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BOUNDED AND ALMOST PERIODIC
ULTRADISTRIBUTIONS AS BOUNDARY VALUES

OF HOLOMORPHIC FUNCTIONS

C. FERNÁNDEZ, A. GALBIS AND M.C. GÓMEZ-COLLADO

ABSTRACT. We represent every bounded ultradistribution
of Beurling or of Roumieu type on R as the boundary value
of a holomorphic function. In particular, each almost periodic
ultradistribution admits such a representation and we charac-
terize the almost periodic ultradistributions that are bound-
ary values of holomorphic functions in the upper (or lower)
half-plane in terms of their spectra.

1. Introduction. The representation of several classes of distribu-
tions and ultradistributions as boundary values of holomorphic func-
tions has been studied by several authors. We mention Bengel [1],
Carmichael [3, 4], Luszczki and Zielezny [10], Meise [11], Petzsche
and Vogt [13], Tillmann [15, 16] and Vogt [17].

In a recent paper Pilipović [14] showed that appropriate L∞ estimates
on holomorphic functions imply that they have a boundary value which
is a bounded ultradistribution. However the methods of [14] did not
permit to represent every bounded ultradistribution as the boundary
value of such a holomorphic function (see [14, Section 3]). He worked
in the context of ultradistributions as they were defined by Komatsu
[8] and, for technical reasons, he required the strong nonquasianalytic
condition on the defining sequence.

In this paper we show that every bounded ultradistribution on R is
the boundary value of a holomorphic function on C\R satisfying some
growth estimates. More precisely, we consider the smallest algebra of
holomorphic functions in C\R which contains all bounded holomorphic
functions in C \ R, all the exponentials exp(iλz), λ ∈ R, and is stable
under differential operators of infinite order. Using results of Petzsche
and Vogt [13] and an extension of the characterization of bounded
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ultradistribution given by Cioranescu [6] (see [7]), we show that each
function in this class has a bounded ultradistribution as boundary
value. Our methods are different from the ones of Pilipović [14] and
allow us to avoid the strong nonquasianalytic condition. Moreover, we
show that the boundary value map is surjective.

Finally we characterize the almost periodic ultradistributions that
are boundary values of holomorphic functions in the upper (or lower)
half-plane in terms of their spectra. Our approach to ultradistributions
is the one of Braun, Meise and Taylor [2].

1. Preliminaries. First we introduce the spaces of functions and
ultradistributions and most of the notation that will be used in the
sequel.

Definition 1. A weight function is an increasing continuous function
ω : [0,∞[→ [0,∞[ with the following properties:

(α) L ≥ 0 exists with ω(2t) ≤ L(ω(t) + 1) for all t ≥ 0,

(β)
∫∞
1
(ω(t)/t2) dt < ∞,

(γ) log(t) = o(ω(t)) as t tends to ∞,

(δ) ϕ : t → ω(et) is convex.

For most of the results of the paper we have to replace the condition
(α) by the stronger condition

(α1) supλ≥1 lim supt→∞(ω(λt)/λω(t)) < ∞.

If the weight ω satisfies the additional condition

(ε) C ≥ 1 exists such that for all y > 0∫ ∞
1

ω(ty)
t2

dt ≤ Cω(y) + C

we will say that ω is a strong weight. Examples of weight functions
with and without property (ε) can be found in [12].

The radial extension of ω is ω(z) := ω(|z|), z ∈ C.

The Young conjugate ϕ∗ : [0,∞[→ R of ϕ is given by ϕ∗(s) :=
sup{st− ϕ(t), t ≥ 0}.
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There is no loss of generality to assume that ω vanishes on [0, 1].
Then ϕ∗ has only nonnegative values and ϕ∗∗ = ϕ.

Remark. If the weight ω(t) is concave for t large enough then every
equivalent weight satisfies (α1). See [13, 1.1] for details.

Definition 2 [2]. Let ω be a weight function. For a compact set
K ⊂ R we let

D(ω)(K) := {f ∈ D(K) : ‖ f ‖K,λ< ∞ for every λ > 0},
and

D{ω}(K) := {f ∈ D(K) : ‖ f ‖K,λ< ∞ for some λ > 0},

where ‖ f ‖K,λ:= supx∈K supn∈N0
|f (n)(x)| exp(−λϕ∗(n/λ)).

Then D(ω)(K), endowed with its natural topology, is a Fréchet space,
while D{ω}(K) is an (LB)-space.

We write D∗(K), where ∗ can be either (ω) or {ω}.
For a fundamental sequence (Kj)j∈N of compact subsets of R we let

D∗(R) := indj→D∗(Kj).

The elements of D′(ω)(R) (respectively D′{ω}(R)) are called ultradistri-
butions of Beurling (respectively Roumieu) type.

Definition 3 [7]. We denote

DL1,ω,λ :=
{
f ∈DL1(R) : |f |λ := sup

n∈N0

‖ f (n) ‖L1 exp
(
−λϕ∗

(
n

λ

))
<∞

}
.

We define DL1,(ω)(R) := proj←jDL1,ω,j and DL1,{ω}(R) :=
indj→DL1,ω,(1/j).

Then DL1,(ω)(R) is a Fréchet space and DL1,{ω}(R) is an (LB)-space.
As usual, we write DL1,∗(R) to denote DL1,(ω)(R) or DL1,{ω}(R).
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The space D∗(R) is dense in DL1,∗(R) and the inclusion D∗(R) ⊂
DL1,∗(R) is continuous.

The elements of D′L1,∗(R) are known as bounded ∗-ultradistributions.
In what follows we will always consider D′L1,∗(R) equipped with the
strong topology β(D′L1,∗(R),DL1,∗(R)). An element T of D′L1,∗(R) is
said to be almost periodic if T is limit in D′L1,∗(R) of a sequence of
trigonometric polynomials.

The classical case DL1(R) is formally not a particular case of what
we present here since ω(t) = log(1 + t) does not satisfy property (γ).
However, all our results also hold in this case after some modifications.

Let G ∈ H(C) be an entire function such that log |G(z)| = O(ω(|z|))
(respectively log |G(z)| = o(ω(|z|))) as |z| tends to infinity. Then

TG(ϕ) :=
∑
n∈N0

(−i)n
G(n)(0)

n!
ϕ(n)(0)

defines an ultradistribution TG ∈ D′(ω)(R) (respectively TG ∈ D′{ω}(R))
whose support reduces to {0}. The operator

G(D) : D′∗(R) → D′∗(R), G(D)ν := TG ∗ ν

is called an ultradifferential operator of class ∗. We note that, for every
f ∈ DL1,∗(R),

(G(D)f)(x) =
∑
n∈N0

in
G(n)(0)

n!
f (n)(x).

The Cauchy inequalities and the convexity of ϕ∗ imply that, if
G ∈ H(C) and log |G(z)| = O(ω(|z|)), then |G(n)(0)/n!| ≤
C infr>0 exp(kϕ(r)− nr) = C exp(−kϕ∗(n/k)), for some k ∈ N, C > 0
and all n ∈ N, whereas, if log |G(z)| = o(ω(|z|)), then for every m ∈ N
there is Cm > 0 such that |G(n)(0)/n!| ≤ Cm exp(−(1/m)ϕ∗(nm)).
Accordingly, each ultradifferential operator defines a continuous linear
operator (see [7], 2.4)

G(D) : D′L1,∗(R) −→ D′L1,∗(R).
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Definition 4. Let ω : [0,∞[→ [0,∞[ be a weight function. Then ω∗

is defined by
ω∗(s) := sup

t≥0
{ω(t)− st}.

The function ω∗ is continuous, convex, decreasing and ω∗(s) < ∞ for
all s > 0 since each weight function ω satisfies that limt→∞(ω(t)/t) = 0
by [12, 1.2(b)].

Definition 5. Let ω be a weight function. We define

H(ω∗) := {F ∈ H(C \R) : sup
z∈C\R

|F (z)|e−n|Im z|−nω∗(|Im z|/n) < ∞

for some n ∈ N}

and

H{ω∗} := {F ∈ H(C \ R) : there is n ∈ N such that

sup
z∈C\R

|F (z)|e−n|Im z|−(1/k)ω∗(k|Im z|) < ∞

for every k ∈ N}.

Then H(ω∗) is an (LB)-space and H{ω∗} is an (LF)-space. We write
Hω∗ to denote either H(ω∗) or H{ω∗}.

Proposition 1. For each F ∈ Hω∗ and each ultradifferential
operator G(D) of class ∗, we have that G(D)xF ∈ Hω∗ .

Proof. We only consider the Beurling case since the Roumieu case
can be treated similarly. Let F be a holomorphic function in C \ R
with

|F (z)| ≤ Cekω
∗(|Im z|/k)+k|Im z|

for some C > 0 and k ∈ N. Let G(D) be an ultradifferential operator
of class (ω). We put

H(x+ iy) = G(D)xF (x+ iy), y �= 0.



1300 C. FERNÁNDEZ, A. GALBIS AND M.C. GÓMEZ-COLLADO

Then H is holomorphic in C \ R and H(z) =
∑∞

n=0 anF
(n)(z) where

|an| ≤ Ce−mϕ∗(n/m) for some constants C > 0 and m ∈ N. The
Cauchy’s inequalities give

|F (n)(z)| ≤ n! C
exp

(
2k |Im z|+ kω∗(|Im z|/2k)

)
(|Im z|/2)n .

For 0 < |Im z| < 2, we have, by Stirling’s formula and on account that
ϕ∗∗ = ϕ,

∞∑
n=0

|an|
(

2
|Im z|

)n
n! ≤ C

∞∑
n=0

n! e−mϕ∗(n/m)

(
2

|Im z|
)n

≤ C

∞∑
n=0

√
2πn
en/2

exp
(
n log(2n/|Im z|)−mϕ∗(n/m)

)
en/2

≤ C
∞∑
n=0

√
2πn
en/2

exp
(
mϕ∗∗(log(2n/|Im z|))

)
en/2

≤ C

∞∑
n=0

√
2πn
en/2

exp
(
mω(2n/|Im z|)

)
en/2

≤ C sup
n

exp
(
mω

( 2n
|Im z|

)
− n

2

) ∞∑
n=0

√
2πn
en/2

.

for some constant C > 0 which is not the same at each occurrence.
Consequently, for some constant C > 0, we obtain

|H(z)|exp
(
− 2k|Im z| − 2kω∗

( |Im z|
2k

))

≤ C sup
n

exp
(
mω

( 2n
|Im z|

)
− n

2

)

≤ Cemω∗
(
|Im z|/4m

)
,

whenever 0 < |Im z| < 2. In case 2 ≤ |Im z| the same argument
gives the convergence of

∑∞
n=0 |an|n!, from which it easily follows that

H ∈ H(ω∗).
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2. Boundary values. From now on, we will only consider weight
functions ω satisfying the property (α1).

Our aim is to study which ∗-ultradistributions can be obtained as
boundary values of functions in the space Hω∗. First, we observe that
for the boundary value, only what happens near the real axis is relevant
and therefore we may apply [13, 4.5, 4.6] to conclude the following
result

Lemma 2. If ω is a weight function with the property (α1), then the
boundary value operator T : Hω∗ → D′∗(R) given by

〈T (F ), ϕ〉 = lim
ε→0+

∫
R

(F (x+ iε)− F (x− iε))ϕ(x) dx,

is a well-defined, continuous and linear mapping.

What we will see in our following result is that the range of T consists
of bounded ∗-ultradistributions and that, in fact, each bounded ∗-ultra-
distribution is the boundary value of a function in Hω∗ .

Theorem 3. If F ∈ Hω∗ , then T (F ) is a bounded ∗-ultradistribution
and the boundary value map T : Hω∗ → D′L1,∗(R) is linear, continuous
and surjective.

Proof. Given F ∈ Hω∗ , we define for x ∈ R, Fx(z) := F (x + z).
The set of translations {Fx : x ∈ R} is bounded in Hω∗ ; therefore,
{T (Fx) : x ∈ R} is bounded in D′∗(R); that is, for every ϕ ∈ D∗(R) the
set {〈T (Fx), ϕ〉 : x ∈ R} is bounded. Consequently T (F ) ∗ ϕ ∈ Cb(R).
We apply [7, 3.2] to conclude that T (F ) ∈ D′L1,∗(R). Moreover,
T : Hω∗ → D′L1,∗(R) is continuous by the closed graph theorem.

To show that T is surjective, the first step is to prove that the
derivative S′ of S ∈ D′L1,∗(R), is the boundary value of some function
in Hω∗ .

By [7, 3.2], it suffices to consider the case S = G(D)h where G(D) is
an ultradifferential operator of class ∗ and h ∈ Cb(R). We put

H(z) =
1
2πi

∫
R

h(t)
1

(t− z)2
dt.
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Then H is holomorphic in C \ R and |H(z)| ≤ ‖ h ‖∞/|y|, where
z = x+ iy. Moreover, given m ∈ N there is a Km > 0 such that

|H(z)| ≤‖ h ‖∞ elog(1/|y|) ≤ Kmelog(1/|y|)−(1/m)ϕ∗(m)

≤ Kme(1/m)ω(1/|y|) ≤ Kme(1/m)ω∗(m|y|)+1,

if |y| < 1 while |H(z)| ≤‖ h ‖∞ whenever |y| ≥ 1. Hence H ∈ H{ω∗} ⊂
H(ω∗).

Given ϕ ∈ D∗(R) we have, by Tonelli-Hobson’s and Fubini’s theo-
rems,

∫
R

H(x+ iy)ϕ(x) dx =
1
2πi

∫
R

h(t)
(∫

R

ϕ(x)
(t− x− iy)2

dx

)
dt

= − 1
2πi

∫
R

h(t)
(∫

R

ϕ′(x)
t− x− iy

dx

)
dt.

For y > 0,
∫
R

(
H(x+ iy)−H(x− iy)

)
ϕ(x) dx = −

∫
R

h(t)(Py ∗ ϕ′)(t) dt,

where Py(t) :=
y

π

1
t2 + y2

.

Since ϕ′ ∈ L1, Py ∗ ϕ′ tends to ϕ′ as y → 0 in the L1-norm then

lim
ε→0+

∫
R

(
H(x+ iε)−H(x− iε)

)
ϕ(x) dx = −

∫
R

h(t)ϕ′(t) dt = 〈h′, ϕ〉.

To finish we define F (z) = G(D)xH(z) which is an element of Hω∗ .
Then, for every ϕ ∈ D∗(R) we obtain

S′(ϕ) = lim
ε→0+

∫
R

(H(x+ iε)−H(x− iε))G(−D)ϕ(x) dx

= lim
ε→0+

∫
R

(F (x+ iε)− F (x− iε))ϕ(x) dx,

and we are done.

Now, let S ∈ D′L1,∗(R) be given and observe that S =
−ie−ix(eixS)′ + iS′. As we have shown, there are F,G ∈ Hω∗ such
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that T (G) = (eixS)′ and T (F ) = iS′. Therefore H(z) := −ie−izG(z)+
F (z) ∈ Hω∗ and has S as its boundary value.

Remark. If a sequence (Mp)p∈N0 satisfies the conditions (M1),
(M2) and (M3) of Komatsu [8] then there is a concave strong
weight κ such that D(Mj)(R) = D(κ)(R) [12]. Here D(Mj)(R) is
the set of all functions f ∈ C∞(R) with compact support such that
supj∈N0

supx∈R |f (j)(x)|/hjMj < ∞ for each h > 0. It also holds that

D(Mp)

L1 and D′(Mp)
L∞ in [14] coincide precisely with DL1,(κ) and D′L1,(κ),

respectively. Moreover H
(Mp)
L∞ strictly contains H(κ∗) and hence our

boundary value map H(κ∗) → D′L1,(κ) is a proper restriction of the one
considered by Pilipovic [14]. Nevertheless our approach gives the sur-
jectivity of the boundary value operator, a fact that was not obtained
in [14]. A similar result holds in the Roumieu case. Therefore our
results properly extend the case of bounded ultradistributions in [14].

Our next aim is to justify that Hω∗ is, in some sense, the smallest
reasonable class that can be considered. This is done in Proposition 6.
First we need some auxiliary results.

Lemma 4. Let F ∈ Hω∗ be given. Then

T (F ) = lim
ε→0+

(F (·+ iε)− F (· − iε))

in the weak topology σ(D′L1,∗(R),DL1,∗(R)).

Proof. We have to check that for each F ∈ Hω∗ and each ψ ∈
DL1,∗(R), the limit

lim
ε→0+

∫
R

(F (x+ iε)− F (x− iε))ψ(x) dx

exists. Since every F ∈ Hω∗ can be decomposed as F = F1 + F2

with F1, F2 ∈ Hω∗, F1 identically zero in Im z < 0 and F2 vanishing
on Im z > 0, we can assume that F vanishes on the lower half-plane.
Since the limit exists for each ψ in D∗(R) which is dense in DL1,∗(R),
it is enough to show that {F (x + iε) : 0 < ε < 1} is bounded in
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D′L1,∗(R). As a consequence of [7, 3.3], this happens if and only if
{Fiε ∗ ϕ : 0 < ε < 1} is a bounded set in Cb(R) for each ϕ ∈ D∗(R).
Here Fiε(x) := F (x+ iε).

We first consider the Beurling case. Since F ∈ H(ω∗), there are C > 0,
k ∈ N such that

|F (x+ iy)| ≤ Cekω
∗(y/k) for 0 < y < 2.

Let ϕ ∈ D(ω)(R) be given and let b > 0 be such that suppϕ ⊂ [−b, b].
By [13, 3.4] we find φ ∈ D((−b, b)× (−1/2, 1/2) such that

(i) φ|R = ϕ

(ii) supz∈C\R |(∂/∂z̄)φ(x+ iy)ekω
∗(|y|/k)| < ∞.

We apply Stokes’ theorem to the function θx(ξ) := F (ξ+ iε)φ(x− ξ)
in the rectangle D := [x− 2b, x+ 2b]× [0, 1] to get

∫
R

F (x+ iε− t)ϕ(t) dt =
∫
R

F (t+ iε)ϕ(x− t )dt

= 2i
∫
D

F (ξ + iε)
∂

∂ξ̄
φ(x− ξ) dm2(ξ)

from which it follows that

|(Fiε ∗ ϕ)(x)| ≤ Cm2(D)

for some constant C > 0 since ω∗ is decreasing.

We now consider the Roumieu case. Since F ∈ H{ω∗}, for every
m ∈ N there is a constant C > 0 such that

|F (x+ iy)| ≤ Ce(1/m)ω∗(ym) for 0 < y < 2.

Let ϕ ∈ D{ω}(R) be given. We apply [13, 3.3] to find φ ∈ D(R ×
(−1/2, 1/2)) and ρ > 0 such that

(i) φ|R = ϕ

(ii) supz∈C\R |(∂/∂z̄)φ(x+ iy)eρω
∗(|y|/ρ)| < ∞.

Then
F (ξ + iε)

∂

∂ξ̄
φ(x− ξ)
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is bounded in D and we can proceed as in the Beurling case to get the
conclusion.

Proposition 5. The kernel of T consists exactly of those functions
F ∈ Hω∗ which can be extended to an entire function.

Proof. We first observe that the boundary value map H(ω∗) →
D′L1,(ω)(R) is an extension of H{ω∗} → D′L1,{ω}(R). Consequently we
only have to consider the Beurling case.

Let F ∈ H(ω∗) be such that

lim
ε→0+

∫
R

(F (x+ iε)− F (x− iε))ϕ(x) dx = 0

for every ϕ ∈ DL1,(ω)(R). We fix z ∈ C with 0 < Im z < 1 and
we take 0 < δ < (Im z/2) and R > 0 with |Re z| < R. We consider
φ(ξ) := [1/(ξ − z)2] for ξ �= z, ξ ∈ C. We fix ε > 0 small enough and
apply Cauchy’s theorem to the function g(ξ) := F (ξ + iε)φ(ξ) on the
rectangle [−R,R] × [0, δ], keeping in mind that Fiε is bounded on the
vertical segments. After taking limits as R goes to infinity we get

∫
R

F (x+ iε)φ(x) dx =
∫
R

F (x+ iε+ iδ)φ(x+ iδ) dx

and similarly
∫
R

F (x− iε)φ(x) dx =
∫
R

F (x− iε− iδ)φ(x− iδ) dx.

Since φ|R ∈ DL1,(ω)(R) we conclude

0 = 〈T (F ), φ|R〉 =
∫
R

F (x+ iδ)φ(x+ iδ) dx

−
∫
R

F (x− iδ)φ(x− iδ) dx.

On the other hand, denoting by γR the boundary of [−R,R] × [δ, 1]
positively oriented, we have F ′(z) = (1/2πi)

∫
γR
(F (ξ)/(ξ − z)2) dξ.
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Since F is bounded on {z ∈ C : δ ≤ Im z ≤ 1} the integrals on
the vertical segments go to 0 as R goes to infinity, therefore

F ′(z) =
1
2πi

∫
R

F (t+ iδ)
(t+ iδ − z)2

dt− 1
2πi

∫
R

F (t+ i)
(t+ i− z)2

dt.

Since [F (ξ)/(ξ − z)2] is a holomorphic function on the lower half-plane,
proceeding as before we obtain

0 =
−1
2πi

∫
R

F (t− iδ)
(t− iδ − z)2

dt+
1
2πi

∫
R

F (t− i)
(t− i− z)2

dt.

Consequently, for 0 < Im z < 1,

F ′(z) = − 1
2πi

( ∫
R+i

F (ξ)
(ξ − z)2

dξ −
∫
R−i

F (ξ)
(ξ − z)2

dξ

)
.

The same holds in case −1 < Im z < 0. The righthand side defines
a holomorphic function on {z ∈ C : |Im z| < 1}. Then F ′ can be
extended to an entire function and consequently we find two constants
A1, A2 and an entire function H such that

F (z) = H(z) +A1 for Im z > 0,
F (z) = H(z) +A2 for Im z < 0.

Since the boundary value of F is zero, we conclude A1 = A2 and F can
be extended to an entire function.

Proposition 6. Hω∗ is the smallest algebra of holomorphic functions
on C \ R, X, with the following properties

(i) X contains all bounded holomorphic functions in C \ R and all
the exponentials exp(iλz), λ ∈ R,

(ii) for each F ∈ X and each G(D) ultradifferential operator of
class ∗, we have that G(D)xF ∈ X.

Proof. We already know that Hω∗ verifies (i) and (ii).

Now let X satisfy (i) and (ii). We consider the Beurling case, and we
assume that H is a holomorphic function in C \ R with

|H(z)| ≤ Cekω
∗(|Imz|/k)
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for some constants C > 0 and k ∈ N, and let S ∈ D′L1,(ω)(R) be
the boundary value of H. Without loss of generality we assume that H
vanishes on Im z < 0. We denote by Dm

(ω)(−1, 1) the set of C∞ functions
Γ with compact support in (−1, 1) such that ‖ Γ ‖K,m< ∞. There is
m ∈ N such that S ∗ ψ ∈ Cb(R) for each ψ ∈ Dm

(ω)(−1, 1) (see the
proof of (3) implies (2) in [7, 3.2]), and there are an ultradifferential
operator G(D) of class (ω), Γ ∈ Dm

(ω)(−1, 1) and χ ∈ D(ω)(R) with
suppχ ⊂ [−1, 1] such that

S = G(D)(S ∗ Γ) + S ∗ χ.

Let P (t, z) =
1
2πi

[ 1
t− z

− 1
t− z̄

]
, t ∈ R, z ∈ C \ R, be the Poisson

kernel. Then P (t, z) ∈ DL1,(ω)(R) for each z ∈ C \R and

〈St, P (t, z)〉 = lim
ε→0+

∫
R

H(t+ iε)P (t, z) dt.

But
∫
R
H(t + iε)P (t, z) dt is the harmonic extension of the bounded

holomorphic function on Im z > 0 with continuous extension to the
boundary, Hiε(t) := H(t+ iε), hence, it is just H(z+ iε) and therefore

〈St, P (t, z)〉 = H(z).

Now, the harmonic extension of f := S ∗ Γ is

F (z) =
(
f ∗ Py

)
(x) =

∫
R

(S ∗ Py)(x− t)Γ(t) dt

=
∫ 1

−1

H(z − t)Γ(t) dt

for z = x + iy. Therefore F (z) is a bounded holomorphic function in
the upper half-plane.

If G denotes the harmonic extension of g := S ∗ χ to the upper half-
plane, then the same argument shows that G is a bounded holomorphic
function in Im z > 0. Then, by (i) and (ii),

H̃ := G(D)xF +G ∈ X ∩H(ω∗)
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and its boundary value is S. Therefore the function defined as
H(z) − H̃(z) if Im z > 0 and vanishing in the lower half-plane has
boundary value 0 and it can be extended to an entire function from
where it follows that H = H̃ ∈ X.

Finally we observe that for each H ∈ H(ω∗) such that H vanishes on
Im z < 0, there is λ ∈ R such that

|eiλzH(z)| ≤ Cekω
∗(Imz/k), Im z > 0

for some C > 0, k ∈ N. Hence eiλzH(z), and consequently H, belongs
to X.

To finish the proof we discuss the Roumieu case. We only have to
prove that a holomorphic function H in C \ R with

|H(z)| ≤ Cne(1/n)ω∗(n|Im z|)

for every n ∈ N and vanishing on the lower half-plane is in X. To do
this we put S := T (H) ∈ D′L1,{ω}(R), the boundary value of H, and
we find a weight σ, not necessarily with the property (α1), such that
σ = o(ω) and S ∈ D′L1,(σ)(R) [7, 3.1]. It follows from the proof of
the proposition in the Beurling case that there are an ultradifferential
operator G(D) of class (σ) and two bounded holomorphic functions
F and G in the upper half-plane such that S is the boundary value in
D′L1,{ω}(R) of G(D)xF+G. ConsequentlyH and G(D)xF+G have the
same boundary value in D′L1,{ω}(R) and therefore H = G(D)xF +G.
Since G(D) is an ultradifferential operator of class {ω} we get that
H ∈ X.

Remark. Let F be a holomorphic function in C\R. Then F ∈ H{ω∗}
if and only if there is a weight σ, not necessarily satisfying the property
(α1), such that F ∈ H(σ∗).

To show that the boundary value map is surjective, we have used that
the exponential exp(−iz) belongs to Hω∗ . As the following shows, this
is essential for surjectivity.

Example. The characteristic function of the interval ]−∞, 0] is not
the boundary value in D′L1,∗(R) of any function in {F ∈ H(C \ R) :
supz∈C\R |F (z)|e−nω∗(|Im z|/n) < ∞ for some n ∈ N}.



BOUNDED, ALMOST PERIODIC ULTRADISTRIBUTIONS 1309

Assume that the characteristic function of the interval ]−∞, 0] is the
boundary value of a function F in the space above. Then, proceeding
as in the proof of Proposition 5, it is easy to see that for 0 < |Im z| < 1,

2πiF ′(z) = G(z) +
1
z

where

G(z) =
∫
R−i

F (ξ)
(ξ − z)2

dξ −
∫
R+i

F (ξ)
(ξ − z)2

dξ.

Observe that |F ′(z)| ≤ Cenω
∗(|Im z|/n), for some constants C, n, there-

fore it is bounded in (1/2) < |Im z|, and that G is holomorphic in
|Im z| < 1 and bounded in |Im z| < 2/3. Hence G̃(z) := G(z) for
|Im z| < 1 and G̃(z) := 2πiF ′(z) − 1/z for z ∈ C \ R is a bounded
entire function, therefore it is constant. This implies that there is
a D ∈ C such that 2πiF (z) − Dz − L(z) is constant in the upper, or
lower, half-plane, where L denotes a continuous branch of the logarithm
in the upper, or lower, half-plane, which contradicts the estimates for
the growth of F .

Finally we characterize the almost periodic ∗-ultradistributions that
are boundary values of holomorphic functions in Hω∗ vanishing in a
half-plane. If S ∈ D′L1,∗(R) is an almost periodic ultradistribution,
then the Fourier coefficients of S are defined as

CS(λ) :=
M(e−iλxS ∗ ϕ)

ϕ̂(0)

where ϕ is a fixed test function ϕ ∈ D∗(R) such that ϕ̂(0) �= 0 and
M(e−iλxS ∗ϕ) denotes the mean value of the almost periodic function
e−iλxS ∗ ϕ (see [7] for details). The former definition does not depend
on the fixed function ϕ, and the spectrum of S,

ΛS := {λ ∈ R : CS(λ) �= 0}

is countable.

Proposition 7. Let S be an almost periodic ∗-ultradistribution.
Then S is the boundary value of F ∈ Hω∗ vanishing on Im z < 0
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(respectively Im z > 0), if and only if ΛS is bounded below (respectively
ΛS is bounded above).

Proof. Let us assume that the spectrum ΛS is bounded below. It
easily follows from [7, 4.2] that we can represent S = G(D)f +h where
f and h are almost periodic functions, G(D) is an ∗-ultradifferential
operator and ΛS = Λf ∪ Λh. Therefore f and h are almost periodic
functions whose spectra are bounded below. Applying [9, IV, 1.1]
we find F and H holomorphic functions in the upper half-plane and
continuous in its closure such that F|R = f and H|R = h and

|F (z)| ≤ CeλIm z, |H(z)| ≤ Ceλ Im z for Im z ≥ 0

and for some constants C > 0, λ > 0. For Im z < 0, we put
F (z) = H(z) = 0. Then F,H ∈ Hω∗ and consequently

G(D)xF +H ∈ Hω∗

and it has S as its boundary value.

Conversely, let F ∈ Hω∗ be such that F (x + iε) converges to S
as ε → 0+. There is µ > 0 such that if H(z) := eiµzF (z), then

|H(z)| ≤ Cekω
∗
(
Im z/k

)
for Im z > 0 and some C, k > 0. Let ϕ ∈ D∗(R)

be given. Proceeding as in Lemma 4, we show that (H ∗ϕ) is bounded
in the upper half-plane and has boundary value eiµxS ∗ϕ. Applying [9,
IV, 1.1] we have that the spectrum of eiµxS ∗ϕ is bounded below by 0.
Since this holds for arbitrary ϕ ∈ D∗(R) we conclude that the spectrum
of eiµxS consists of nonnegative real numbers, hence ΛS ⊂ [−µ,+∞[
and the proposition is proved.
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