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ZERO-ONE SET FUNCTIONS

AND ABSOLUTE CONTINUITY

WILLIAM D.L. APPLING

ABSTRACT. Suppose that U is a set and F is a field of
subsets of U . By means of functions from F into {0, 1},
there are obtained a finitely additive analogue of a classical
absolute continuity partitioning theorem, a characterization of
uniform absolute continuity, and an elementary argument for
a theorem equivalent to a uniform absolute continuity theorem
of Brooks and Dinculeanu (J. Math. Anal. Appl. 15 (1974),
156-175.)

1. Introduction. Let us begin by stating a well-known absolute
continuity partitioning theorem.

THEOREM. Suppose that U is a set, S is a σ-field of subsets of U ,
each of μ and ξ is a real nonnegative-valued countably additive measure
on S, and ξ is absolutely continuous with respect to μ. Then there is a
sequence {Vk}∞k=1 of mutually exclusive sets of S such that ∪∞

k=1Vk = U
and such that if n is a positive integer, W is in S and W ⊆ Vn, then
(n − 1)μ(W ) ≤ ξ(W ) ≤ nμ(W ).

The heuristic notion that underlies much of this paper is that, for the
finitely additive case, zero-one set functions bear strong similarity to
the elements of a σ-field.

We give the basic setting of this paper and then state the first of our
three main theorems. It is a finitely additive analogue of the above
theorem.

Suppose that U is a set, F is a field of subsets of U , ba(F) is the
set of all real-valued bounded finitely additive functions defined on F,
and, for each μ in ba(F), Aµ denotes the set of all elements of ba(F)
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2 W.D.L. APPLING

absolutely continuous with respect to μ. Let ba(F)+ denote the set of
all nonnegative-valued elements of ba(F).

Now, in the theorem stated immediately below, certain of the notions
will be zero-one set function analogues of notions of the theorem given
above. We shall indicate, by appropriate parenthetical remarks, the
comparison to be made.

THEOREM 3.2. (see §3). Suppose that each of μ and ξ is in ba(F)+

and ξ is in Aµ. Then there is a sequence {βk}∞k=1 of functions from F
into {0, 1} such that:

(i) if n is a positive integer, then the integral (see §2)
∫

U
βn(I)μ(I)

exists,

(ii) for each I in F and pair of distinct positive integers k′ and
k′′, βk′(I)βk′′(I) = 0 (“mutually exclusive”),

(iii) if n is a positive integer and γ is a function from F into
{0, 1} such that

∫
U

γ(I)μ(I) exists and 0 =
∫

U
γ(I)[1 − βn(I)]μ(I)

(“inclusion”), then (n − 1)
∫
U

γ(I)μ(I) ≤ ∫
U

γ(I)ξ(I) ≤ n
∫
U

γ(I)μ(I),
and

(iv)
∑∞

k=1

∫
U

βk(I)μ(I) = μ(U) (“union U”).

In various papers [2, 4, 6, 8, 9, 10, 11, 12, 13], functions from F
into {0, 1} figure nontrivially in the analysis of such things as absolute
continuity, the existence of various set function integrals (see §2), and
the representation of certain bounded finitely additive set functions.

With our analogues somewhat more specifically in mind, we state and
discuss the second and third of our main theorems.

THEOREM 4.1. (see §4). Suppose that μ is in ba(F)+ and G ⊆
Aµ ∩ ba(F)+ (we shall, without loss of generality, confine our attention
to ba(F)+). Then the following two statements are equivalent:

(1) G is uniformly absolutely continuous with respect to μ.

(2) Suppose that {βk}∞k=1 is a sequence of functions from F into {0, 1}
such that if r and s are distinct positive integers, then the integrals∫

U
βr(I)μ(I) and

∫
U

βs(I)μ(I) exist and
∫

U
min{βr(I), βs(I)}μ(I) = 0.

Then
∫

U
βn(I)ξ(I) → 0 as n → ∞, for ξ in G, uniformly on G.
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Certain parts of the above theorem are consequences of theorems of
Bell [12]; however, in the interests of self-containment, we give our own
arguments.

THEOREM 5.1. (see §5). Suppose that η is in ba(F)+, G ⊆
ba(F)+, G is uniformly absolutely continuous with respect to η, μ is
in ba(F)+, G ⊆ Aµ and λ is the element of Aµ given by λ(V ) =
sup{∫

V
min {η(I), Kμ(I)} : 0 ≤ K} (see §2). Then G is uniformly

absolutely continuous with respect to λ (and so, trivially, with respect
to μ; in the cited theorem of [14] the hypothesis is equivalent to that
of Theorem 5.1 and the conclusion is the uniform absolute continuity
with respect to μ).

Clearly, Theorem 5.1 is a consequence of the theorem of Brooks
and Dinculeanu cited. However, the point that we wish to make
is that Theorem 5.1 follows in an immediate way from very simple
considerations involving zero-one set functions. A fact central to the
matter, which we shall state again in §2 for reference in proving this
result, is that if each of ξ, ζ and ξ − ζ is in ba(F)+, then

∫
U

min{ξ(I)
−ζ(I), ζ(I)} = 0 if and only if, for some function β from F into
{0, 1} and each V in F,

∫
V

β(I)ξ(I) exists and is ζ(V ) (see [8]). As
the reader shall see, this fact and a very elementary “invariance of
uniform absolute continuity” lemma, together with some simple well-
known things about absolute continuity, are essentially all that are
needed to obtain Theorem 5.1.

2. Preliminary theorems and definitions. We let r(F) denote
the set of all functions from F into exp(R). If γ is a function from F
into R, then we regard γ as equivalent to the element δ of r(F) given,
for each I in F, by δ(I) = {γ(I)}. We let b(F) denote the set of all
elements of r(F) with bounded range union.

We refer the reader to [3] and [9] for the notions of subdivision, re-
finement, integral, sum supremum functional, sum infimum functional
and integral function that we shall use in this paper. The reader is also
referred to [3] for a statement of Kolmogoroff’s [15] differential equiv-
alence theorem, as well as certain of its more immediate consequences,
and is further referred to [3] for certain elementary integral existence
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assertions. When, in this paper, a given integral existence or equiva-
lence assertion is a simple consequence of the material of this section,
we shall feel free to simply write the assertion and leave the details to
the reader.

We shall let “E � D” mean that E is a refinement of D. If V is
in F, D � {V }, and α is in r(F), then the statement that b is an α-
function on D means that b is a function with domain D such that if I
is in D, then b(I) is in α(I).

In the interests of consistency, we give the following minor modifica-
tion of the notion of characteristic function of a set V of F:

Definition 2.1. If V is in F, then X(V ) is the function with domain
F such that, for each I in F, X(V )(I) = 1 if I ⊆ V , and X(V )(I) = 0
otherwise.

We give some results about absolute continuity and quasi mutual
singularity.

For each ξ and μ in ba(F)+, we let

λµ(ξ) =
{(

V, sup
{ ∫

V

min{ξ(I), Kμ(I)} : 0 ≤ K
})

: V in F
}

.

THEOREM 2.A.1. [1]. If each of ξ and μ is in ba(F)+, then λµ(ξ) is in
Aµ∩ba(F )+, ξ−λµ(ξ) is in ba(F)+ and

∫
U

min{ξ(I)−λµ(ξ)(I), μ(I)} =
0.

THEOREM 2.A.2. [1]. If μ is in ba(F)+, η is in Aµ ∩ ba(F)+ and∫
U

min{η(I), μ(I)} = 0, then η(U) = 0.

COROLLARY 2.A.1. [1]. If each of ξ and μ is in ba(F)+, then ξ is in
Aµ if and only if ξ = λµ(ξ).

The next two corollaries are very easy consequences of the imme-
diately preceding two theorems, corollary and matters treated in the
reference cited.
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COROLLARY 2.A.2. [1]. If each of ζ and μ is in ba(F)+, η is in
Aµ ∩ ba(F)+ and

∫
U

min{ζ(I), μ(I)} = 0, then
∫

U
min{ζ(I), η(I)} = 0.

COROLLARY 2.A.3. [1]. If each of ξ and μ is in ba(F)+, then∫
U

min{ξ(I) − λµ(ξ)(I), λµ(ξ)(I)} = 0.

THEOREM 2.A.3. [8]. If each of ξ, ζ and ξ − ζ is in ba(F)+, then∫
U

min{ξ(I) − ζ(I), ζ(I)} = 0 if and only if there is a function β from
F into {0, 1} such that if V is in F, then

∫
V

β(I)ξ(I) exists and is ζ(V ).

We now state two theorems, the first of which is half of a continuity
characterization theorem and the second of which is a combination
of half of a previous absolute continuity characterization theorem and
invariance of absolute continuity theorem.

THEOREM 2.A.4. [7]. If N is a positive integer, {[ak, bk]}N
k=1 is a se-

quence of number intervals, f is a real-valued continuous function with
domain [a1, b1]×· · ·×[aN , bN ], ξ is in ba(F)+ and {αk}N

k=1 is a sequence
of elements of b(F) such that, for all k = 1, . . . , N , the range union of
αk ⊆ [ak, bk] and

∫
U

αk(I)ξ(I) exists, then
∫

U
f(α1(I), . . . , αN (I))ξ(I)

exists.

THEOREM 2.A.5. [4, 5]. If α is in b(F), μ is in ba(F)+, ξ is in
Aµ ∩ ba(F)+ and

∫
U

α(I)μ(I) exists, then
∫

U
α(I)ξ(I) exists and

∫
αξ

is absolutely continuous with respect to
∫

αμ.

We end this section by stating three theorems that we shall use in
subsequent sections. The proof of the first is quite routine and we leave
it to the reader. The proofs of the second and third are in [9].

THEOREM 2.1. Suppose that μ is in ba(F)+, ξ is in Aµ ∩ ba(F)+, β
is in b(F),

∫
U

β(I)μ(I) exists, {αk}∞k=1 is a sequence of elements
of b(F), M > 0, for each n, range union of αn ⊆ [−M, M ] and∫

U
αn(I)μ(I) exists. Suppose that

∫
U
|β(I)−αn(I)|μ(I) → 0 as n → ∞.
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Then
∫

U
β(I)ξ(I) exists and, for each n,

∫
U

αn(I)ξ(I) exists (by Theo-
rem 2.A.1), and

∫
U
|β(I) − αn(I)|ξ(I) → 0 as n → ∞.

THEOREM 2.A.6. [9]. If μ is in ba(F) and M is a closed and bounded
subset of R, then {∫ αμ : α a function from F into exp(M),

∫
U

α(I)μ(I)
exists} is closed in ba(F) with respect to variation norm.

THEOREM 2.A.7. [9]. Suppose that M is a closed and bounded subset
of R, α is a function from F into exp(M) and μ is in ba(F). Then there
is a function β from F into M such that if V is in F then

∫
V

β(I)μ(I)
exists and is

∫
V

L(αμ)(I), L being the sum supremum functional.

3. A partitioning theorem. In this section we prove Theorem 3.2,
as stated in the introduction. We begin with a lemma, well-known and
easily shown, and a theorem.

LEMMA 3.1. If each of ξ and μ is in ba(F)+, then ξ is in Aµ if
and only if, for each c > 0 and M > 0, there is a d > 0 such that if
D � {U}, b is a function from D into [O, M ] and

∑
D b(I)μ(I) < d,

then
∑

D b(I)ξ(I) < c.

THEOREM 3.1. Suppose that each of η and μ is in ba(F)+, η is in
Aµ and 0 < H. Then there is a function β from F into {0, 1} such
that

∫
U

β(I)μ(I) exists and such that if γ is a function from F into
{0, 1} such that

∫
U

γ(I)μ(I) exists, then if 0 =
∫

U
γ(I)[1 − β(I)]μ(I)

then
∫

U
γ(I)η(I) ≤ H

∫
U

γ(I)μ(I), and if 0 =
∫

U
γ(I)β(I)μ(I) then∫

U
γ(I)η(I) ≥ H

∫
U

γ(I)μ(I).

PROOF. There is a function φ from F into {0, 1} such that, for each
I in F, φ(I) = 1 if η(I) ≤ Hμ(I), and φ(I) = 0 otherwise. By Theorem
2.A.7, there is a function β from F into {0, 1} such that, for each V in
F,

∫
V

β(I)μ(I) exists and is
∫

V
L(φμ)(I).

Now, suppose that γ is a function from F into {0, 1} such that∫
U

γ(I)μ(I) exists and 0 =
∫

U
γ(I)[1− β(I)]μ(I). Suppose that 0 < c′.

Let c = c′/(4(H + 1)). By Lemma 3.1, there is d′ > 0 such that if
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D � {U}, b is a function from D into [0, 1] and
∑

D b(I)μ(I) < d′,
then

∑
D b(I)η(I)<c. Let d = min{d′, c}. There is a D � { U} such

that if E � D, then | ∫
U

γ(I)μ(I)− ∑
E γ(J)μ(J)| < c, | ∫

U
γ(I)η(I)−∑

E γ(J)η(J)| < c,
∑

E |[L(φμ)(J)/μ(J)] − β(J)|μ(J) < d/2 and∑
E γ(J)(1−β(J))μ(J) < d, this last inequality implying that

∑
E γ(J)

(1 − β(J))η(J) < c. For each I in D, there is E(I) � {I} such
that L(φμ)(I) − ∑

E(I) φ(J)μ(J) < d/2N , where N is the number
of elements of D, so that

∑
D

∑
E(I) |[L(φμ)(J)/μ(J)] − φ(J)|μ(J) ≤∑

D[L(φμ)(I)− ∑
E(I) φ(J)μ(J)] < Nd/2N = d/2, which implies that

∑
D

∑
E(I)

γ(J)|β(J) − φ(J)|μ(J)

≤
∑
D

∑
E(I)

|β(J) − φ(J)|μ(J)

≤
∑
D

∑
E(I)|β(J) − [L(φμ)(J)/μ(J)]|μ(J)

+
∑
D

∑
E(I)|[L(φμ)(J)/μ(J)] − φ(J)|μ(J)

< d/2 + d/2 = d,

so that
∑

D

∑
E(I) γ(J)|β(J) − φ(J)|η(J) < c. Now,

∫
U

γ(I)η(I) < c +
∑
D

∑
E(I)

γ(J)η(J)

< c + c +
∑
D

∑
E(I)

γ(J)qβ(J)η(J)

< 2c + c +
∑
D

∑
E(I)

γ(J)φ(J)η(J)

≤ 3c +
∑
D

∑
E(I)

γ(J)Hμ(J)

≤ 3c + H[
∫

U

γ(I)μ(I) + c]

= (3 + H)c + H

∫
U

γ(I)μ(I) < c′ + H

∫
U

γ(I)μ(I).

It therefore follows that
∫

U
γ(I)η(I) ≤ H

∫
U

γ(I)μ(I).
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Now, suppose that γ is a function from F into {0, 1} such that∫
U

γ(I)μ(I) exists and 0 =
∫

U
γ(I)β(I)μ(I). The initial part of

this portion is nearly a repetition of the preceding paragraph, ex-
cept that the inequality

∑
E γ(J)(1 − β(J))μ(J) < d is replaced by∑

E γ(J)β(J)μ(J) < d (which, by implication, replaces the inequality∑
E γ(J)(1−β(J))η(J) < c with

∑
E γ(J)β(J)η(J) < c). Accordingly,

we have that
∫

U

γ(I)η(I)

> −c +
∑
D

∑
E(I)

γ(J)η(J)

≥ −c +
∑
D

∑
E(I)

γ(J)(1 − φ(J))η(J)

≥ −c +
∑
D

∑
E(I)

γ(J)H(1 − φ(J))μ(J)

= −c + H
∑
D

∑
E(I)

γ(J)μ(J) − H
∑
D

∑
E(I)

γ(J)φ(J)μ(J)

≥ −c + H[
∫

U

γ(I)μ(I) − c] − H[
∑
D

∑
E(I)

γ(J)β(J)μ(J) + c]

≥ −c + H

∫
U

γ(I)μ(I) − 3Hc

> H

∫
U

γ(I)μ(I) − c′.

Therefore
∫

U
γ(I)η(I) ≥ H

∫
U

γ(I)μ(I).

Proof of Theorem 3.2. By Theorem 3.1, there is a sequence
{δn}∞n=1 of functions from F into {0, 1} such that if n is a positive
integer then

∫
U

δn(I)μ(I) exists, and if γ is a function from F into
{0, 1} such that

∫
U

γ(I)μ(I) exists, then if 0 =
∫

U
γ(I)[1 − δn(I)]μ(I)

then
∫

U
γ(I)ξ(I) ≤ n

∫
U

γ(I)μ(I), and if 0 =
∫

U
γ(I)δn(I)μ(I) then∫

U
γ(I)ξ(I) ≥ n

∫
U

γ(I)μ(I).

We define the sequence {βk}∞k=1 as follows: β1 = δ1, and if n is a
positive integer > 1, then βn =

( ∏n−1
k=1(1 − δk)

)
δn.
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Clearly, if n is a positive integer, then
∫

U
βn(I)μ(I) exists.

Suppose that m and n are positive integers, m < n and I is in F.
Since δm(I) is a factor of βm(I) and 1− δm(I) is a factor of βn(I) and
δm(I)(1 − δm(I)) = 0, it follows that βm(I)βn(I) = 0.

Now, suppose that γ is a function from F into {0, 1} such that∫
U

γ(I)μ(I) exists and n is a positive integer such that
∫

U
γ((I))(1− βn(I))

μ(I) = 0. If n = 1, then βn = β1 = δ1, so that (1 − 1)
∫

U
γ(I)μ(I) =

0 ≤ ∫
U

γ(I)ξ(I) ≤ 1
∫

U
γ(I)μ(I). Suppose that 1 < n. Since

βn =
(∏n−1

k=1(1 − δk)
)
δn, it follows that

0 ≤ max
{ ∫

U

γ(I)(1 − δ(I))μ(I),
∫

U

γ(I)δn−1(I)μ(I)
}

= max
{ ∫

U

γ(I)(1 − δn(I))μ(I),
∫

U

γ(I)(1 − (1 − δn−1(I)))μ(I)
}

≤
∫

U

γ(I)(1 −
( n−1∏

k=1

(1 − δk(I))
)
δn(I))μ(I) = 0,

so that (n − 1)
∫
U

γ(I)μ(I) ≤ ∫
U

γ(I)ξ(I) ≤ n
∫

U
γ(I)μ(I).

Finally, we show that
∑∞

k=1

∫
U

βk(I)μ(I) = μ(U). First, δ1+
(1 − δ1) = 1. If m is a positive integer and

(∑m
k=1 βk

)
+

( ∏m
k=1(1 −

δk)
)

= 1, then

( m+1∑
k=1

βk

)
+

( m+1∏
k=1

(1 − δk)
)

=
( m∑

k=1

βk

)
+

( m∏
k=1

(1 − δk)
)
δm+1 +

( m∏
k=1

(1 − δk)
)
(1 − δm+1)

=
( m∑

k=1

βk

)
+

m∏
k=1

(1 − δk) = 1.
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Thus, by induction, for all positive integers n,

( n∑
k=1

βk

)
+

n∏
k=1

(1 − δk) = 1,

so that

n+1∑
k=1

∫
U

βk(I)μ(I)

=
∫

U

[( n∑
k=1

βk(I)
)

+
( n∏

k=1

(1 − δk(I))
)
δn+1(I)

]
μ(I)

=
∫

U

[( n∑
k=1

βk(I)
)

+
( n∏

k=1

(1 − δk(I))
)

−
(
πn

k=1(1 − δk(I))
)
(1 − δn+1(I))

]
μ(I)

=
∫

U

[
1 −

n+1∏
k=1

(1 − δk(I))
]
μ(I)

= μ(U) −
∫

U

( n+1∏
k=1

(1 − δk(I))
)
μ(I).

Now,
∫

U

(
Πn+1

k=1(1 − δk(I))
)
μ(I) ≤ ∫

U
(1 − δn+1(I))μ(I). Since δn+1 =

δn+1δn+1, it follows that
∫

U
(1 − δn+1(I))δn+1(I)μ(I) =

∫
U

(δn+1(I) −
δn+1(I)δn+1(I))μ(I) = 0, so that (n+1)

∫
U

(1− δn+1(I))μ(I) ≤ ∫
U

(1−
δn+1(I)ξ)(I) ≤ ξ(U), so that

∫
U

(1 − δn+1(I))μ(I) ≤ (1/(n + 1))ξ(U).
Clearly, then,

∫
U

(
Πn+1

k=1(1 − δk(I))
)
μ(I) → 0 as n → ∞, so that∑∞

k=1

∫
U

βk(I)μ(I) = μ(U).

4. A uniform absolute continuity characterization theorem.
In this section we prove Theorem 4.1, as stated in the introduction.

We begin by stating a lemma which can be easily established by a
routine induction argument.

LEMMA 4.1. Suppose that n is a positive integer and {ηk}n+1
k=1 is

a sequence of elements of ba(F)+ such that if r and s are distinct
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positive integers ≤ n + 1, then
∫

U
min{ηr(I), ηs(I)} = 0. Then,

if V is in F, 0 =
∫

V
min{η1(I), . . . , ηn+1(I)} and

∑n+1
k=1 ηk(V ) =∫

V
max{η1(I), . . . , ηn+1(I)}.

Proof of Theorem 4.1. Suppose that (1) is true and the hypothe-
sis of (2) is satisfied. From Lemma 4.1 it follows that, for each positive
integer n,

∑n+1
k=1

∫
U

βk(I)μ(I) =
∫

U
max{β1(I), . . . , βn+1(I)}μ(I) ≤

μ(U), which implies that
∫

U
βn(I)μ(I) → 0 as n → ∞.

Now suppose that 0<c. There is a d>0 such that if V is in F, μ(V )<
d and ξ is in G, then ξ(V ) < c/2. There is a positive integer N such
that if m is a positive integer ≥ N , then

∫
U

βm(I)μ(I) < d. Suppose
that m is a positive integer ≥ N and ξ is in G. There is D � {U}
such that if E � D, then

∫
U

βm(I)ξ(I) < c/2 +
∑

E βm(W )ξ(W ) and∑
E βm(W )μ(W ) < d, so that if E∗ = {W : W in E, βm(W ) = 1},

then
∑

E∗ μ(W ) =
∑

E βm(W )μ(W ) < d, so that c/2 >
∑

E∗ ξ(W ) =∑
E βm(W )ξ(W ), so that

∫
U

βm(I)ξ(I) < 2c/2 = c.

Therefore (1) implies (2).

Now suppose that (2) is true, but that G is not uniformly absolutely
continuous with respect to μ. Then there is c > 0 such that if d > 0
then there is V in F and ξ in G such that μ(V ) < d, but ξ(V ) ≥ c.
It therefore follows that if η is in G and 0 < h, then there is d > 0
such that if V is in F and μ(V ) < d then η(V ) < h and there is
W in F and ζ in G such that μ(W ) < d, but ζ(W ) ≥ c, and, since
μ(W ) < d, η(W ) < h. It therefore follows by induction that there is
a sequence {Wk}∞k=1 of sets of F and a sequence {ξk}∞k=1 of elements
of G such that, for each nonnegative integer m and positive integer
k, ξk(Wk+m) ≥ c if m = 0, and ξk(Wk+m) < c/2m+1 if m > 0.

If each of m and n is a positive integer, then ξn(∪m
k=1Wn+k) ≤∑m

k=1 ξn(Wn+k) ≤ ∑m
k=1(c/2k+1) < c/2, so that Wn is not a subset of

∪m
k=1Wn+k; furthermore, letting Yn,m = Wn − [Wn ∩ (∪m

k=1Wn+k)] =
Wn−∪m

k=1[Wn∩Wn+k], we see that ξn(Yn,m) = ξn(Wn)−ξ(∪m
k=1[Wn∩

Wn+k]) > c − c/2 = c/2.

Clearly, if each of s, t and n is a positive integer and s ≤ t, then
Yn,t ⊆ Yn,s ⊆ Wn.

Now suppose that each of p, q, s and t is a positive integer and
0 < q − p ≤ t. Then Yp,q−p = Wp − ∪q−p

k=1[Wp ∩ Wp+k], so that if
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x is in Yp,q−p, then x is not in Wp+q−p = Wq implying that, if x is in
Yp,t, then x is in Yp,q−p. Consequently, x is not in Wq and so is not in
Yq,s. Therefore, 0 =

∫
U

min{X(Yp,t)(I), X(Yq,s)(I)}μ(I).

Suppose that n is a positive integer. From the remark preceding
the above paragraph, we see that if each of s and t is a positive
integer and s ≤ t, then

∫
X(Yn,s)μ − ∫

X(Yn,t)μ is in ba(F)+, so
that, by routine considerations, there is an element ηn of ba(F)+ such
that

∫
U
|ηn(I) − ∫

I
X(Yn,v)(J)μ(J)| → 0 as v → ∞. From Theo-

rem 2.A.6 it follows that there is a function βn from F into {0, 1}
such that if V is in F, then

∫
V

βn(I)μ(I) exists and is ηn(V ), so that∫
U
|βn(I) − X(Yn,v)(I)|μ(I) → 0 as v → ∞. This last remark im-

plies two things. First, if p, q, s and t are positive integers and 0 <
q−p ≤ t, then

∫
U

min{βp(I), βq(I)}μ(I) =
∫

U
min{βp(I), βq(I)}μ(I)−∫

U
min{X(Yp,t)(I), X(Yq,s)(I)}μ(I) ≤ ∫

U
|βp(I) − X(Yp,t)(I)|μ(I) +∫

U
|βq(I) − X(Yq,s)(I)|μ(I) → 0 as min{t, s} → ∞, which im-

plies that
∫

U
min{βp(I), βq(I)}μ(I) = 0, so that, by hypothesis,∫

U
βw(I)ξ(I) → 0 as w → ∞ for ξ in G, uniformly on G. Sec-

ond, by Theorem 2.1, for all positive integers n and v, δn,v =∫
U
|βn(I) − X(Yn,v)(I)|ξn(I) → 0 as v → ∞, so that

∫
U

βn(I)ξn(I) ≥∫
U

X(Yn,v)(I)ξn(I)− ∫
U
|X(Yn,v)(I)− βn(I)|ξn(I) = ξn(Yn,v)− δn,v ≥

c/2 − δn,v, which implies that
∫

U
βn(I)ξn(I) ≥ c/2, a contradiction to

the statement that
∫

U
βn(I)ξ(I) → 0 as n → ∞ for ξ in G, uniformly

on G.

Therefore (2) implies (1).

Therefore (1) and (2) are equivalent.

5. A uniform absolute continuity theorem. In this section we
prove Theorem 5.1, as stated in the introduction.

We assume the hypothesis of the theorem and prove a lemma.

LEMMA 5.1. If γ is a function from F into {0, 1} such that∫
U

γ(I)η(I) exists, then (clearly by Theorem 2.A.5)
∫

U
γ(I)ξ(I) exists

for each ξ in G, and
∫

γG, i.e., {∫ γξ : ξ in G}, is uniformly absolutely
continuous with respect to

∫
γη.
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PROOF. Suppose that 0 < c. There is d > 0 such that if W is in F
and η(W ) < d and ξ is in G, then ξ(W ) < c/2. Now, suppose that V
is in F,

∫
V

γ(J)η(J) < d and ξ is in G. There is D � {V } such that
if E � D, then d >

∑
E γ(I)η(I) =

∑
E′ η(I), where E′ = {I : I in

E, γ(I) = 1}, so that c/2 >
∑

E′ ξ(I) =
∑

E γ(I)ξ(I), which implies
that

∫
V

γ(J)ξ(J) ≤ c/2 < c.

Therefore
∫

γG is uniformly absolutely continuous with respect to∫
γη.

We now prove Theorem 5.1.

Proof of Theorem 5.1. Since, by Corollary 2.A.3,
∫

U
min{η(I)−

λµ(η)(I), λµ(η)(I)} = 0, it follows from Theorem 2.A.3 that there is a
function β from F into {0, 1} such that if V is in F, then

∫
V

β(I)η(I)
exists and is λµ(η)(V ).

From Lemma 5.1 it follows that each of
∫

βG and
∫
(1 − β)G is

uniformly absolutely continuous with respect to
∫

βη and
∫

(1 − β)η,
respectively.

Now, suppose that ξ is in G. We shall show that
∫

βξ = ξ. By
Theorem 2.A.1, 0 =

∫
U

min{η(I) − λµ(η)(I), μ(I)} =
∫

U
min{∫

I
(1 −

β(I))η(I), μ(I)}, so that, since
∫

(1 − β)ξ is absolutely continuous
with respect to

∫
(1 − β)η, it follows from Corollary 2.A.2 that 0 =∫

U
min{∫

I
(1 − β(I))ξ(I), μ(I)}. From the hypothesis it clearly follows

that
∫

(1 − β)ξ is in Aµ. Therefore, by Theorem 2.A.2, 0 =
∫

U
(1 −

β(I))ξ(I), so that
∫

βξ = ξ.

It immediately follows, since
∫

βG is uniformly absolutely continuous
with respect to

∫
βη, that G is uniformly absolutely continuous with

respect to
∫

βη and so, trivially, with respect to μ.
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