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A NOTE ON THE CYCLIC COHOMOLOGY
AND K-THEORY ASSOCIATED
WITH DIFFERENCE OPERATORS

DAOXING XIA

ABSTRACT. The index map of Ko-theory associated with
a difference operator is given. In the odd dimension case, a
theorem on the cyclic cohomology is established.

1. This note is a continuation of the author’s previous paper [2]. Let
A and A; be two algebras over C satisfying A C A;. As it is introduced
in [2], an operator ¢ from A into A, is said to be a difference operator
if 0 is linear and satisfies

(1) 6(fg) = fog+ (6f)g — (6f)dg
for f,g € A.

In [2], the following theorem is proved.

THEOREM. Let H be a Hilbert space, A a subalgebra of L(H) and &
a difference operator from A into L(H) satisfying

5f € LP(H), [eA,
where p > 1. Let n be an even number satisfying n > p — 1 and

'(,bn(an---,fn) = tr((sfoéfn)a f07"'afn €A

Then ¥, is a cyclic cocycle. If n > p + 1, then ¥, is in the cyclic
cohomology class containing bR,, _2v, 2, where Ry, is the operation

(Rk‘g)(fmfla v 7fk+1)
k
- ki_w D (=1 (k =+ DE(Fi fir1s Fivzs- oo Fiansn)

=0
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with fjik42 = f;,0<j<k-1.

In §2 of this note, we will study the Kjy-theory associated with the
difference operator § and the functional v,,.

In §3, we will study the cyclic cohomology in the case of odd n. The
simplest case is the following. Suppose there is an operator P € L(H)
satisfying P? = I and the anticommutator

{P,o(f)} =0, feA
Then define

Yn(fos f1,-- -5 fn) = tr(PO(fo) - - 0(fn))-

But we will deal with a more general case.

Theorem 1 and Theorem 2 in this note may be considered as gener-
alizations of the corresponding theorems in [1].

2. In order to study the Kjy-theory associated with the difference
operator ¢ from the algebra A to the algebra A;, we have to define an
operator ¢ from My (A) to My (Ay) by

S[aij] = [6ai]-] for [aij] € Mk(A)

It is obvious that

5([ (laij][b [25 aiobe; }
[ ]+ [St] - [Smot]
¢ ¢

= (8fai;])[big] + [aij]S[bij] — (8lai])3[bis].
Thus § is a difference operator from My (A) to My (A;). For simplicity,

the operator § is still denoted by 4.
If e € ProjMy(A) and de € LP, then de is a compact operator. Define

p= L /(A ~ e(de)e)~tdA

21
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and )
e=5— [ A+ (1 —¢)(de)(1—e¢)) 'dA,
Q.= 37 [ O+ (=01 o)
where « is a counter-clockwise contour |A — 1| = ¢ > 0, where ¢ is

chosen such that
(o(e(de)e)Ua(—(1—¢€)(de)(1—e)))N{A:0<|A=1| <&} =0.

It is obvious that P, and Q. are independent of e.

Let . be the operator from the range of P, to the range of Q. defined
by
66 = (1 - e)((se)e‘range of P.-

In the proof of the following theorem, it will be shown that the range
of (1 —e)(de)eP, is in the range of Q..

THEOREM 1. Let H be a Hilbert space, A a subalgebra of L(H) and
d be a difference operator from A into L(H) satisfying

Of € LP(H) for f € A,
where p > 1. Then the index map Ko(A) — Z is given by
(2) Index(é.) = tr(de)? = rankP, — rank@.

for every e € My, (A) satisfying e = €2, where q¢ > p is an odd number.

PROOF. Without loss of generality, we may assume that k = 1. Let
Hi = eH and Hy = (1 — e)H. Denote

a;; = e(de)els,, az = —(1 —e)(de)(1 — €)[3,,
a1z = e(de)(1 — e)|u,, az1 = (1 —e)(de)e|y,.

Then the operator de may be written as a matrix

(3) (56: (all a12 >
asi —az )’



640 D. XIA

From (1) and e = €2, it is easy to see that
(4) (6e)? = ede + (de)e — de.

From (3), (4) and

(5) ez(é 8),

we get
2 (a1 O

©) o= (% )
From (3) and (6), we obtain that

m+1 m
7 se)2m+1l — [ 411 @133 )
g (50 A S
and
(8) a1l —a}; = ai2a21, a2 — a3, = aziaqz,
(9) 411012 = Q12G22, G21011 = 022021

Therefore a;-'}"'l € LP,j=1,2, and
(10) tr((de)?™ ) = tr(a’ﬁ“) — tr(a;'?'l)

for 2m+1 > p.
If X € p(a11) N p(agz), then

(A— a11)71a12 =aj2(A - a22)71

az (A — (111)_1 == a22)_1a21

(11) P.aip = a12Qe, a21Pe = Qcani.
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The ranks of P, and ). are finite, since a;; and ags are compact.
Thus, there is a natural number n such that

Pe(]. — au)" = 0, Qe(l — agg)n = 0

By (8), it is easy to calculate that

m n—1
P(1—afit) = P> afy > ((1—an)* = (1= ap)*)
=0 k=1
m ) n—1
= Pe Za{l (]. — an)k_lalgagl.
=0 k=1
Similarly, we have
n—1
Qe(1 — am+1 = Q. Z ao Z 022)1671(121(112-
7=0 k=1

By (9) and (11), it is easy to prove that
n—1
Q (1 — amH = a21P Zall Z 1 — au)kflalg.
7=0 k=1
Therefore
(12) tr(Pe(l = af1™) = Qe(1 — azy™)) = 0.
Denote a; = (1 — P.)a;; and a2 = (1 — Q¢)aze. Identities (9) and (11)

imply that
aiaip = aj2az and a2161 = a20a21.

On the other hand, the operators
(13) (I-a)la-pyn, and (1—a2)l1-q.us

are invertible in (1 — P.)H; and (1 — Q.)H2 respectively. Denote the
inverses of the operators in (13) by by and be respectively. Then

a1 =bi1(1 — Pe)aizazi, a2 =ba(l —Qc)aziaiz
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by (8).
By (9), it is easy to see that

baas; = az1b;.
Therefore
az = az1b1(1 — P.)ass.

Thus
m+1 __ m+1
ay = Qaxy, QAo =a2n0@,

where Q = by (1 — P.)(a12a21b1(1 — P.))™a12. Hence
(14) tr((1 — P)ai™ — (1 - Qo)alst™) = 0.
From (12) and (14) we get

tr(afi™ — ajy™t) = tr(P. — Qe)
= rankP, — rankQ)..

On the other hand, from (11), it is easy to see that
6€H1 = a21(PeH1) - QEHQ-

Therefore
Index(d.) = rank P, — rank@.,

which proves (2).

By the same method of proving the Proposition (14a), [1, Chapter
IT] and [2, Theorem 1], we may prove that tr(de)? depends only on the
equivalence class of e. Theorem 1 is proved. O

3. For the case of odd n, we have to introduce two operators as
follows. Let A and A; be the two algebras, p be a linear operator from
A to A; and € be a bilinear operator from A x A to A; satisfying the
condition

(15) e(fg,h) —e(f,gh) = p(f)e(g, h) — (£, g)p(h)-
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For a given p, the simplest example of ¢(-,-) satisfying (15) is

(16) e(f,9) = (p(fg) — p(f)p(9))a,

where a is an element in 4; commuting {p(f) : f € A}.

Another example is the following. Let § be a difference operator from
A to Ai, P € A; satisfying P2 =1 and

PSf+ (0f)P=0 for f € A
Define E = (1+ P)/2,p(f) = EfE and
e(f,9) = Edfég.

Then p and ¢ satisfying (15), since E? = E and [E,§fdg] = 0.

LEMMA 1. Let p be a linear operator from algebra A to the algebra
Ai,e be a bilinear operator from A x A to Ay satisfying (15) and

é(f,9) = p(f9) — p(f)p(g). Then
(17) e(f,9)é(h k) = é(f,9)e(h, k), f,9,h,k € A

PROOF. From (15), we get

(18) p(fg)e(h, k) —e(fg, h)p(k) = e(fgh, k) — e(fg, hk)

and

(19)  (e(fg,h) —e(f,gh))p(k) = p(£)e(g, h)p(k) — e(f, g)p(h)p(K).

From (18) and (19), it is easy to see that

p(fg)e(h, k) +e(f,9)p(h)p(k)
= e(fgh, k) + p(f)e(g, h)p(k) + e(f, gh)p(k) — e(fg, hk).

Similarly, we may prove that

e(f,9)p(hk) + p(f)p(9)e(h, k)
= e(f, ghk) + p(f)e(g, h)p(k) + p(f)e(gh, k) — e(fg, hk).

(20)

(21)
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Subtracting (20) from (21), we get

e(f,9)é(h, k) — £(f, 9)e(h, k)
= e(f, ghk) — e(fgh, k) — (e(f, gh)p(k) — p(f)e(gh, k)

which equals zero, by (15). This proves (17). O

If k£ is odd and £ is a k + 1-linear functional, then define the operation
Ry,

(Rr&)(fo, f1, - '7fk+1)

Mw

k+2 k=3 +0E(fifiv1s Fivar-os Fivhe1),
j:0

where f; = fj_k—2 for j > k+2.

THEOREM 2. Let Ay be an algebra, J C A; a two-side ideal, p € N
and 7 a linear functional on JP such that

7(ab) = 7(ba) fora€ J* b JLk+q=p

Let A be an algebra, p : A — A; be a bilinear map and e(-,-) be a
bilinear map from A x A to Ay satisfying (15) and

e(f,g9) € J, for f,g€ A
Let 9, be the n + 1 linear functional on A given by
Yn(fo, 1,y fn) = T(e0e2 -+ €n—1 — €183+ - €n),
wheren =2m — 1,m > p,
ej=¢e(fj, fiv1), 7=0,1,2,...,2p—1,

ej = &(fj, fi+1) = p(fifi+1) — p(f5)p(fi+1), T=2p,...,m,

and fny1 = fo. Then 1y, is a cyclic n-cocycle.



CYCLIC COHOMOLOGY AND K-THEORY 645

If m > p then 1, is in the cyclic cohomology class containing
(22) bRn—2¢n—27

where b is the Hochschild coboundary operation.

PROOF. Similar to the proof of the proposition 4 of [2], let

’¢'+(an te 7fn) = T(EOEQ .. -sn—l)

and

" (fo, -y fn) =T(c163. .. €n).
Then v, =+ — 9. It is easy to see that

b+ (fo, f1s- -+ farr) = T(e(furafo, fr)ez - -en-1)
p—1

= 7'(50"‘52j—2(5(f2jf2j+17f2j+2)
j=0

- (f2j, f2j+1f2j+2))52j+3 e '€n)

+ Zr - €2j-2(E(f25 f2j41, fai+2)

S

_ 5(f2j7 f2j+1f2j+2))52j+3 . En)
- 7 TrE2j— 2( (f2j)52j+1 - €2jp(f2j+2))€2j+3 cegp)

_ TEp<fo)sl een) = 7(20- - eno1p(Fusa)

where ¢, = é(fn, fnt1) for m > p or e, = e(fn, fuy1) for m = p.
Similarly, if m > p, then

b¢7(f0,f1’ cee afn-‘rl)
—7(e2 - €2p—28(fop, fap+1)2pt2 - E(fas1, fof1))
=7(e1-€(fn, frny1)p(fo))
—1(p(fr)e2 - €(fop, fopt1)e2pt2 -+ E(fnt1, fo))-

(24)
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If m = p, then

b~ (fos - vs fut1) — T(e2+ - €2p—2e(frt1, fof1))
=T7(e1---&(fns fo)p(fo)) — T(p(f1)e2 - - -e(f2p, fo))-

By Lemma 1, it is easy to see that if m > p then
(25) T(e2 - - €2p—26(fap, fopt1)eapra - - En—18(frny1, fof1))
=T7(e2 - €n—16(fa+t1, fof1))-
By (15), we have

T(e(fns1fo, fr)ea - en1) — T(e(frr1, fofi)ea -+ €n1)

(26) = 7(p(far1)e0e2 - -en1) = T(e(frr1, fo)p(f1)e2 - €n—1).

Similar to (25), we may prove that if m > p then

T(e(frr1, fo)p(fi)e2 - -€n—1)
=T1(p(fr)ez2 - e(fops fopr1) == €(frns1s f0))-

From (23)—(27), it follows that

(27)

Wt by =0

which proves that 9 is a cocycle if m > p. Similarly, we may prove that
1 is a cocycle if m = p.

Assume n — 1 = 2k and k > p. Define
O(fos s fa1) = 7(p(fo)er - En—2
+ (p(fn—1)g0 — e(fn-1fo, f1))e2" - En—3).
First, we have to prove that
(29)  é(fos---s fru-1) = &(f1s- s fro1s fo) = Yn—2(fofr, -5 fro1)-
By (28), it is obvious that
o(f1,---, fa-1, fo)

=7(p(f1)ez - e2p—26(f2p, fop+1)€2pt2 -+ - E(fn=1, f0))

+ T((p(fo)e(fla f2) - 8(fOfla f2))53 t '5n—2)-

(28)
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Therefore

¢(f07' "7fn71) - ¢(f17 .. '7fn717f0)
= 7(e(fofr, f2)es -+ en—2 + (p(fu-1)e(fo, f1)
- E(fn—lafO)p(fl) - E(fn—lanfl))52 ot '5n—3)7

since

€(f2p7 f2p+1)€2p+2 e é(fnfla fO) = €2p e €n73€(fn71; fO)

by Lemma 1.

Hence

¢(f07' - '7fn71) - ¢(f17' . '7fn717 fO)
=7(e(fof1, f2)es -+ en—2 — e(fn-1, fof1)e2 - - €n_3),

which equals ¢, —2(fof1,..., fn—1) since
e(fn=1, fof1)ez- - €2p = E(fr-1, fof1)e2 - - e(fap, fop+1),

by Lemma 1 again.
Define

[u

n—

v(anfla"'afn—l): ¢(fja"'7fj+n—1)a

SN

Jj=

where f; = f;_, for j > n. From (29), it is easy to see that
(30) v = ¢ - 2Rn72'¢n72-

Now, we have to calculate b¢p. Define

~

¢(f07 ceey fn—l) = T(P(f0)5153 ot '5n—2)

and

647

¢(fos-- - fn1) = T((p(frn-1)e(fo, f1) — e(fn—1fo, f1))e2 - €n—3);
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then ¢ = ¢ + ¢. By (15) and Lemma 1, it is easy to calculate that

b¢(f07 v 7fn)
= T(P(f0f1)€2 v e(fopy fopt1) *  En—1

p—1
=Y plfo)er - (e(faj-1fajs foj1) = e(faj-1 foi foj1))e2jta
j=1

-+ (fap, fopt1) - En—1 — p(fo)er

- (e(fop—1fop, fop+1) — €(fop—1, fopfop+1))E2pt2 - - En—1
k

- Z p(fo)er - (E(fzj—1 oy, foj1) — E(foj—1, fojfoja1))e2jte

Jj=p+1
ren1— p(fafo)er- -sn,2>
= T<p(f0f1)52 o e(fopy fopt1) ** En—1

p—1
- Z p(fo)er - e25-3(p(f25-1)e(f255 foj+1)
=1

— e(f2j—1, f25)p(faj+1))E2j+2
trt€p—1— p(fo)gl e (p(f2p—1)6(f2p7 f2p+1)

—&(fap—1, fop)P(f2p+1))E2pt2 - - En1
k

= Y plfo)er---ezj—s(p(foj—1)é(fas, faj1)

j=p+1
— &(f2-1, f2j)P(f2j41))e2j+2
ren—1 — p(fafo)er - '€n—2>
= 7(&(fo, f1)e2 - - - €2p—2(fop, fop+1)€2pt2- " En—1 — €1€3 - En)
=T7(c0€2 " En—1 — €1 €n) = Yn(fo, f1,. .-, fn)-
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Similarly, we have

bd;(an . afn)
= T(( (fn)e(fof1, f2) — e(fo, f1f2)) — e(fufofr, f2) + e(fufo, Frf2))es

“En— 2+Z )eo — e(fnfo, f1))e2

(5(f2]f21+1, faj+2) — €(f2j, foj+1fojr2)) - En—2
k=1

+ Z(p(fn)so - E(fnan fl))62
t (é(ijijH, f2j+2) - 5(f2j, f2j+1f2j+2)) Ttr€p—2
+ (p(fa-1f)e0 = plfa—)e(Fafo 1)) 2+ nms
=7 ((p(fu) (p(fo)or —20p(f2)) = p(fufo)er + =(fufor 1)p(f2))Es - 2n s
—-1

p

+ p(fn)eo — e(fnfo, f1))e2

J=1

< (p(f25)e(fajs foj41) — €(foj, f2j+1)P(f2j42)) - - En—2
+Z )eo — (fnfo, f1))e2

< (p(f25)€(f2j415 foj+2)) — E(fos, f2j+1)p(faj2) *  En—2
+ (p(fr-1fn)eo — p(fr-1)e(fnfo, f1))e2- -~ €n73)>

- T(_é(f"’ f0)51 ©rrE€p-2 + é(fn—la fn)EO t 5n—3)
= ¢n(f0: fi,--0, fn)

Therefore
(31) bp = 20,
From (30) and (31), it follows that
Yn = bRp—_atn_n + b(%v)

which proves theorem 2. 0
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Parts of this note and [2] have been presented in G.P.O.T.S., Kansas,
1987. The author wishes to thank Professors Salinas, Paschke and
Upmeier and other organizers of the seminar for their invitation.
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