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ON THE SPACE OF VECTOR-VALUED FUNCTIONS
OF BOUNDED VARIATION

KAZUAKI KITAHARA

ABSTRACT. If the space of all real-valued functions of
bounded variation on a real closed interval is endowed with
the topology of simple convergence, then every bounded sub-
set which is bounded for the values of total variation is rela-
tively sequentially compact by Helly’s selection principle. In
this paper, by treating vector-valued functions on a linearly
ordered set, we consider an extension of this classical result.

1. Introduction. If the space BV]a,b] of all real-valued functions
of bounded variation on the real closed interval [a, b] is endowed with
the topology of simple convergence, then, by Helly [1], every subset of
BV]a, b], of the form {f|max|f(z)] £ C,V*[f] £ K}, is sequentially
compact, where the positive numbers C, K are constants and V,*[f]
denotes the total variation of f.

In this paper, to give an interesting extension of this classical result,
we consider a space of vector-valued functions on a linearly ordered
interval of bounded variation, which take values in a locally convex
space E. Then we examine conditions on E under which analogs of
Helly’s result are valid.

Let E(7) be a sequentially complete Hausdorff locally convex space
over the real or complex field. E’ denotes the dual of E(r). We
write I' = {px|]\ € A} for a system of saturated semi-norms on E
generating the topology 7. A linearly ordered interval with a maximum
and a minimum element is denoted by [a, b] and its cardinal number is

denoted by [a, b]. For simplicity we write F(7,) for the product space
[lacrap Eala), where Ey (7o) = E(r) for all a € [a, b] and write F' for
the direct sum @q¢[q,p)Ef,. The reader is referred to [4] for terminology
used in this article.
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2. Definition.

DEFINITION. Let [a,b] be a linearly ordered interval and E(7) be a
locally convex space. For an arbitrary E-valued function f defined on

[a, b], we set VA(f,pr) = 2?2—01 Pa(f(ai+1)—f(a;)) for every py € T and
for every finite subset A = {a;,0<i<n,a=ap<a; <---<a,=>b}
of [a,b]. Then the extended real number V(f,py) = supx Va(f,pa) is
called the total variation of f on [a,b] with p,.

The E-valued function f(z) is said to be of bounded variation if
V(f,pr) < oo for every py € I'. The space of all E-valued functions
on [a,b] that are of bounded variation is denoted by BVg[a,b], for
simplicity denoted by BV g.

3. On BVEg]a,b].
PROPOSITION 1. BV is a dense subspace of F (7).

PROOF. BV contains ©q¢[q,5) Fo which is dense in F/(7,). O

NOTATION 1. Using every semi-norm py € I', we define a semi-
norm sy on BVg by sx(f) = pa(f(0)) + V(f,pa) for all f € BVg. The
locally convex topology which is generated by the system of semi-norms
{5x(*)} ren is denoted by 7.

If 7, is the induced topology on BV g from F(7,), we obtain
PROPOSITION 2. 7, is finer than Tp.

ProOOF. If, for each A € A, we take a T7,-neighborhood W

{flsx(f) = 1} of 0, then px(f(7)) = pa(f(v) — (b)) + pA(f (D)) ;
sx(f) £ 1forall f € W and v € [a, b], which leads to the conclusion. O

Since it is assumed that F(7) is sequentially complete, we can show

PROPOSITION 3. BVg(7,) is sequentially complete.
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PROOF. Let (f,)n be an arbitrary 7,-Cauchy sequence. Since each
sequence (fn(a))n, € [a,b] is a Cauchy sequence in E,(1y) by
Proposition 2, we can define an E-valued function f on [a,b] with
f(a) = lim, f,(a) and easily see that f belongs to BVg and f,
converges to f in BVg(7,). O

REMARK 1. (1) By Proposition 1, BVg and F’ form a dual pair.

(2) If the dual of BVg(7,) is denoted by Wgla,b] (We write Wg
for short.), F' which is the dual of BVg(7,) is a subspace of Wg by
Proposition 2.

Before giving the next proposition, we prepare some notations.

NOTATION 2. (1) For each A € A, let 7 be a locally convex topology
on E generated by the semi-norm py (7 is not necessarily Hausdorft.).
Then we denote by E’(\) the dual of E(r), which is a linear subspace
of E'. We can give a well defined norm || - ||» on E’()) such that
|lul[x = min{m|[(u, 2)| < m - px(z), z € E}.

(2) For each A € A, we can define a norm || - [|3, on F} =
@acla,b) Ey(A), where E (X) = E’(A) for each a € [a,b], such that
10112 = supi<j<n [1 32721 v(ai)f} for all v = (v(a))a € F, provided
each v(a;),1 < i < n, is a nonzero element of £; (\) and a < a; <
ag < -+ <ap<h

Now we obtain

PROPOSITION 4. On the linear subspace Fy = @qclapEe(N) of
F'.B) = {ulu = (u(a))a € F,||ully, £ m} for each m € N and,
for each X € A, is o(F',BVg)-bounded.
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PROOF. For each f € BVg and each u € B}, we have

[, )] = i< e )~ f(aj+1)>+<iu(ai),f(b)>‘
< (),

where u vanishes except at a;,1 £ ¢ < n and a,4; = b. Hence this
inequality shows the boundedness of B}. O

PROPOSITION 5. The polar B, in BVg of B), in Proposition 4 is
{flsx £1/m,f € BVg} for each m € N and for each A € A. Hence
each sy, A € A, is a B(BVg, F')-continuous semi-norm.

PROOF. From the proof of Proposition 4, we have sx(f) = V(f,px) +
pA(£(0)) = sup{|{u, f)| | |Jullly £ 1l,u € Fj}. Hence we obtain
By = {f|sa(f) £ 1,f € BVg}. Similarly, the polar B} of B),
in BV is shown by replacing 1 with 1/m. 0

PROPOSITION 6. In BVg, 8(BVEg, F')-boundedness is identical with
T, -boundedness.

PROOF. Since 7, is finer than 7, on BVg by Proposition 2,

B(BVE, Wg) is finer than 3(BVg, F’). Further, 3(BVg, F’) is finer
than 7, by Proposition 5. On the other hand, 7,-bounded and
B(BV g, Wg)-bounded subsets of BVg are the same by Proposition
3 and the proposition in Koéthe [4 see Chapter 4, §20-11-(3)]. Hence
B(BVg, F')-boundedness is identical with 7,-boundedness. O

By Proposition 6, any 3(BVg, F')-bounded subset is contained in a
subset of the form B = {f|sA(f) £ Mx,M, > 0 for each A € A, f €
BVEg}. Finally we examine the closure in F(o(F, F")) of B.

PROPOSITION 7. The closure in F(o(F,F')) of every 3(BVg, F')-
bounded subset is contained in BVg.
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PROOF. As is mentioned above, it is sufficient to show that each
B(BVg, F')-bounded subset B = {f|sA(f) £ M, (> 0) for each
A€ A, f €BVg}lisclosed in F(o(F, F')). By the proofs of Proposition
4 and 5, every subset By = {f|sA(f) £ M\, My >0,f € F},A € A,
is o(F, F')-closed. Since B = Nyca By C BV, we can easily verify the
above fact.

4. Main theorem. In this section, we consider the following
question: For what locally convex spaces E(7) is every bounded subset
of BVg(c(BVg, F')) such that, for each semi-norm py € T', the values
of total variation are uniformly bounded (i.e., every 7,-bounded subset)
relatively compact? Since a subset B of BV (c(BVg, F')) is a bounded
subset mentioned above if and only if B is strongly bounded by
Proposition 6, the problem we consider is transformed as follows: under
what locally convex space E(7), is every strongly bounded subset of
BVEg(c(BVEg, F')) relatively compact or B-semi-Montel (see Kitahara
[3]). Now, using the propositions of §3, we can state

THEOREM. BV g(0(BVg, F')) is §-semi-Montel if and only if E(T) is
semi-reflexive. In particular, BVg(c(BVg, F')) is semi-Montel if and

only if E(1) is semi-reflezive and [a,b] is finite.

PROOF. If BVE(o(BVEg, F')) is -semi-Montel, the closed subspace
E, ={f|f(a)=2, z€E, f(y)=0forally € (a,b]} of BVE(c(BVpg, F))
is B-semi-Montel by Proposition 5 in Kitahara [3]. Furthermore,
E,(c(BVg, F')) is linearly homeomorphic to E(c(E, E’)) (see Chap-
ter 4, §22-5-(3) in Kothe [4]). Since E(7) is sequentially complete,
o(E, E")-boundedness is identical with 3(FE, E’)-boundedness by the
same argument as in the proof of Proposition 6. Thus an arbitrary
closed o(E, E')-bounded subset is o(E, E’)-compact. Conversely sup-
pose that E(7) is semi-reflexive and F(o(F, F")) is semi-Montel. Since
an arbitrary closed 8(BVg, F’)-bounded subset in BVg(o(BVEg, F'))
is o(F, F')-bounded and closed in F(o(F,F")) by Proposition 7, it is
o(BVEg, F')-compact. Hence BVg(c(BVg, F')) is B-semi-Montel.
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Suppose that BVg(c(BVEg, F')) is semi-Montel and [ﬁ] is not finite.
Then we can easily find a Cauchy sequence converging to a function of
which the total variation is not finite, which leads to a contradiction.

Finally, if E(7) is semi-reflexive and [a, b] is finite, BVg(c(BVEg, F'))
is semi-Montel from F' = BVpg.

COROLLARY 1. If E(7) is a Banach space, BVg(c(BVEg, F")) is 8-
semi-Montel if and only if E(7) is reflexive.

From sequence spaces, we set bv = {f|f € K~, K is R or
C, lim, >, |f(¢+ 1) — f(i)| exists.} (see Chapter 2, §2 in Kamthan
and Gupta [2]).

COROLLARY 2. The sequence space bv(ty) endowed with the topology
of simple convergence is B-Montel.

PROOF. As a linearly ordered interval, we consider the positive inte-
gers and infinity Z1 with the usual order. By Theorem, BV [Z1 ](7)
is B-semi-Montel, where K is the real or complex field and 7, is the
topology of simple convergence. Then BVg[Z1]o(7s) = {f|f €
BVk[ZZ], f(co) = 0} is linearly homeomorphic to bv(7g) and is a closed
subspace of BV [Z1 ](7s). Thus bu(rp) is B-semi-Montel by Proposi-
tion 5 in Kitahara [3]. Clearly, since each strongly bounded subset in
the weak dual of bu(7y) is finite dimensional, bv(y) is infrabarrelled. O

The author wishes to express his gratitude to the referee who gave
him many variable comments on this article.
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