ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 20, Number 2, Spring 1990

INVARIANT SUBSPACES AND THIN SETS

JOHN FROELICH

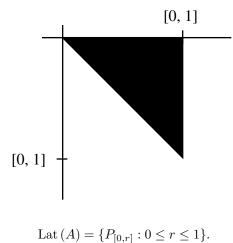
This expository article will outline some connections between the existence of compact operators in reflexive operator algebras with a commutative subspace lattice (CSL algebras) and the theory of "thin sets" in harmonic analysis. Full details will appear elsewhere [5].

Let X be a compact metric space, μ a finite Borel measure on X and \leq a closed partial-order on X. The operator algebra Alg (X, \leq, μ) is described in [1] where its main properties are developed. We mention that

Lat $(Alg(X, \leq, \mu) = \mathcal{L}(X, \leq) = \{P_E : E \text{ is a decreasing Borel set}\}.$

We are concerned with the existence of compact operators in Alg (X, \leq, μ) .

EXAMPLE 1. Let X = [0, 1], with Lebesgue measure dx and the usual linear order. Then $A = \text{Alg}([0, 1], \leq, dx)$ is a nest algebra consisting of all operators on $L^2[0, 1]$ "supported" on the graph of the linear order



Received by the editors on September 10, 1987.

Copyright ©1990 Rocky Mountain Mathematics Consortium

J. FROELICH

To obtain nonzero compact operators in A take Hilbert-Schmidt integral operators whose kernels are concentrated on the graph of \leq . For example, the integration operator

$$f\mapsto \int_x^1 f(t)\,dt\in A$$

and is compact.

In general Alg (X, \leq, μ) contains a nonzero Hilbert-Schmidt operator iff the graph of the partial order has positive $\mu \times \mu$ measure.

EXAMPLE 2. Let $X = 2^{\infty} = \{0, 1\} \times \{0, 1\} \times \cdots$ be the Cantor group with the product topology. Define \leq by $(x_1, x_2, \ldots) \leq (y_1, y_2, \ldots)$ iff $x_n \leq y_n$ for all n and take $m_{1/2}$ to be the infinite product measure $\mu \times \mu \times \cdots$, where μ is the measure on $\{0, 1\}$ which assigns $\mu(0) =$ $1/2, \mu(1) = 1/2$. One calculates that the product measure of the graph of the partial order is 0. In [4, 5] we showed that Alg $(X, \leq, m_{1/2})$ contains no nonzero compact operators. We now outline a "thin set" proof of this result.

DEFINITION. Let T be the circle group. A closed set $E \subseteq T$ is called a set of uniqueness if any trigonometric series

$$\sum_{-\infty}^{\infty} c_n e^{inx}, \qquad c_{|n|} \to 0 \text{ as } |n| \to \infty,$$

which vanishes off E must have $c_n = 0$ for all n. Otherwise E is called a set of multiplicity.

EXAMPLE 3. The Riemann-Lebesgue lemma implies that any set of positive measure is a set of multiplicity. Cantor proved that any finite set is a set of uniqueness and W.H. Young generalized this to countable sets. In 1937 Nina Bary proved that Cantor's middle third set is a set of uniqueness. There exist sets of multiplicity having zero Lebesgue measure.

For a general compact abelian group the definition must be phrased in terms of distributions (pseudomeasures) [7].

430

INVARIANT SUBSPACES

Let X = G be a compact abelian group with dg the Haar measure and \leq a closed partial order on G.

THEOREM 1. If Alg (X, \leq, dg) contains a nonzero compact operator, then the graph of \leq is a set of multiplicity in the group $G \times G$.

THEOREM 2. The graph of the partial order in Example 2 is a set of uniqueness in the group $2^{\infty} \times 2^{\infty}$.

COROLLARY 1. The operator algebra $\operatorname{Alg}(2^{\infty}, \leq, m_{1/2})$ contains no nonzero compact operators.

COROLLARY 2. The lattice $\mathcal{L}(2^{\infty}, \leq)$ is not attainable by a nonzero compact operator.

Acknowledgements. We would like to thank Professor Norberto Salinas, John Bunce, Bill Paschke, Albert Sheu, and Harold Upmeier for their kindness and hospitality during GPOTS 1987.

REFERENCES

1. W. Arveson, *Operator algebras and invariant subspaces*, Ann. of Math. **100** (1974), 433–532.

2. ——, *Ten lectures on operator algebras*, Regional Conf. Ser. in Math. No. 55, published by AMS, 1984.

3. N.K. Bary, A treatise on trigonometric series, vols. I and II, A Pergamon Press Book, Macmillan Company, New York, 1964.

4. J. Froelich, Compact operators in the algebra of a partially ordered measure space, J. Operator Theory **10** (1983), 353–355.

5. _____, Compact operators, invariant subspaces, and spectral synthesis, J. Funct. Anal. 8 (1988), 1–37.

6. C.C. Graham, Harmonic analysis and LCA groups, in Studies in Harmonic Analysis, Mathematical Association of America, 1976.

7. ——— and O.C. McGehee, *Essays in commutative harmonic analysis*, Springer-Verlag, New York, 1979.

 ${\bf 8.}~$ A. Zygmund, $Trigonometric \ series, vols. I and II, Cambridge University Press, 1959.$

Mathematics Department, University of Houston, Houston, TX $77204{-}3476$

431