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ENTROPY OF CERTAIN NONCOMMUTATIVE SHIFTS
HONG-SHENG YIN

ABSTRACT. The entropy of the noncommutative shift of
the hyperfinite II;-factor associated with a sequence of Jones’
projections is computed.

0. Introduction. By the work of V.F.R. Jones [3] and M.Pimsner-S.
Popa [4], for any real number ) in the set (0, 1/4]U{(sec®7/n)/4 : n > 3},
we can find a doubly infinite sequence of projections {e; : i € Z} in the
hyperfinite II;-factor R such that the e;’s generate R as a von Neumann
algebra and satisfy the conditions: (a) e;eje; = Xe; if |1 — j| = 1; (b)
eiej = eje; if |[i—j| > 2; and (c) tr(we,,) = Atr(w), if w is a word on 1 and
{ei : i < n}. Here tr is the unique normal normalized trace on R. Then
e; — e;41 defines an ergodic automorphism © of R [4, §5]. The Connes-
Stormer entropy [2] of ©y, H(©,), was computed by Pimsner-Popa in
[4, §5], among other things. The results are (i) H(©)) = (—In))/2 if
A = (sec?’w/n)/4,n > 3, and (ii) H(©,) = n(t)+n(1—t) if A < 1/4, where
n is the function n(z) = —zIlnz,z € R, and where ¢(1 —t) = A. The case
A = 1/4 is left open [4, p. 92]. In this note we prove H(©;/4) = In2,
thus completing the circle. Pimsner-Popa showed that, when A < 1/4,
the ©, are just the noncommutative Bernoulli shifts of Connes-Stgrmer
and Krieger [2] with weights {¢,1—t}, and thus obtained the entropy by
the computation in [2]. Of course, their approach provides more results
than merely the entropy. However, it seems worthwhile to give a direct
computation of the entropy. We include such a computation hereon.

Our computation is based on the explicit knowledge of the structure of
the finite dimensional algebras A,, = {e1,ea,...,e,}" provided by Jones
[3].
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1. Preliminaries. Let {e; : ¢ € Z} be a sequence of projections
satisfying the conditions (a), (b), (c) of §0 for some A in the Jones
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index set, and let R = {e; : i € Z}". Let Ay, (m < n) be the
von Neumann subalgebra of R generated by €., €m41, - - -, €, and let A,
be Ay . By [3], all A,, ., are finite dimensional. Using the Kolmogorov-
Sinai type theorem of Connes-Stgrmer [2], we can show, as in the first
paragraph of the proof of [4, 5.7], that H(0,) = lim, ., H(As,)/2n
where H(As,) is the entropy of Aj, defined in [2]. Here the point
is that @i(%ﬂ)(Agn) , s = 0,1,2,..., mutually commute and are
trace-independent. Therefore we only need to study the asymptotical
behaviour of H(Az,)/2n. It turns out that lim, ., H(Az2,)/2n will
always exist.

In the remainder of this note, we always assume A < 1/4. The
structure of the algebras A,, was determined in [3, §5]. Recall that 4,, =

69523—1)/2]@2, where QF is the matrix algebra of order (":1) - (Zf})
Here (‘Z) is the binomial coefficient with the convention (_al) = 0.

As in [3, §5], we let {7} = (}) — (,",).- The trace of a minimal
projection in QF is \*P,, 12 0 ()\), k = 0,1,2,...,[(n+1)/2], where P;(x)
is defined by Py(z) = 0, Pi(z) = 1 and Pjy1(z) = Pj(z) — xPj_1(x).
Let pf denote a minimal projection in Q7. We call the numbers
{tr(pp)},k = 0,1,2,...,[(n + 1)/2] (in this order), the weights of the
trace on A,,.

2. H(®1/4) =1n2.

LEMMA 1. Suppose A = 1/4. Then the weights of the trace on
Aop—1 and As, are respectively {(2n — 2k + 1)/4"},k = 0,1,2,...,n
and {(n —k+1)/4"},k=0,1,2,...,n.

PROOF. For n = 1, we can verify this directly. Then use induction. By
3, §5].
tr(py" ") = tr(p"?) — Mr(py" %),

if 0 <k <n—1,and tr(p2*~') = Atr(p2"1®). This proves the statement

n
for As,_1. For As,, the relations are

tr(pp") = tr(py" 1) — Mr(pi" ),

if 0 <k <n—1,and tr(p?") = tr(p?*~1). 0

n
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PROPOSITION 2. H(©1/4) =1n2.

PROOF. We show lim,, o, H(As2,)/2n = In2. By Lemma 1 above and
the property (D) of the function H(-) in [2], we have

H(A2,) 1 < [2n+1 n—k+1
on _%Z{ k }"( 4n )

. 1l &K1 (n—k+1)
(1) o2ne |k 4n

+ln22{2n2—1}(n4li+1)‘

k=0

In(n—k+1)

However,

“(2n+1|(n—k+1)

k=0

12" n+1 on+1
_4nk_0<< k >_<k_l>>(n_k+l)
1((2n+1 2n + 1 2n + 1 1

Thus the second term in (1) is In 2. For the first term, notice that

n

1 2n+1ln—k+1
< — —1 — 1
0_271,;){ f } o n(n—k+1)

= — 0.0
k

In(n +1) " (2n+1 (n—k+4+1) In(n+1)
= 2n Z { } 4n 2n

k=0

3. H(©®,),A <1/4. In the following, A < 1/4. As in [3, §4], let ¢t =
(1++/1—4X)/2. Note that t(1—¢) = X\. We show limy,_,o0 H(A2,)/(2n+
1) =n(t) + n(1 —¢). By [3, §5] (see §1) and the property (D) of [2],

" (2n+1
H(As,) = (A*Pap a2k (N)-
S ot
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By [3, 4.2.4], we obtain
2) M Popoop(N) = At — (1 —t)) L2 T272F — (1 — t)2n T2 2k)
= (1—r)"H(1 — )2tk (g — p2nt2-2ky

where » = (1 —t)/t. To continue the computation we need the following
results, which might be well-known to probabilists. We include a brief
proof for the completeness.

LEMMA 3. (i) lim, 00 D gy <2n;1> (1 — t)kg2nti=k = 1,
(ii) limy, 00 (2n + 1) 3070, (2",jl> (1 =ty 1=k 2n +1—k) =t;

(iii) limp—oo(2n +1)71 300, (2",jl> (1 —t)kg2ntlokp — 1 ¢

PROOF. (i). The proof is contained in the proof of [3, 5.3.6]. In fact,
the sum is the probability of > n successes in 2n+1 Bernoulli trials, with
the probability of success in one trial being ¢ > 1/2. Since (2n+ 1)t > n,
the sum must tend to 1.

(ii). Differentiating (with respect to Z) the identity

2n+1

and then setting Z = 1, we obtain

n 2n+1
t={ D>+ > 1 (#n+1 (1 — t)ktP Tk 1 — k).
2n +1 k

k=0 k=n-+1

For the second sum we have
2n+1

1 [(2n+1 fomal
< Ltk =k 2on +1 &k
0= Y g (e (2o +1-#)
k=n+1
2n+1
2n+1 k.2 _
< 1—1¢ thrlk
<> (" )ao
k=n-+1

" /2n+1 ntle
1—2( L >(1—t)kt2+1k—>0.

k=0
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Therefore, the first sum tends to ¢.
(iii). The sum of the left sides of (ii) and (iii) tends to 1 by (i). O

PROPOSITION 4. H(0,) =n(t) +n(1 —¢),\ < 1/4.

PROOF. By (2) we have

H(Azn)/(2n+1)

— _(1—p)! ~f2n+1 _ pykg2ntl—k(] _ p2n+2-2k
PR (L R 91 i I )

(2n+ 1) (~In(1 — )+ kln(1 —t)
+(2n+1—k)Int+1In(1 - r2"+2_2k)).

Notice that

Z{ n+1 } _pyeg2ntlok 222k
. Z <2n + l) _)2nl=kgh

—0

due to Lemma 3(i). Since the second factor of (3) is bounded, we conclude
that the r2" 22k in the first factor of (3) has no contribution to the limit.
Furthermore, since

(2n+1)"(=In(1 —7) + In(1 = r*>"*272%)) 50 asn — oo

and the first factor converges, this portion has no contribution to the
limit, either. Therefore

lim H(Az,)/(2n+ 1)

n—r0o0

" (2n+1
= [ (1 — )1 _ p\kg2n+l1-k
= nlglgo (1-r7) E { s }(1 t)*t

k=0
~(2n+1)"HkIn(1 —t) + (2n + 1 — k) Int).
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Using Lemma 3(ii), (iii) and the fact that ¢(1 —t) = A < 1/4 implies

2n+1
n

A™ — 0, we obtain

@2n+1)7" ) { 2”; ! }(1 —t)kg2ntizky

k=0

"L (2n+1
=@2n+1)"t (n; >(1t)kt2”+1kk
k=0

n—1
rn+ 1) Z <2nl;|— 1>(1 )kg2ni=k(f 4 1)
k=0

= (1=-t)—r(l-t), n— oo,

and similarly, (2n+1)72 30 _ o { " H(1—t)ke? 1=k (2n4+1—k) — t—rt.
Hence lim, oo H(A2,)/(2n+1)=—(1—1¢)In(1 —¢) —tlnt. O

REMARK. In the above, the shifts ©), are two-sided, that is, they
are on {e; : ¢ € Z}". If we restrict ©) to {e; : ¢ > 0}", which
is also the hyperfinite II;-factor by [3], we get one-sided shifts. The
Connes-Stgrmer’s definition [2] of entropy of automorphisms obviously
works for endomorphisms of the hyperfinite II;-factor, and we still
have the noncommutative Kolmogorov-Sinai theorem and the property
H(©F) = kH(©),k > 0, of [2]. From these facts, it is easy to see that
our computation also gives the entropy of one-sided shifts. With similar
ideas, the entropy of the shifts considered in [1] has also been computed.
The results will appear in a forthcoming paper.
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