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ON THE EQUIVALENCE OF THE OPERATOR
EQUATIONS XA + BX = C AND X − p(−B)Xp(A)−1 = W

IN A HILBERT SPACE, p A POLYNOMIAL

TAPAS MAZUMDAR AND DAVID F. MILLER

ABSTRACT. We consider the solution of (∗) XA + BX = C
for bounded operators A, B, C and X on a Hilbert space, A
normal. We establish the existence of a polynomial p and a
bounded operator W with the property that the unique solution
X of (∗) also solves X − p(−B)Xp(A)−1 = W uniquely. A
known iterative algorithm can be applied to the latter equation
to solve (∗).

1. Introduction and notations. We know that the equation

(1) XA + BX = C

with

(2) σ(A) ∩ σ(−B) = φ

in which A, B, C are given finite-dimensional matrices of compatible
orders, and σ(T ) is the spectrum of the matrix T (or possibly the operator
T ), has a unique matrix solution X [7,9]. Letting r(T ) denote the
spectral radius of T , an iterative method to calculate the matrix solution
X of the system (1), (2) is obtained if we can rewrite (1) in an equivalent
form

(3) X − UXV = W

with

(4) r(U)r(V ) < 1.

When this is possible, the recursion

(5) Xk+1 = U2k

XkV 2k

+ Xk, X0 = W
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can be iterated to convergence, with Xk → X the unqiue solution of (1).
Details of this iterative method are given in [9], where the assumption

(6) A and B have only eigenvalues with negative real parts

was imposed to ensure that (4) was satisfied. In [4] the assumption (6)
was eliminated, and a process for constructing a polynomial p was given
so that a solution of (1), (2) is also a solution of (3), (4) if

(7) U = p(−B) and V = p(A)−1.

Polynomials are computer-friendly, and (4), (7) permit computer gener-
ated iterates to converge to the solution of the system (1), (2).

The work in [4] is restricted to finite dimensions. The purpose of
the present article is to generalize some of the results of [4] to infinite
dimensional Hilbert spaces. We intend to prove that a polynomial p
exists so that (3), (4) and (7) are true whenever X is a solution of (1),
given (2). As an example, A might be a Hilbert-Schmidt operator [1, 2]
and B might be a unitary operator [2, 3], or B might be an operator
such that σ(−B) consists of only a finite number of eigenvalues. Left
open is the general question of devising a method for constructing such
a polynomial p, although a few comments in this direction will be made
near the end of §3. Also left unattempted is a generalization of our work
to cases where A, B might be differential operators defined on suitably
selected Hilbert spaces.

We begin by developing our system of notations rigorously. H is a
separable Hilbert space over the complex numbers C , with norm || · ||
and innerproduct ((·, ·)). B (H ) is the usual complex Banach space of all
bounded linear operators from H into H, having a norm again denoted
by || · || for convenience. We will now have A, B, C, X ∈ B (H ), and
it is in this context that the system (1), (2) will henceforth be viewed.
For t ∈ R , the real numbers, and T ∈ B (H ), the symbol etT makes
sense as

∑∞
n=0(tT )n/n! which converges absolutely and uniformly in t

over every compact subset of R . Thus etT ∈ B (H ). For g ∈ H , the
various needed continuity, differentiability and integrability properties of
the map t �→ etT g : R → H will be obviously satisfied.

Let X ,Y : R → B (H ) be two (vector-valued) maps. Y is called the
derivative of X in the scalar sense, if ((Y (t)h, k)) = d

dt ((X (t)h, k)) for all
h, k ∈ H . Y is called the derivative of X in the strong (i.e., norm) sense
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if ||Y (t) − X (t+Δt)−X (t)
Δt || → 0 as Δt → 0. The proof of Theorem 2.1

appearing in the next section will go through, no matter in which sense
the derivative L′ of the map L appearing there is viewed. Similarly the
proof will go through independently of how the integrals of the vector-
valued functions appearing there are viewed, the strong-Riemann way or
the scalar-Riemann way.

2. Main results. We continue with (1) and (2) in the Hilbert space
context. In the remainder of this paper, assume that (2) is satisfied.
Under this assumption, it is well-known [5] that (1) possesses a unique
solution. We have the following result.

THEOREM 2.1. If X ∈ B (H ) solves (1), then X solves

(8) (XetA − e−tBX)h = e−tB

∫ t

0

eτBCeτAh dτ

for all t ∈ R and all h ∈ H .

PROOF. The proof is patterned after [4]. Define L : R → B (H ) by
defining L (τ ) by

(9) L (τ )h = eτBCeτAh for all h ∈ H .

Then L (0)h = Ch and L ′(τ )h = BL (τ )h + L (τ )Ah. Calculating∫ s

0
L ′(τ )e−sAhdτ in two ways we see that, for all s ∈ R , h ∈ H ,

esBCh − Ce−sAh =
∫ s

0

[BL (τ ) + L (τ )A]e−sAh dτ.

On rearrangement, this yields

e−sBCe−sAh = Ch − e−sB

∫ s

0

[BL (τ ) + L (τ )A]e−sAh dτ.

So, by (1), (9),

e−sBXAe−sAh + e−sBBXe−sAh

=e−sBL (s)e−sAh

+
∫ s

0

[e−sB(−B)L (τ )e−sAh + e−sBL (τ )(−A)e−sAh] dτ.
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Another way of writing this equation is

− d

ds
(e−sBXe−sAh) =

d

ds

∫ s

0

e−sBL (τ )e−sAh dτ.

Integrating over s from 0 to t gives

Xh − e−tBXe−tAh =
∫ t

0

e−tBL (τ )e−tAh dτ

which yields (8) as soon as we choose h = etAg.

COROLLARY 2.2. If X ∈ B (H ) solves (1), then, for every positive
integer n, and every t ∈ R , we have

(10) XAn − (−B)nX = Qn,

where

(11)

Qn = (−B)n−1C + Qn−1A (= (−B)Qn−1 + CAn−1)

=
n∑

i=1

(−B)n−iCAi−1.

PROOF. We will show

(12) XAnetA − (−B)ne−tBX = (−B)ne−tB

∫ t

0

eτBCeτA dτ + QnetA.

Equation (10) then follows by setting t = 0 in (12). We prove (12) by
induction. Straightforward differentiation of (8) with respect to t yields
(12) for n = 1. Here Q1 is given by (11) with n = 1. Straightforward
differentiation of (12) with respect to t completes the induction step.

COROLLARY 2.3. If X ∈ B (H ) solves (1) then, for every polynomial
p, we have

(13) Xp(A)− p(−B)X = Wp,

where Wp =
∑n

i=0 aiQi whenever p(z) =
∑n

i=0 aiz
i. We take Q0 = 0.
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THEOREM 2.4. (Converse to Theorem 2.1). If X satisfies (8) for
t in an open interval around the origin, then X solves (1).

PROOF. Differentiate (8) with respect to t, and then put t = 0.

LEMMA 2.5. Assume that

(14) A is a normal operator [1, 2, 3]

and that

the complement of σ(A) ∪ σ(−B) in C

is a connected subset of C.(15)

Then there exists a polynomial p with complex coefficients such that

(16) (p(A))−1exists as an element of B (H )

and

(17) r(p(A)−1)r(p(−B)) < 1.

PROOF. Define f : σ(A) ∪ σ(−B) → C by

(18) f(z) =
{

1 for all z ∈ σ(A)
3
8 for all z ∈ σ(−B).

We quote the statement of Mergelyan’s Theorem from [6, p. 386]:

“If K is a compact set in the plane whose complement is connected,
if f is a continuous complex function on K which is holomorphic in the
interior of K, and if ε > 0, then there exists a polynomial P such that
|f(z) − P (z)| < ε for all z ∈ K.”

The theorem is valid (see [6]) when the interior of K is empty and
when K is disconnected.
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We apply Mergelyan’s theorem with K = σ(A) ∪ σ(−B), f given by
(18), and ε = 1/4. Because of (15) there exists a complex polynomial p
such that

(19) |f(z) − p(z)| <
1
4

for all z ∈ σ(A) ∪ σ(−B).

In particular, by (18), (19),

(20)
4
3

>
1

|p(z)| >
4
5

for all z ∈ σ(A).

Thus q(z) = (p(z))−1 is a continuous function on σ(A). By the spectral
isomorphism property of normal bounded operators [1, 2], q(A) =
(p(A))−1 ∈ B (H ). Next,

r(p(A)−1) = sup{|ζ| : ζ ∈ σ(p(A)−1)} = sup{|p(z)−1| : z ∈ σ(A)},

by the spectral mapping theorem for normal operators [1, p. 245]. So,
by (20),

(21) r(p(A)−1) ≤ 4
3
.

Also, r(p(−B)) = sup{|p(z)| : z ∈ σ(−B)} by the spectral mapping
theorem for polynomials [3, p. 381]. By (18) and (19) we have

(22)
1
8

< |p(z)| <
5
8

for all z ∈ σ(−B),

so that r(p(−B)) ≤ 5/8. This, together with (21), yields (17).

The preceding results can now be combined to yield

THEOREM 2.6. Under the assumptions (2), (14), (15), the unique
solution X of (1) is a solution of the equation

(23) X − p(−B)Xp(A)−1 = W

for some complex polynomial p(z) =
∑n

j=0 ajz
j for which (16), (17) are

satisfied. Here W = Wp(p(A))−1, where Wp is given by Corollary 2.3.
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We have now generalized that part of [4] which deals with the existence
of a suitable polynomial p.

THEOREM 2.7. In addition to (2), (14), let us assume further that

(24)
K1 ∩ K2 = φ, C \(K1 ∪ K2) is connected,

where K1 = σ(A) ∪ σ(A∗) and K2 = σ(−B) ∪ σ(−B∗),

A∗, B∗ being the Hilbert space adjoints of A, B respectively. Then there
exists a polynomial pR(z) with real coefficients for which (16), (17) are
true with p replaced by pR. Furthermore, the unique solution of (1) is
also a solution of (23) with p replaced by pR.

PROOF. Let K = K1 ∪ K2. Define f : K → C by f(z) = 1 for all
z ∈ K1, and f(z) = 3/8 for all z ∈ K2. As in the proof of Lemma 2.5,
there exists a complex polynomial p1(z) such that

(25a)
3
4

< |p1(z)| <
5
4
, for all z ∈ K1,

and

(25b)
1
8

< |p1(z)| <
5
8
, for all z ∈ K2.

By the fundamental theorem of algebra, we may write

(26) p1(z) = reiθ
n∏

j=1

(z − λj)

for some r > 0, θ ∈ R , λj ∈ C for j = 1, 2, . . . , n, n a positive integer.
In (26), i is the imaginary unit. Set now

pR(z) = p1(z)re−iθ
n∏

j=1

(z − λj),
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λj denoting the complex conjugate of λj . pR(z) is a polynomial
with real coefficients because of the presence of the multiplicative pair
(z − λj)(z − λj) for every j. Furthermore, for all z ∈ C ,

|pR(z)| = |p1(z)|r
n∏

j=1

|z − λj |

= |p1(z)|r
n∏

j=1

|z − λj | = |p1(z)| |p1(z)| by (26).

We know that z ∈ σ(T ) ⇔ z ∈ σ(T ∗) for all T ∈ B (H ). So, from (25),

9
16

< |pR(z)| <
25
16

, for all z ∈ σ(A),

and
1
64

< |pR (z)| <
25
64

, for all z ∈ σ(−B),

because, for example, z ∈ σ(A) ⇒ z ∈ K1 ⇒ 3/4 < |p1(z)| < 5/4.
The rest of the proof is as before (see Lemma 2.5). We have, in
particular, 16/9 > 1/|pR (z)| > 16/25 for all z ∈ σ(A), r(pR (A)−1) ≤
16/9, r(pR (−B)) ≤ 25/64, r(pR (A)−1)r(pR (−B)) ≤ 25/36 < 1.

3. Remarks on applicability of iterative methods. It is now
easily seen that the iterative method (5) given in [9, §2] can be applied
to solve (23) in view of (17). The question remains whether the solution
of (23) arrived at in this way is also the solution of (1). The next theorem
answers this question in the affirmative by establishing the equivalence
of (1) and (23). For the solution of (1) in a closed integral form, the
reader may see [5] and the references cited there.

THEOREM 3.1. Equation (23) has a unique solution if p is the polyno-
mial appearing in the proof of Lemma 2.5 or if p stands for the polynomial
pR in the proof of Theorem 2.7 above.

PROOF. All that needs to be shown is that σ(p(A)) ∩ σ(p(−B)) = φ
(and then apply [5, Corollary 3.3(ii)]). Referring to Lemma 2.5, this is
obvious because otherwise we have λ ∈ σ(p(A)) ∩ σ(p(−B)) such that



EQUIVALENCE 483

|λ| > 3/4 = 6/8 by (20), while |λ| < 5/8 by (22), a contradiction. The
proof for pR as in Theorem 2.7 is analogous.

Without the aid of the inequalities (20) and (22), the proof of Theorem
3.1 would break down. However, (16) and (17) would then make a partial
rescue effort fruitful: A solution of the system (16), (17), (23) differs from
a solution of (1) by at most an operator E satisfying E2 = 0. This can
be seen as follows.

Let X be a solution of (1) and Y be a solution of (23). Then both X
and Y are solutions of (13). Thus, we have

(27)
(X − Y )A1 + B1(X − Y ) = 0

with A1 = p(A), B1 = −p(−B).

For every positive integer m, zm is a polynomial in z. With this polyno-
mial apply Corollary 2.3, not to (1) this time, but to (27). We obtain
(X − Y )Am

1 − (−B1)m(X − Y ) = 0. Therefore, setting E = X − Y ,
we get E(p(A))m = (p(−B))mE. Post-multiplying by (p(A)−1)mE and
taking norms, we get

||E2|| ≤ ||p(−B)m|| ||E|| ||(p(A)−1)m|| ||E||.

Therefore,

||E2|| 1
m ≤ ||p(−B)m|| 1

m ||(p(A)−1)m|| 1
m ||E|| 2

m .

If E2 
= 0, then we take the limit superior of both sides of this inequality
as m → ∞. We obtain

1 ≤ r(p(−B))r(p(A)−1).

This contradicts (17). Hence, we must have E2 = 0.

Polynomials satisfying (16), (17) may be easily found in some cases.
For example, if σ(A) and σ(−B) belong to different half-planes, then we
may easily choose a point z0 in the half-plane containing σ(−B) such
that supz∈σ(−B) |z − z0| < infz∈σ(A) |z − z0|. Then p(z) = z − z0 satisfies
(16), (17).

As another example, suppose that σ(A) consists of points very close
to zero, whereas σ(−B) consists of points very close to 2 or −2. If
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z 0
x0 4

(σ(A))2 (σ(-B))2

L is the boundary of the half-planes.

z ∈ σ(−B), then z2 will be a point close to 4. So p(z) = z2 − z0 will
satisfy (16), (17), z0 being an appropriately chosen point on the side of
(σ(−B))2 = {z2 : z ∈ σ(−B)} away from (σ(A))2 = {z2 : z ∈ σ(A)}.

z 0
x0 4

(σ(A))2 (σ(-B))2

4. Special case when both A, B are self-adjoint. We give below
a version of Theorem 2.7 for which an alternate proof is available.

LEMMA 4.1. If A, B are self-adjoint operators satisfying (2), then there
exists a polynomial p, with real coefficients, satisfying (16), (17).

PROOF. Fix a real number c ≥ 2.

We know that σ(A) and σ(−B) are compact subsets of R . Fix a
compact subset of Δ of R such that Δ ⊇ σ(A) ∪ σ(−B).
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By virtue of (2), we can apply Urysohn’s Lemma [8] to infer the
existence of a continuous function f : Δ → R such that

(28)
f(z) = c for all z ∈ σ(A),

f(z) =
1
c

for all z ∈ σ(−B).

By the real Stone-Weierstrass theorem [7], there exists a real polynomial
p such that

(29) |f(z) − p(z)| <
1
c2

for all z ∈ Δ.

We will now show that this p is the polynomial we are looking for.

From (28) and (29), we have

(30)
c2

c3 − 1
>

1
p(z)

>
c2

c3 + 1
> 0, for all z ∈ σ(A).

Thus, q(z) = (p(z))−1 is a continuous function on σ(A). By the spectral
isomorphism property of self-adjoint bounded operators [1, 2, 3], q(A) =
p(A)−1 ∈ B (H ). Next,

r(p(A)−1) = sup{|ζ| : ζ ∈ σ(p(A)−1)}
= sup{|p(z)−1| : z ∈ σ(A)}

by the spectral mapping theorem. So, by (30),

(31) r(p(A)−1) ≤ c2

c3 − 1
.

Also, r(p(−B)) = sup{|p(z)| : z ∈ σ(−B)} by the spectral mapping
theorem for polynomials [3, p. 381]. By (28) and (29), we have

c − 1
c2

< p(z) <
c + 1

2
for all z ∈ σ(−B),

and so r(p(−B)) ≤ (c + 1)/c2. This, together with (31), yields (17).

Corresponding versions of Theorems 2.6 and 3.1, and their proofs are
now easy to formulate.
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