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QUASINORMAL OPERATORS AND
REFLEXIVE SUBSPACES

KAMILA KLIŚ AND MAREK PTAK

ABSTRACT. In this note we will show the reflexivity of
a weak∗-closed subspace generated by any proper subset of
{(T ∗)n, T n : n ∈ N}, if T is a quasinormal operator. The
main tool is a direct integral of subspaces of operators. Rela-
tion between the reflexive closure of a direct integral of sub-
spaces and a direct integral of reflexive closure of subspaces is
given.

1. Introduction. All operators discussed in this note are bounded
and act on a separable Hilbert space H. We write B(H) for the
collection of such operators. By P (H) we will denote the lattice of
orthogonal projections on H. The expression subspace of operators is
reserved for those linear submanifolds in B(H) which are weak∗-closed.
If S is any family of operators then span (S) is the subspace generated
by S and weak∗-closed andW (S) is the weak∗-closed algebra generated
by S and identity. Let T ∈ B(H), denote by PT the set {T (n) : n ∈ Z},
where T (n) = Tn if n ≥ 0 and T (n) = (T ∗)−n if n < 0.

We recall that the reflexive closure of a subspace S ⊂ B(H) is the
set

ref S = {A ∈ B(H) : Af ∈ Sf for all f ∈ H}.
A subspace S is said to be reflexive if ref S = S. If S is an algebra
the definition coincides with the well-known definition of a reflexive
algebra.

An operator T is called quasinormal if T commutes with T ∗T . In [7]
Wogen proved that every quasinormal operator T is reflexive, i.e., the
weak operator topology-closed algebra generated by T and the identity
operator is reflexive. In [2] reflexive subspaces of all Toeplitz operators
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on the Hardy space H2 were completely characterized. In particular,
it was shown that the subspace span(PS), where S is a unilateral
shift, is not reflexive. However, a subspace generated by any proper
subset of PS is reflexive. Now consider a quasinormal operator T . One
cannot expect the reflexivity of span (PT ). In this note we will show
the reflexivity of a subspace generated by any proper subset of PT .

2. Direct integral of subspaces. Let us recall a definition of
direct integral (see [1] and [5]). Suppose that (Λ,M, µ) is a measure
space such that Λ is a separable metric space and µ is a σ − finite
complete regular Borel measure on Λ. For A ∈ L∞(µ,B(H)), let MA

denote the operator on L2(µ,H) defined by (MAf)(λ) = A(λ)f(λ).
We will identify the operator A with MA and call it decomposable. If
A(λ) = a(λ)I for all λ ∈ Λ, where a(λ) ∈ C, then the operator A is
diagonal. We will denote by D the algebra of all diagonal operators
and call it the diagonal algebra.

Remark 1. Let us note that the results from [1] and [5] are easily
adopted to weak∗-closed (ultrastrongly-closed) algebras and subspaces.
The easiest way to see this is to note that the strong operator and
ultrastrong topologies agree on the infinite ampliation B(H)(∞). Thus
ultrastrong totality of {An} in S is equivalent to strong totality of
{A(∞)

n } in S(∞).

We will be using very often an embedding trick, thus, for simplicity,
we will be identifying subspace L2(µ,H⊕H) with L2(µ,H)⊕L2(µ,H)
and elements of L∞(µ,B(H ⊕ H)) with operators on L2(µ,H) ⊕
L2(µ,H).

Consider now a weak∗-closed subspace S consisting of decomposable
operators on L2(µ,H). Assume that we can choose a countable gen-
erating set {An} ⊂ L∞(µ,B(H)) for S and fix Borel representatives
λ �→ An(λ) for their decomposition. For each λ ∈ Λ we define S(λ) as
span {An(λ) : n ∈ N}. Then the subspace S is decomposable and the
decomposition of S(λ) over Λ with respect to D sometimes called direct
integral denoted by

∫ ⊕
Λ

S(λ) dµ(λ) is the set

{MA : A ∈ L∞(µ,B(H)), A(λ) ∈ S(λ) a.e.}.
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Note that in order to see that the above definition of decomposable
subspace is correct, it is necessary to show that up to a set of measure
zero the subspaces {S(λ)} are independent of choice of generators. The
definition of direct integral of subspaces is parallel to the definition
in [1] of direct integral of algebras, where the authors showed that
the definition for the algebra case does not depend on the choice of
generators.

Let us choose sets {An}, {Bn} generating S and fix Borel functions
λ �→ An(λ) and λ �→ Bn(λ) for their decompositions. Define S(λ) as
span {An(λ) : n ∈ N}. To show that decomposition of S is independent
of the choice of generators it is enough to prove that Bn(λ) ∈ S(λ) for
almost all λ ∈ Λ. Denote by A the algebra

{(
aI S

0 aI

)
: a ∈ C, S ∈ S

}
⊂

B(H⊕H). Since S as a subspace has a countable number of generators
{An}, thus Ãn =

(
0 An

0 0

)
and

(
I 0

0 I

)
generateA as an algebra. It means

that A is decomposable (see [1]) and there exists
∫ ⊕
Λ

A(λ) dµ(λ), where

A(λ) =
{(

a(λ)I S(λ)

0 a(λ)I

)
: a(λ) ∈ C, S(λ) ∈ S(λ)

}
. Since Bn generate

S thus B̃n =
(

0 Bn

0 0

)
∈ A. Notice that B̃n is decomposable and

B̃n(λ) =
(

0 Bn(λ)

0 0

)
. By [1, Proposition 3.3], B̃n(λ) ∈ A(λ) for almost

all λ ∈ Λ. Hence Bn(λ) ∈ S(λ) almost everywhere. Thus subspaces
S(λ) do not depend on the choice of generators.

Let S be a subspace of B(H) and D the diagonal algebra. Denote by
[S,D] = span {aS : a ∈ D, S ∈ S}.

Proposition 2. Let S be a decomposable subspace and
∫ ⊕
Λ

S(λ) dµ(λ)
be its decomposition with respect to D. If A =

∫ ⊕
Λ
A(λ) dµ(λ) is a

decomposable operator, then the set of λ for which A(λ) ∈ S(λ) is
measurable. Moreover, the following conditions are equivalent.

(1) A ∈ [S,D].

(2) A(λ) ∈ S(λ) for almost all λ ∈ Λ.

Proof. Denote by A =
{(

aI S

0 aI

)
: a ∈ C, S ∈ S

}
and by Ã =

(
0 A

0 0

)
.

Since A and Ã are decomposable, then by [1, Proposition 3.3] the set
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of λ for which Ã(λ) =
(

0 A(λ)

0 0

)
∈ A(λ) is measurable. Note that

A(λ) ∈ S(λ) if and only if Ã(λ) ∈ A(λ). Thus the first conclusion of
the proposition is established.

Assume now that A ∈ [S,D]. Note that A ∈ [S,D] if and only if
Ã ∈ W(A, D̃). Then [1, Proposition 3.3] implies that Ã(λ) ∈ A(λ)
almost everywhere. Thus A(λ) ∈ S(λ) almost everywhere. Since this
chain of reasoning is reversible, the proof is complete.

Let Y be a separable metric space and (Λ, µ) a complete regular
σ-finite Borel measure space. Denote by 2Y a family of closed nonempty
subsets of Y . A multifunction with closed values is a function F : Λ →
2Y . Function F may be identified with a subset of Λ×Y . We will regard
a multifunction F as measurable if it is a measurable subset of Λ× Y .
A measurable function f : Λ → Y such that f(λ) ∈ F (λ) for each
λ ∈ Λ is called a measurable selector for F . Denote by C(H) the unit
ball of B(H). Note that different subspaces of B(H) have different unit
balls. Thus we may identify a family of weakly closed subspaces with a
subset of 2C(H). Let {S(λ)}λ∈Λ be a family of weak∗-closed subspaces.
The function λ �→ S(λ) is called attainable field of subspaces if there
exists a decomposable subspace S ⊂ B(L2(µ,H)) with decomposition∫ ⊕
Λ

S(λ) dµ(λ).
Before we start the lemma, let us notice that for any S ⊂ B(H) an

operator T ∈ refS if and only if for any projections P,Q ∈ P (H) we
have Q⊥TP = 0 whenever QSP = SP for all S ∈ S.

Lemma 3. Let F : λ �→ S(λ) be an attainable field of subspaces.
Then refF : λ �→ refS(λ) is measurable.

Proof. Let for every λ ∈ Λ function λ �→ An(λ) be Borel and {An(λ)}
generate S(λ). Denote by F the set {(λ, (P,Q)) ∈ Λ× P (H)× P (H) :
QAn(λ)P = An(λ)P for all n}. Since composition is weak∗-continuous
on the unit ball of B(H) then (λ, (P,Q)) �→ QAn(λ)P − An(λ)P is
measurable, thus F is the measurable subset of Λ × P (H) × P (H).
By [1, Proposition 5.1] there exists {(Pk, Qk)}∞k=1 a countable dense
set of measurable selectors for F . Hence refF = {(λ,B) ∈ Λ× B(H) :
Q⊥

k (λ)BPk(λ) = 0 for all k}. Let us consider functions ωk : Λ×C(H) �
(λ,B) �→ Q⊥

k (λ)BPk(λ). Since Pk, Qk are measurable, so is Q⊥
k .
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Moreover Pk, Qk are bounded so the composition is measurable, too.
Hence ωk is measurable. Thus refF = ∩∞

k=1ω
−1
k ({0}) is measurable

as well. According to the identification we have made, the lemma is
proved.

Theorem 4. Let S be a decomposable subspace and
∫ ⊕
Λ

S(λ) dµ(λ)
be the decomposition of S with respect to D. Then ref [S,D] =∫ ⊕
Λ

refS(λ) dµ(λ). In particular, reflexivity of [S,D] is equivalent to
the reflexivity of almost all S(λ).

Proof. Since S is decomposable, the multifunction λ �→ S(λ) is the
attainable field of subspaces. Note now that [1, Proposition 5.2], which
says that each measurable field of algebras is attainable, remains true
with the same proof if we change subalgebras to subspaces. Lemma 3
shows that λ �→ ref S(λ) is measurable and hence by [1, Proposition
5.2] it is attainable. Therefore there exists a unique subspace B =∫ ⊕
Λ
refS(λ) dµ(λ).

Suppose B ∈ B. Then B(λ) ∈ ref.S(λ) almost everywhere. De-
note

{(
aI S

0 aI

)
: a ∈ C, S ∈ S

}
by A. The next part of the proof

is based on the simple fact that
(

0 B

0 0

)
∈ AlgLatA if and only if

B ∈ refS. To show that B ∈ ref [S,D] it suffices to prove that
(

0 B

0 0

)
∈

AlgLatW(A, D̃), where D̃ is the appropriate diagonal algebra. By [1,
Proposition 5.6] we have AlgLatW(A, D̃) =

∫ ⊕
Λ
AlgLatA(λ) dµ(λ),

where all Alg LatA(λ) are equal to

{(
a(λ)I T (λ)

0 b(λ)I

)
: a(λ), b(λ) ∈ C, T (λ) ∈ refS(λ)

}
.

Note that
(

0 B(λ)

0 0

)
∈ AlgLatA(λ) for almost all λ ∈ Λ. Hence by [1,

Proposition 3.3]
(

0 B

0 0

)
∈ AlgLatW(A, D̃). Thus B ∈ ref [S,D].

Assume now that B ∈ ref [S,D]. Let U denote the weak∗-closed
algebra spanned by

{(
0 S

0 0

)
: S ∈ S

}
and D̃. Then B̃ =

(
0 B

0 0

)
∈

AlgLatU . Hence the operator B̃ is decomposable by [1, Proposition
5.6] and B̃ =

∫ ⊕
Λ
B̃(λ) dµ(λ), where B̃(λ) ∈ AlgLatU(λ) almost
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everywhere. Moreover, B̃(λ) =
(

a(λ)I B(λ)

0 b(λ)I

)
for a(λ), b(λ) ∈ C and

B(λ) ∈ refS(λ) for almost all λ ∈ Λ. Therefore B =
∫ ⊕
Λ
B(λ) dµ(λ)

and B ∈ ∫ ⊕
Λ
refS(λ) dµ(λ). The last sentence of the Theorem is a

consequence of Proposition 2.

3. Applications to quasinormal operators. A subspace of
operators S ⊂ B(H) has property A1(1) if for all weak∗-continuous
linear functionals φ on B(H) and ε > 0, there are a, b ∈ H such that
‖a‖ · ‖b‖ ≤ (1 + ε)‖φ‖ and φ(A) = (Aa, b) for all A ∈ S. If we do
not require the control of the norms ‖a‖ · ‖b‖, the subspace S is called
elementary.

Theorem 3.4 of [2] shows that every intransitive subspace B of all
Toeplitz operators in the Hardy space H2 (i.e., refB �= B(H2)) is
elementary. A careful reader can notice that B has in fact property
A1(1). Namely, using the notation from [2], take f ∈ L1 which
represents the weak∗ continuous functional f̂ on B with ‖f‖1 = 1. By
intransitivity we can fix a non-trivial rank-one operator g1⊗h1 (g1, h1 ∈
H2) in the preannihilator of B with norm smaller then ε. Corollary 3.3
of [2] shows that log |f +αg1h̄1| ∈ L1 for almost all α (|α| = 1). By [4]
as it was shown in [2, Corollary 3.3] there is g2⊗h2 (g2, h2 ∈ H2) which
agree with functional given by f on B. Moreover, by [4, p. 48, first
sentence], g2⊗h2 can be chosen such that ‖g2‖2‖h2‖2 = ‖f+αg1h̄1‖1 ≤
1 + ε. Hence we obtained the following

Proposition 5. Every intransitive weak∗ or weakly closed subspace
of all Toeplitz operators on the Hardy space has property A1(1).

Let ω be a proper subset of the set of all integers and T ∈ B(H).
Denote by S(T, ω) the set span {T (n) : n ∈ ω}.

Lemma 6. Assume that V is an isometry and ω is a proper subset
of the set of all integers. Then the subspace S(V, ω) is reflexive and has
property A1(1).

Proof. Let S ⊕ U be the Wold decomposition of an isometry V , i.e.,
S is a shift of certain multiplicity and U is a unitary operator on H.
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If the multiplicity is one then [2, Theorem 1.1] shows that S(S, ω) is
reflexive. As to property A1(1), the required factorization was shown
in Proposition 5. The case of any multiplicity follows from the case of
the multiplicity one by Theorem 4 and [5, Corollary 3.7]. The subspace
span (PU ) has the same properties as a subspace of commutative von
Neumann algebra generated by U . Also, by Theorem 4 and [5,
Corollary 3.7] it is easy to see that

S(S, ω)⊕ span (PU )

is reflexive and has property A1(1) and its subspace S(V, ω) has the
same properties (see [5]).

Theorem 7. Let T ∈ B(H) be a quasinormal operator. A weak∗-
closed subspace generated by any proper subset of {(T ∗)n, Tn : n ∈ N}
is reflexive and has property A1(1).

Proof. Using the notations introduced before Lemma 6, the consid-
ered subspace can be denoted by S(T, ω).
Let Z be the commutative von Neumann algebra generated by T ∗T .

By direct integral theory (see [5, Remark 3.1(b)] and [6, Theorem 6,
p.19]) Z can be seen as an algebra of an orthogonal sum of multi-
plication operators by the scalar function from L∞(µi) on the spaces
L2(µi,Hi), where (Λi,Mi, µi) is a complete regular σ-finite Borel mea-
sure space and i runs through a countable set. Moreover, every operator
in S(T, ω) can be seen as an orthogonal sum of the multiplication opera-
tors Ai such that (Aif)(λi) = Ai(λi)f(λi), where Ai ∈ L∞(µi, B(Hi)).

Let us identify T with ⊕iTi(·). Since T is quasinormal thus
T ∗

i (λi)Ti(λi) is a scalar multiple of the identity operator for almost
all λi ∈ Λi. Therefore Ti(λi) is a scalar multiple of an isometry.

By Lemma 6 we can see that for each λi ∈ Λi the subspace
S(Ti(λi), ω) is reflexive and has property A1(1). Hence by Theorem 4
and [5, Corollary 3.7]

∫ ⊕

Λi

S(Ti(λi), ω) dµi(λi)
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is reflexive and has property A1(1). Therefore, as above,

⊕
i

∫ ⊕

Λi

S(Ti(λi), ω) dµi(λi)

is reflexive and has property A1(1). Thus S(T, ω) as a subspace of
above has the same properties (by [5, Proposition 2.5]).

Corollary 8. Let T be a quasinormal operator and let k be an integer,
then subspaces span {T (n) : n ≥ k} and span {T (n) : n �= k} are reflexive
and have property A1(1).

Remark 9. Note that Theorem 6 remains true if we consider weak
operator topology instead of weak∗ operator topology.
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