a formula for the number of m dimensional spherical “faces” of the
arrangement. By Corollary 1,

n(AI,J) =
∑

dI<∞
K⊆J

(−1)dK (−1)n−dim (AI),

so the number of m dimensional faces is given by

∑
dim (AI)=m

I∩J=∅

n(AI,J) = (−1)n−m
∑

I:dim (AI)=m

∑
dK<∞
K⊆I

(−1)dK .

From this formula one can derive Buck’s formula, in [1], for faces of
hyperplane arrangements in general affine position.

Suppose we have a fully complement simple sphere arrangement A
in Sn with Ai ≈ Sn for each i. Then, using the results and notation of
the last section,

n(A) =
∑

dI<∞
(−1)dI =

∑
t∈L′

∑
AI=t

(−1)|I|−λ(t)

= (−1)n
∑
t∈L′

µ(0, t)(−1)dim (t) =
∑
t∈L

|µ(0, t)|.

This last expression is Zaslavsky’s formula [6] in our more general
context.

We now consider, as in [6, 7], the number of bounded components of
the complement in Rn of ∪Ai where Ai are pseudohyperplanes as we
defined them earlier. Thus we suppose A is a fully complement simple
sphere arrangement and that there is a point N ∈ Sn with N ∈ Ai for
each i. Call a component C of Sn \∪Ai bounded if N is not a boundary
point of C, and let B denote ∪{closure (C) : Cbounded}, so N /∈ B.
Suppose also that the following condition holds:

(T1) There is a contractible neighborhood U ⊂ Sn of N , disjoint from
B, such that χ(AI \ U) = 1 for each I satisfying dI <∞.

This condition at N is clearly satisfied in the Euclidean case. Let
Bi = Ai \ U , so also BI = AI \ U . It follows that χ(BI) = 1 for all I
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with dI < ∞, and χ(BI) = 0 otherwise. Applying (2) with χ in place
of χ̃ to the Bis, along with (3), gives

χ(Sn \ ∪Bi) = (−1)n−1
∑
I �=∅

dI<∞

(−1)|I|+1 + 1 + (−1)n.

Now the components of Sn \ ∪Bi consist of the bounded compo-
nents of Sn \ ∪Ai together with the connected open set V = ∪{C :
C unbounded} ∪ U . Then the Euler characteristic of the union of the
bounded components is

(4) χ(Sn \ ∪Bi)− χ(V ) = (−1)n
∑

dI<∞
(−1)|I| + 1− χ(V ).

Now suppose additionally

(T2) For each unbounded component, C, C ∪ U is homologically
trivial.

This rules out (in the Euclidean case) what are called in [6] relatively
bounded components (which arise from parallelism). If we have an
essential arrangement of Euclidean hyperplanes, that is, one in which
some collection of hyperplanes intersect in a (finite) point, we will show
that (T2) holds.

As pointed out in [6], there is some topological subtlety in proving the
formula for the number of bounded components even in the Euclidean
case.

With (T2) it follows from additivity of χ that χ(V ) = 1, so with ho-
mological triviality of the bounded components, (4) yields the number
of bounded components:

nb =
∣∣∣ ∑

dI<∞
(−1)|I|

∣∣∣ = ∣∣∣ ∑
t∈L

µ(0, t)
∣∣∣.

The middle term is the bounded analog of Winder’s formula; the last
is Zaslavsky’s formula.

Here is an argument that C ∪U is homologically trivial when C is an
unbounded component of an essential affine Euclidean arrangement in
Rn.
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(i) First, the assumption thatA is essential together with elementary
linear algebra shows that no line is contained in C.

(ii) Next we show that C ⊂ Rn contains a half-line. If not, take a
point x in the open set C and a sphere S within C centered at x. For
each y ∈ S, extend the line from x to y maximally in closure (C). By
assumption, this line meets the boundary of C at a point f(y). Then
g(y) := ‖x − f(y)‖ is continuous, so bounded on S. C is star-shaped
with respect to x so it follows that C is bounded, a contradiction.

(iii) Now let u ∈ Rn be such that there is a half-line in C parallel to
u. Then C is a union of half-lines parallel to u. For suppose x, y ∈ C
and lx, ly are lines through x, y parallel to u. These lines do not lie
entirely in any Ai and lx meets Ai if and only if ly does. Thus lx ∩ C
is bounded if and only if ly ∩ C is bounded, so by (ii) all lx ∩ C are
unbounded, and by (i) they are all half-lines.

Finally, let U := {x ∈ Rn : ‖x‖ > M} together with the north pole
N , where M is chosen so that U only meets unbounded components.
We will give a deformation retract of C ∪ U to U ∪ (∂U ∩ C) which is
contractible, showing that C ∪ U is homologically trivial. Let u be as
in (iii). Each x ∈ C \ U lies on a line lx‖u which meets ∂U in a point
F (x). Let d(x) = ‖x−F (x)‖ and parametrize C\U by x ∼ (d(x), F (x)).
Then H(x, r) = ((1 − r)d(x), F (x)) for x ∈ C \ U and r ∈ [0, 1] gives
the required deformation retract.

3. Nontransverse intersections. Suppose A is a sphere arrange-
ment in Sn with dim (Ai) = n − 1 for all i. A1, A2 ∈ A will be said
to intersect transversally if A1 meets both components of the comple-
ment of A2 (and consequently A2 meets both components of Ac

1). If
A1 ∩ A2 is a point, then the intersection must be nontransverse, but
if this intersection is a sphere of dimension ≥ 0, then it may be ei-
ther transverse or nontransverse. If whenever two spheres in A or in
any of its subarrangements intersect in a sphere of dimension ≥ 0 that
intersection is transverse, we will call A a transverse arrangement.

Theorem 2. If A is an arrangement of k topological circles in S2,
then there is a transverse arrangement B of k topological circles in S2

such that ∪A∈AA = ∪B∈BB.
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Proof. Suppose A1, A2 ∈ A intersect nontransversally in two points.
We can represent them schematically, with no loss of generality, as in
Figure 2.

Here A1 consists of the (open) arcs a1, a4 and A2 consists of arcs
a2, a3, each together with points {P1, P2}. Let B1 be the topological
circle consisting of arcs a1, a3 and let B2 consist of a2, a4, each together
with {P1, P2}. Then B1, B2 intersect transversally. We now show that,
if A1, A2 are replaced by B1, B2, the resulting collection is still a sphere
arrangement, i.e., for any A3 ∈ A, A3∩B1 and A3∩B2 are sets with 0,
1 or 2 points, and moreover, the number of nontransitive intersections
among A3∩B1 and A3∩B2 is the same as the number of nontransverse
intersections among A3 ∩ A1 and A3 ∩ A2. We can then repeat this
procedure until there are no nontransverse intersections.

We need to consider several cases. First suppose that A3 does not
contain P1 or P2. We will indicate the possible intersections with A3 as
follows. Let xi be the number (0,1 or 2) of intersections of A3 with the
arc ai (so that x1 +x4 ≤ 2, x2 +x3 ≤ 2) and denote the corresponding
case by x1x2x3x4, as illustrated in Figure 3.
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by a2a3 and this is topologically equivalent, on the 2-sphere, to the
representation of A1 by a1a4 and A2 by a2a3. Likewise, y1y2y3y4 is
equivalent to y4y3y2y1. In each of the cases in the figure above, as well
as the case 0000, it is easy to check that A3 has acceptable intersections
with B1 and B2. Notice that in the case 0110, A3 intersects A2

nontransversally in an S0 but the intersections of B1 and B2 with A3

are both points, i.e., the replacement introduces poles.

Now these cases and those equivalent to them are the only ones
possible. The other x1x2x3x4 satisfying x1 + x4 ≤ 2, x2 + x3 ≤ 2,
namely 1010, 2010, 1101, 1201, 2020 and their equivalents, cannot occur
since in each of these cases, there is an arc ai not meeting A3 which
intervenes between two arcs containing points of A3.

Now suppose that A3 contains exactly one of the points Pi, say
P1. The other points in which A3 meets A1 ∪ A2 are then on the
arcs a1, a2, a3, a4, and we can indicate the (equivalence classes) of
possibilities for these additional intersections by x1x2x3x4 where now
x1 + x4 ≤ 1 and x2 + x3 ≤ 1. The cases 0000,1000, and 1100 are easily
checked to result in acceptable intersections of A3 with B1 and B2,
while the other, 1010, is not possible topologically.

Finally, if A3 contains both P1 and P2, it is clear that A3 has
acceptable intersections with B1, B2.

It is clear from the proof that the transverse arrangement B con-
structed above is unique. From consideration of the 0110 case we see
that the lattice structure of the arrangement A is generally not isomor-
phic to that of B and in fact the replacement of A1, A2 by B1, B2 can
introduce new poles even if the arrangement is fully complement sim-
ple. If we have an arrangement of pseudolines the configuration 0110
cannot occur but the lattice of the transverse rearrangement B may still
not be isomorphic to that of A. For example, suppose A1, A2 are as in
Figure 2 with the pole N identified with P1. Let A3 be a pseudocircle
through P1 having intersection pattern 1000 as above, and let A4 be a
pseudocircle through P1 having intersection pattern 0001. In the orig-
inal arrangement, the two-fold intersections which equal {P1} involve
the circle pairs {2, 3}, {3, 4} and {1, 4} while, in the transverse rear-
rangement, the circle pair intersections equaling {P1} are {2, 3}, {3, 4}
and {2, 4} in which only three circles appear.
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The analog of Theorem 2 does not hold for n = 3. Consider the
following three topological S2s, A1, A2, A3 in R3 ⊆ S3: a plane,
A1 = {(x, y, z) : z = 0}, a truncated elliptical cylinder, A2 = {(x, y, z) :
x2/4+y2 = 1,−2 < z < 3}∪{(x, y, z) : x2/4+y2 ≤ 1, z ∈ {−2, 3}} and
a cone, A3 = {(x, y, z) : x2 + y2 = (z + 1)2,−1 ≤ z < 4} ∪ {(x, y, z) :
x2 + y2 ≤ 25, z = 4}. Then A1, A2, A3 intersect transversally in topo-
logical S1s, A12, A23, A13 and the threefold intersection, A123, is an
S0. But the arrangement induced by A2, A3 on A1 has nontransverse
intersections. In fact, all the induced arrangements are nontransverse.
Moreover, by taking one of the two points in A123 as N ∈ S3 we can in-
terpret this example as showing that there is a transverse arrangement
of three pseudoplanes in R3 such that every induced subarrangement of
pseudolines is nontransverse. Consideration of the S1s in this arrange-
ment shows that ∪Ai cannot be written as a union of three topological
S2s in a transverse arrangement.
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