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A BI-MEASURABLE TRANSFORMATION
GENERATED BY A NON-MEASURE
PRESERVING TRANSFORMATION

ALAN LAMBERT

0. Introduction. In [2] V.A. Rohlin constructs an automorphism S
on a probability space associated with a measure preserving transfor-
mation 7" on a given probability space. Questions concerning ergodicity,
etc. about 1" may be examined in terms of S. In this note we show that
with some extra restrictions on 7' (notably that T' takes measurable sets
to measurable sets), a similar construction of a bi-measurable bijection
is possible, without having T being measure preserving. Moreover the
state space need only be o-finite. It is then shown that the composition
operators on the various LP spaces constructed in terms of S are exten-
sions of the corresponding operators defined in terms of 7. Moreover
the extension does not increase the operator norm. The state space
for the constructed measure is the inverse limit space as given in [1,
Chapter 10]. Since the setting below is considerably different, several
details of its construction and properties are included. It is noted that
if T' is measure preserving, this procedure reduces to the standard case.

1. Let (X, Y, m) be a o-finite measure space and let 7' be a mapping
of X onto X such that 77'> > C > and T C Y. We assume that
moT and moT~! are mutually absolutely continuous with respect to
m, where m o T is viewed only as a function. Define

Y = {y = (y;)| for each i > 0,y; € X and Tyiy1 = yi}.

Since T'X = X it follows from the countable axiom of choice that, for
each x € X and each n > 0, there is a point y in Y with y,, = z. For
each A€ and n >0 let

(A)n ={y € Y|y, € A}
and define
F={(A)nAec) ,n>0}
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The following properties of F' will prove useful.

PROPOSITION 1. Let A and B be ) -sets and let n,k > 0. Then
(@) (A)n = (T7*A)n s,

(b) (A), = (B)y if and only if A = B,

(c) (A)n = (B)nys if and only if B=T"*A,

(d) (A)n+ ( ) = (T TA)n+1-

=

PROOF. (a). Let y € Y. Then y € (T%A),. if and only if
Yntr € T7FA, that is if and only if T*y, 1, € A. But T*y, 11 = yn, so
(T7%A) sk = (A),.

(b). This follows from the fact that for each z in X thereisayinY
with y, = .

(c). This follows from (a) and (b).
(d). From (a) we have (TA),, = (T 'TA),41.
Let y € (A)pt1. Then y,11 € A and so

Yn = Tyns1 € TA, hence (A)p41 C (TA)p. O
REMARK. These statements above are set-theoretic and do not rely
on measurability restrictions. It follows readily from Proposition 1 that
F is a Borel field. In fact
Y= (A)n = (X = A, (2)0=2,

and

N N
U(Ak)k:U(T(NKAkN—<UTNK ) .
N

For notational convenience, whenever a finite union of F-sets is in-
dicated, we will block them by “Y-coordinate” so that, for example,
(A)1 U (B)2U (C)1 = (D)1 U (B)2 where D = AUC. Also, gaps in
“Y -coordinates” will be filled with empty sets. Thus every finite union
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of F-sets will be expressed as UY_ (Ag)g. This convention applies to
arbitrary unions with care taken when measurability questions arise.

Define h as dm o T~!'/dm. Since m and m o T~! are mutually
absolutely continuous and m is o-finite, 0 < h < oo a.e. dm. Let
the sequence of functions {H,} be defined by Hy = 1 and H, =
1/[hoT---hoT"]. Note that, for each n, H,+1 = H,oT/hoT.

LEMMA 2. For (A), in F and k > 0,

/ H,dem:/Hndm.
T-kA A

PROOF. It suffices to establish the result for £ = 1. Indeed,

/ H,i1dm = / (HpoT/hoT)dm
T-14 T-14

_ /A h(H, /h)dm = /A H,dm. o

Lemma 2 in conjunction with Proposition 1a shows that the mapping
A on F given by A(A), = [, Hndm is a well defined non-negative set
function with A@ = 0. Note that A(A4), = 0 if and only if m(4) = 0.
Our primary goal in this article is to show that A extends to a o-finite
measure over Y. Let I' be the smallest o-field containing F'.

LEMMA 3. X is finitely additive.

PROOF. Let {(Ax)x : 0 < k < N}be a collection of mutually disjoint
sets in F. Let R be their union. Then R = (UN_ T=(N=%)A;)x. One
easily verifies that {T_(N_K)Ak :0 < k < N} is a disjoint collection
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in ). We then see that

N
A(R) = / Hydm = / Hydm
UN T~ (N=F) Ay, o/ T~ =R Ay

I
=

N
/ Hk,_H\]_kdm = Z dem
k T—(N—k) A, k=0 Ak

0

)\(Ak)k- [}

I
hE

b
I

0

LEMMA 4. X is countably additive on A-null sets.

PROOF. Suppose A(Ag)r = 0 for each k, and (B)y C U (Ax).
By repeated application of Proposition 1d we have (A)r C (T*Ax)o.
Since m o T* is absolutely continuous with respect to m, X is finitely
additive and (B)n C (U2 T*Ay)o,

AB)y < A( G TkAk)O = m( G Tk Ap) = 0. 0

k=0 k=0
THEOREM 5. A\ extends to a measure on I'.

PROOF. It suffices to show that, whenever {(Ax)r} : 0 < k < oo}
is a disjoint collection in F' whose union is also in F', then A sums in
the appropriate fashion. Let {(Ax)r} be such a collection, with union
(B)n. Let C be a measurable subset of B such that [, Hydm < oco.
Then

(©)x = (B)x G (A (C)n]

U T Ak N+k N (T C)NJrk] U [T_NAk N T_kC]N+k.
k=0 k=0
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Let Dy = TﬁNAk NT % C. Since Dy C TﬁNAk, {(Dk)N+k :0< k<
oo} is a disjoint collection in F' whose union is (C)x. Then, via 1d,

oo

(€)= |J(Dr)nsx C ( U Tka)N = @ 1" Di) w1

k=0 k=0 k=0

In particular C C U ,T*Dy,. Fix k and let x € T*Dy, say = = T*z
for some z € Dy. Let y € Y with ynyix = 2. Then yy = TkyN+k =
TFz = z. Since z € Dy, and ynyyx = 2, ¥ € (Dg)nir and hence
y € (C)n. Butz =yy,sox € C. Thus C = UL ,T*Dy,. It then follows
that (C)N = Uio:()(Dk)N—i-k = (Uzozo Tka)N = Uzozo(T_kaDk)N—i-k-
Suppose that € Dy N T¢(Dg1¢). Let © = T*d for d € Dy, and let
y €Y with yntx+e = d. Then y € (Dg+e) Ntkte. But

xr = Ted = TZ(YN+k+Z) = YN+k and =z € Dy.

Thus y € (Dg)n+k N (Dk+e)Ntk+e, whence £ = 0. We then have, for
all £ and all £ > 0, m(Tka N Tk+eDk+g) = m(Tk’(Dk N TeDk+g)) =0,

and so
o0

m(C) = Z m(T"Dy)
k=0
and

kZ:O Tk Dy,

Also, if y € (T7FT*Dy) i N (T7*T*Dy) N4, then yy = TFyyp =
T ynye € T*Dy, N T D, and consequently k = £. It then follows from
the finite additivity of A that A(C)y > > pe o MT *T*Dy)nik. In
particular, since \(C)y = [, Hndm < oo, each A(T*T* D) nyi < o0.
Moreover, (T ¥T*Dy, — D) Nk = (T *T*Dy)nir — Di) Nk is @ A-
null set, since T-*T*Dy, D Dy, {(T " *T*Dy) N1} and {(Dy)n1r} are
disjoint collections and their unions are both (C)x. We then have
MDp)n+k = MT*T*Dy,) n 11, and so

> ADuwek = YN D) =S [ Hyadm
k=0 k=0 ko T FT*Dy

k=0 Tk Dy, U]Zoonka
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We have shown that, for any » -set C C B with A\(C)ny < oo, it is true
that

AC)v =D NTNANT*C)n .
k=0

Let Ay be the measure on ) given by Ay(A4) = A(A)y = [, Hydm,
that is Hy = dAny/dm. Thus dA\n/dm > 0 a.e. dm and so there is
an increasing sequence of sets {C;} with An(C;) < oo for each 7 and
UC; = B. It follows that

11— 00 11— 00

But, for each i,

)\(Ci)N = Z)\(T_NAk N T_kC'i)N_Hc
k=0
<D AT VAR NE =Y A ARk,

b
I
<]

k=0

so that A(Bny) < Y720 A(Ak)k. The reverse inequality follows from
the finite additivity of A. Thus A extends to a measure on I'. O

As in [1, p. 240] for measure preserving transformations we define
S on Y by S{yo,y1,-..) = (y1,¥2,...). Moreover SF C F and
S7'F CF (S71(A), = (T7tA), and S(A), = (A)ni1)-

ExAMPLE. Let X be the set of non-negative integers and let m be
the counting measure. Let 7(0) = 0 and T(k) = k — 1 for & > 1.
Every point in Y is of the form (5,5 + 1,...) or (0,0,...,0,1,2,...),
or (0,0,0,...) = 2oo. For j >01let z_; = (j,j+1,...), and for j >0
let z; = (0,...,0,1,2,...), the right-most zero being in position j.
Thus ¥ = {z; : —00 < j < oo} may be identified with the set of
all integers and a point at co. Now the bijection S on Y is given by
S<k0, kl, .. > = <Tk0,Tk1, e > ThHS, for ] > O,SZJ' = Zj+1, and, for
j>0,82;=80,j+1,...)=(—-1,4,+1,...) =2 j41,and so S
may be regarded as the shift j — j + 1. The measure A, however, is
not the counting measure. Indeed, h(0) = (dm o T~1/dm)(0) = 2
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and h(k) = 1 for k > 1. In general T%(j) = max{0,j — k}, so
hoTk ) = 2if j < k, and 1 otherwise. It then follows that
1/[hoTj)...(hoT™j)] is given by

. 1 if 5 >mn,
Hu(3) = {1/2"1'“, if0<j<n.

Now, for £k > 0 ({k})o = {z—x}, and for & > 0, {1})k+1 = {z}.
From these set equalities we conclude that, for k& < 0,A\{zx} =
Ho(—k) = 1 and, for k > 0,\{z} = Hpy1(1) = 1/281 Fi
nally, the point z,, = (0,0,...) satisfies {zo0} = N ,({0})x so
Mzoo} < limy_y o inf 1/28F1 = 0.

For each p > 1, we may identify LP, = LP(X,> ,m) as the set of
functions on Y depending only on yg, i.e., those F on Y such that
there exists a function f on X related to F' by F(y) = f(yo). Using
approximation by simple function it is easily verified that [, |F \PdX =
[x |fIFdm. Suppose that h = dm o T~'/dm € L*(X,Y"). Then the
composition operator given by C'f = f o T is bounded on L? with
IC|| = ||h||5XP. Let W be defined on LE by WF = F o S where
S(yo,y1,---) = (T'yo,Ty,...). Then S is a bi-measurable bijection.
For f in L2, and F(y) = f(yo) we have WF (y) = F(Sy) = fo (Tyo) =
foT(yp). Thus WLP C LP and W|LP, = C. We are now ready to
state a composition operator extension theorem analogous to Rohlin’s
result for measure preserving transformations.

THEOREM 1.6. Let (X, ., m) be a o-finite measure space and let T
be a mapping of X onto X such that T-*>. C Y., TY. C ., and such
that moT ! and moT are mutually absolutely continuous with respect to
m. Then there is a o-finite measure space (Y,T', \) and a bi-measurable
bijection S on Y such that, for 1 < p < oo, the composition operator
Cf=foT on LP(X,>.,m) is extended by WF = FoS on LP(Y,T, \).
Moreover, for each y € Y, (d\o s 1/d\)(y) = (dmoT1/dm)(yo), and
in particular ||W|| = ||C|]| for every LP norm.

PROOF. Since ||W]|| = ||[d\ o s71/d)\||*/?, we need only verify the
characterization of dAos~!/d\ in terms of h. Note that, for any A and
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Bin ) and n > 0, we have

/( ) X(B)odA = A(T7"B), N (A)n)

= / H,dm
ANT-"B

= / H, -XgoT"dm.
A

It then follows from the usual linearity-density argument that, for any
F onY of the form F(y) =

f(yo)
/(A)anA:/AHn-foT"dm.

Now let G = d\oS~!/d\. Then Jiay, GdA = AS7YHA), = NT714),
fT,lAHndm. For n = O,IT,IA H,dm = folA dm = fA hdm =
[ 4 hHodm, and, for n > 1,

/ H,dm = (Hp—10T)/hoTdm
T-14 T-14
- / Hy vdm = / (H, +/H,)Hydm
A A
:/ hoT"H,dm.
A
Thus, if we define Gy(y) = h(yo) then, for any set A in >,

/ Gd) = / hoT"H,dm = God,
(A)rn A (A)n

and so G = G, as stated. O
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