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ON NONVANISHING SOLUTIONS OF
A CLASS OF FUNCTIONAL EQUATIONS

RICHARD FOURNIER

ABSTRACT. We study some properties of the solutions of
a class of functional equations. For example, we prove that if
w(z) is a function analytic in the closed unit disc {z | |z| ≤ 1}
such that w(0) = 0, 0 < ε < 1, and

|w′(z)| + ε|w(z)| = 1, |z| = 1,

then w(z) �= 0 if |z| = 1.

1. Introduction. Let D denote the unit disc {z | |z| < 1} of the
complex plane C and, for Ω a subset of C, H(Ω) the set of functions
analytic on an open neighborhood of Ω. In what follows, we consider
a function ψ ∈ H(D) positive and increasing on [0, 1], such that

(1) |ψ′(z)| ≤ ψ′(|z|), z ∈ D and ψ(0) ≥ 0,

and the class

Wψ = {w ∈ H(D) | w(0) = 0 and lim
z→ξ

|w′(z)|+ψ(|w(z)|) = 1, ξ ∈ ∂D}.

It is easily seen from (1) and the maximum principle that, for w ∈ Wψ,

|w′(z)|+ ψ(|w(z)|) ≤ 1, z ∈ D.

We may assume that ψ(0) < 1.

The existence of univalent members of classes similar to Wψ has been
studied by Beurling [2] and Avhadiev [1]. For any n = 1, 2, . . . , the
equation

nt+ ψ(t) = 1
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has a unique solution tn ∈ (0, 1) and the functions wn(z) = tne
iθzn

belong to Wψ for any θ ∈ [0, 2π]. However, the classes Wψ contain
more exotic members, as the following argument shows.

Let us assume for the rest of the paper that

(2) ψ([0, 1]) ⊂ [0, 1).

We look at H(D) as a topological vector space endowed with the locally
convex topology of uniform convergence over compact subsets of D.
The “ball”

B = {w ∈ H(D) | |w(z)| ≤ |z|, z ∈ D}
is a compact and convex subset of H(D). Let 0 < r < 1 and b(z) be a
finite Blaschke product. We define an operator Tr over B by

Tr(w)(z) =
∫ z

0

b(ξ) exp
{
1
2
π

∫ 2π

0

1+ξe−iθ

1−ξe−iθ
ln(1−ψ(|w(reiθ)|)) dθ

}
dξ.

Since, for z ∈ D,

|Tr(w)′(z)| = |b(z)| exp
{
1
2
π

∫ 2π

0

Re
[1+ze−iθ

1−ze−iθ
ln(1−ψ(|w(reiθ)|))

]
dθ

}

we have Tr(B) ⊆ B and clearly Tr is continuous over B. By Tychonoff’s
fixed point theorem, [3, p. 414], there exists for any r ∈ (0, 1), a function
wr ∈ B with Tr(wr) = wr, i.e.,

(3) w′
r(z) = b(z) exp

{
1
2
π

∫ 2π

0

1+ze−iθ

1−ze−iθ
ln(1−ψ(|wr(reiθ)|)) dθ

}
.

The family {wr}0<r<1 is a normal family: there must exist a sequence
{rn}, rn → 1 and a function w ∈ B such that wrn

→ w in H(D). It
is easily seen that each wrn

has a continuous extension to D (|w′
rn
(z)|

is bounded over D!) and the convergence of {wrn
} is indeed uniform

over D. By taking limits in (3) we obtain, for z ∈ D,

|w′(z)| = |b(z)| exp
{
1
2
π

∫ 2π

0

Re
1+ze−iθ

1−ze−iθ
ln(1−ψ(|w(eiθ)|)) dθ

}
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and clearly

lim
z→eiθ

|w′(z)| = 1− ψ(|w(eiθ)|), θ ∈ [0, 2π],

i.e., w ∈ Wψ. Under the additional assumption ψ(z) ≡ ψ0(z2) where
ψ0 ∈ H(D), it has been shown in [4] that some w obtained as above
is indeed analytic in D. The case where ψ(z) ≡ z2 (of particular
interest due to its obvious relation with the hyperbolic metric) has
been thoroughly discussed in [5]. We wish to stress that, except for
the monomials wn, no other nontrivial members of Wψ are explicitly
known or can be numerically constructed. This is a justification for the
main result of this paper.

Theorem 1. Let ψ ∈ H(D) satisfy (1) and (2) with ψ′(0) > 0. Let
also θ0 ∈ [0, 2π]. Then

(a) If w ∈ Wψ is analytic in a neighborhood of eiθ0 , then w(eiθ0) �= 0.

(b) If w ∈ Wψ and w(eiθ0) = 0, then there does not exist a constant
κ > 0 for which

|w(eiθ)| ≤ κ|eiθ − eiθ0 |2, θ ∈ [0, 2π].

It is not clear whether the condition ψ′(0) > 0 is necessary for
Theorem 1 to hold. Let us remark however that part (a) of the result
won’t be valid for constant functions ψ(z) ≡ k ∈ (0, 1); the function
w(z) = (1−k)

∫ z
1
(t−a)/(1−at) dt belongs to Wψ if a ∈ (0, 1) is chosen

properly and w(1) = 0.

Proof of Theorem 1. It is sufficient to assume from now on that
ψ(0) = 0 because, if w ∈ Wψ with ψ(0) > 0, then w∗ ∈ Wψ∗ , with

w∗(z) :=
w(z)

1− ψ(0)
and ψ∗(z) =:

ψ((1− ψ(0))z)− ψ(0)
1− ψ(0)

.

Clearly ψ∗(0) = 0, ψ∗ verifies (1), ψ∗′(0) > 0 and ψ∗([0, 1]) ⊂ [0, 1).

We prove part (a) by contradiction. For any real φ, the function

Wφ(z) := w′(zeiθ0) + eiφψ(w(zeiθ0))
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belongs to H(D ∪ {1}) and, for z ∈ D,

|Wφ(z)| ≤ |w′(zeiθ0)|+ ψ(|w(zeiθ0)|)
≤ 1 = |Wφ(1)|.

Here we have used the fact that ψ(0) = w(eiθ0) = 0. According to a
result of Löwner [7, pp. 291 292], we have

0 <
W ′
φ(1)

Wφ(1)
= eiθ0

w′′(eiθ0)
w′(eiθ0)

+ ei(φ+θ0)ψ′(0).

This cannot hold for all φ because ψ′(0) �= 0.

Our proof of part (b) of Theorem 1 is a bit more technical and we
shall rely on a result due to Gaston Julia [6, pp. 43 45] which allows
us to mimic the argument above in the situation where the function w
is not necessarily analytic on D.

Theorem (Julia). Let F ∈ H(D) and assume that F is nonconstant
and F (D) ⊆ D. Let

MF := sup
z∈D

|1− F (z)|2(1− |z|2)/|1− z|2(1− |F (z)|2).

Then 0 < MF ≤ ∞. If MF = ∞, then

(4) lim
n→∞(1− |F (zn)|)/(1− |zn|) = ∞

for all sequences {zn} ⊂ D such that zn → 1 and F (zn) → 1. In
particular,

lim
z→1

(1− F (z))/(1− z) = ∞,

where limz→1 means a limit as z → 1 within a Stolz angle at 1 contained
in D. Alternatively, if MF < ∞, then

(5) lim
z→1

(1− F (z))/(1− z) = lim
z→1

F ′(z) = MF .

We consider two cases.
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Case 1. w(eiθ0) = 0 and Mw′(zeiθ0 ) < ∞. For Wφ as above we have

1−Wφ(z)
1− z

= −eiφ
ψ(w(zeiθ0))

1− z
+

1− w′(zeiθ0)
1− z

, z ∈ D.

Since ∣∣∣∣ψ(w(ze
iθ0))

1− z

∣∣∣∣ =
∣∣∣∣ψ(w(ze

iθ0))
w(zeiθ0)

∣∣∣∣
∣∣∣∣w(ze

iθ0)
1− z

∣∣∣∣
=

∣∣∣∣ψ(w(ze
iθ0))

w(zeiθ0)

∣∣∣∣ 1
|1− z|

∣∣∣∣
∫ zeiθ0

eiθ0

w′(x) dx
∣∣∣∣

≤ sup
|z|≤1

|ψ(z)| := ‖ψ‖∞ < ∞,

we obtain by (4) and (5) that MWφ
< ∞ and, by (5),

0 < lim
z→1

W ′
φ(z) = lim

z→1
eiθ0w′′(zeiθ0) + ei(φ+θ0)ψ′(0)w′(zeiθ0).

This must hold for all real φ and, in particular, because ψ′(0) �= 0, we
have limz→1 w

′(zeiθ0) = 0, which contradicts the definition of the class
Wψ. Thus, Case 1 cannot occur.

Case 2. w(eiθ0) = 0 and Mw′(zeiθ0 ) = ∞. The following lemmas
will turn out to be useful in the process of deriving a crucial inequality
below.

Lemma 1. The function w′ has at most a finite number of zeros in
D and |w′(eiθ)| �= 0 for any real θ.

Proof. Here |w′(eiθ)| means limz→eiθ |w′(z)|, which exists by defini-
tion of Wψ. Let 0 < r < 1 and mr := max|z|=r=|zr| |w(z)| = |w(zr)|.
By Löwner’s result, we have zr(w′(zr))/(w(zr)) ≥ 1 and

(6)

∣∣∣∣w(zr)zr

∣∣∣∣ + ψ(|w(zr)|) ≤ zr
w′(zr)
w(zr)

∣∣∣∣w(zr)zr

∣∣∣∣ + ψ(|w(zr)|)
= |w′(zr)|+ ψ(|w(zr)|) ≤ 1.

If m = supz∈D |w(z)|, we obtain as r → 1 in (6), m + ψ(m) ≤ 1. In
particular m < 1 and ψ(m) < 1. If eiθ were an accumulation point of
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zeros of w′ or if |w′(eiθ)| = 0, then we would obtain 1 = ψ(|w(eiθ0 |) ≤
ψ(m) < 1. The conclusion of Lemma 1 follows.

Lemma 2. For any finite Blaschke product b(z) we have

cb := sup
z∈D

(1− |b(z)|)/(|1− z|) < ∞.

Proof. We have (1− |b(z)|)/(|1− z|) ≤ (1− |b(z)|2)/(|1− z|), z ∈ D,
and b(z) = (zb1(z)+ b(0))/(1+ b(0)zb1(z)) where b1 is a finite Blaschke
product of degree less than the degree of b. Then

(7)

1− |b(z)|
|1− z| ≤ 1− |b(0)|2

|1 + b(0)zb1(z)|2
1− |z|2|b1(z)|2

|1− z|

≤ 1 + |b(0)|
1− |b(0)|

(
1− |z|2
|1− z| +

1− |b1(z)|2
|1− z|

)

≤ 2
1 + |b(0)|
1− |b(0)|

(
1 +

1− |b1(z)|
|1− z|

)

and

(8)
1− |(z − a)/(1− āz)|

|1− z| ≤ 1 + |a|
1− |a| , a, z ∈ D.

A proof by induction of Lemma 2 clearly follows from (7) and (8).

Since w(eiθ0) = 0, there exists a sequence {zn} ⊂ D converg-
ing to 1 within a Stolz angle at 1 and a real number µ such that
limn→∞ eiµw′(zneiθ0) = 1. Let us define v(z) := eiµw′(zeiθ0). Just as
above, the assumption Mv < ∞ would lead to a contradiction. We
therefore assume that Mv = ∞ and, by (4) in Julia’s theorem, we ob-
tain limn→∞(1−|v(zn)|)/(1−|zn|) = ∞. There exists k > 0 such that,
for all n,

1− |v(zn)|
|1− zn| =

1− |v(zn)|
1− |zn|

1− |zn|
|1− zn| ≥ k

1− |v(zn)|
1− |zn|

and, clearly

(9) lim
z→1

1− |v(z)|
|1− z| = ∞.
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According to Lemma 1, v has at most a finite number of zeros in
D and no zeros on ∂D. Moreover, |v(z)| is continuous over D and
minz∈∂D |v(z)| > 0. It follows from a standard factorization result that

v(z) = b(z) exp
{
1
2
π

∫ 2π

0

1 + ze−iθ

1− ze−iθ
ln |v(eiθ)| dθ

}
, z ∈ D,

where b is a finite Blaschke product. We obtain, after writing

dν(θ) :=
1
2π

1− |z|2
|1− ze−iθ|2 dθ

for fixed z ∈ D,

1− |v(z)|
|1− z| =

1− |b(z)| exp{∫ 2π

0
ln |v(eθ)| dν(θ)}

|1− z|

=
1− |b(z)|
|1− z| + |b(z)| 1− exp{∫ 2π

0
ln |v(eiθ)| dν(θ)}

|1− z|

≤ cb +
1− exp{− ∫ 2π

0
ln(1/[1− ψ(|w(ei(θ+θ0))|)]) dν(θ)}

|1− z|

≤ cb +
1− (

∫ 2π

0
(1− ψ(|w(ei(θ+θ0))|))−1 dν(θ))−1

|1− z|

≤ cb +
1

|1− z|
∫ 2π

0

ψ(|w(ei(θ+θ0))|)
1− ψ(|w(ei(θ+θ0))|) dν(θ)

≤ cb +
‖ψ‖∞

1− ψ(m)
1

|1− z|
∫ 2π

0

|w(ei(θ+θ0))| dν(θ).

In the above estimations we have made use of Lemma 2, the inequality
between the arithmetic and geometric means and some elements of the
proof of Lemma 1.

Assuming now that |w(ei(θ+θ0))| ≤ κ|1 − eiθ|2 for some κ > 0, we
obtain

1− |v(z)|
|1− z| ≤ cb +

κ‖ψ‖∞
1− ψ(m)

∫ 2π

0

|1− eiθ|2
|1− z| dν(θ)

= cb +
2κ‖ψ‖∞
1− ψ(m)

Re (1− z)
|1− z|

≤ cb +
2κ‖ψ‖∞
1− ψ(m)

,
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which of course contradicts (9). This completes our proof of Theorem 1.

It is not clear at all that functions w′ with infinite angular derivatives
and w ∈ Wψ (for some admissible ψ) actually do exist. By suitably
restricting the class Wψ, we may obtain a more universal version of
Theorem 1. Let, for example,

W ′
ψ =

{
w ∈ H(D) | w(0) = 0 and lim

z→ξ

ψ(|w(z)|)
1− |w′(z)| = 1, ξ ∈ ∂D

}
.

It is easy to prove that Mw′(zeiθ0 ) < ∞ if w ∈ W ′
ψ and w(eiθ0) = 0. Our

arguments then imply that the following version of Theorem 1 holds.

Theorem 2. Let ψ ∈ H(D) be as above and ψ′(0) > 0. Then
w(z) �= 0 if w ∈ W ′

ψ and z ∈ ∂D.

Concluding remarks. We wish to make some observations concern-
ing Blaschke products and our proof of Lemma 2. We believe this proof
is not as transparent as it should be and can somehow be generalized.

Let us assume b is a Blaschke product whose zeros do not accumulate
at z = 1. Then b is analytic in a neighborhood of z = 1 and

lim
z→1

1− |b(z)|
|1− z| ≤ lim

z→1

∣∣∣∣b(1)− b(z)
1− z

∣∣∣∣ = |b′(1)| < ∞

and the statement of Lemma 2 shall hold for such b. Conversely, if the
zeros of a Blaschke product b(z) accumulate at z = 1, there shall exist
a sequence {zn} ⊂ D with zn → 1 and

1− |b(zn)|
|1− zn| =

1
|1− zn| ,

so that limz→1(1 − |b(z)|)/(|1 − z|) = ∞. We have thus proved that
Lemma 2 holds in fact precisely for Blaschke products (finite or not)
whose zeros do not accumulate at 1.

In the case where supz∈D(1− |b(z)|)/(|1− z|) = ∞, we may actually
have limz→1(1− |b(z)|)/(|1− z|) = ∞ for any Stolz angle at z = 1; let
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us consider the inner function f(z) = e−(1+z)/(1−z). We have

(10)
1− |f(z)|
|1− z| =

1− e−Re ((1+z)/(1−z))

|1− z|

and if z approaches 1 from within a Stolz angle at 1, z will eventually
belong to the interior or an orocycle at 1 where Re ((1+z)/(1−z)) > k
for some k > 0; clearly 1 − e−Re ((1+z)/(1−z)) > 1 − e−k and, by (10),
limz→1(1 − |f(z)|)/(|1 − z|) = ∞. According to a famous result of
Frostman, bc(z) := (f(z) − c)/(1 − c̄f(z)) is a Blaschke product for
“most” values of c ∈ D and, since

1− |bc(z)|
|1− z| ≥ 1− |c|

2(1 + |c|)
1− |f(z)|
|1− z| , z ∈ D,

our claim follows.

Even in the case where supz∈D(1−|b(z)|)/(|1−z|) < ∞, the boundary
behavior of the Blaschke product may be rather surprising. Using
the inner functions f(z) = e−(1+eiθz)/(1−eiθz) with 0 < θ < 2π and
Frostman’s result, one can create an infinite Blaschke product b(z)
such that b(z) is analytic at z = 1 and the angular cluster set of
(1− |b(z)|)/(|1− z|) at 1 is the whole interval (0, |b′(1)|].
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