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INVARIANT SUBSPACES AND THIN SETS

JOHN FROELICH

This expository article will outline some connections between the
existence of compact operators in reflexive operator algebras with a
commutative subspace lattice (CSL algebras) and the theory of “thin
sets” in harmonic analysis. Full details will appear elsewhere [5].

Let X be a compact metric space, µ a finite Borel measure on X and
≤ a closed partial-order on X. The operator algebra Alg (X,≤, µ) is
described in [1] where its main properties are developed. We mention
that

Lat (Alg (X,≤, µ) = L (X,≤) = {PE : E is a decreasing Borel set}.
We are concerned with the existence of compact operators in Alg (X,
≤, µ).

Example 1. Let X = [0, 1], with Lebesgue measure dx and the usual
linear order. Then A = Alg ([0, 1],≤, dx) is a nest algebra consisting of
all operators on L2[0, 1] “supported” on the graph of the linear order

[0, 1]

[0, 1]

Lat (A) = {P[0,r] : 0 ≤ r ≤ 1}.
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To obtain nonzero compact operators in A take Hilbert-Schmidt
integral operators whose kernels are concentrated on the graph of ≤.
For example, the integration operator

f �→
∫ 1

x

f(t) dt ∈ A

and is compact.

In general Alg (X,≤, µ) contains a nonzero Hilbert-Schmidt operator
iff the graph of the partial order has positive µ × µ measure.

Example 2. Let X = 2∞ = {0, 1}×{0, 1}×· · · be the Cantor group
with the product topology. Define ≤ by (x1, x2, . . . ) ≤ (y1, y2, . . . ) iff
xn ≤ yn for all n and take m1/2 to be the infinite product measure
µ × µ × · · · , where µ is the measure on {0, 1} which assigns µ(0) =
1/2, µ(1) = 1/2. One calculates that the product measure of the graph
of the partial order is 0. In [4, 5] we showed that Alg (X,≤, m1/2)
contains no nonzero compact operators. We now outline a “thin set”
proof of this result.

Definition. Let T be the circle group. A closed set E ⊆ T is called
a set of uniqueness if any trigonometric series

∞∑
−∞

cneinx, c|n| → 0 as |n| → ∞,

which vanishes off E must have cn = 0 for all n. Otherwise E is called
a set of multiplicity.

Example 3. The Riemann-Lebesgue lemma implies that any set of
positive measure is a set of multiplicity. Cantor proved that any finite
set is a set of uniqueness and W.H. Young generalized this to countable
sets. In 1937 Nina Bary proved that Cantor’s middle third set is a set
of uniqueness. There exist sets of multiplicity having zero Lebesgue
measure.

For a general compact abelian group the definition must be phrased
in terms of distributions (pseudomeasures) [7].
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Let X = G be a compact abelian group with dg the Haar measure
and ≤ a closed partial order on G.

THEOREM 1. If Alg (X,≤, dg) contains a nonzero compact operator,
then the graph of ≤ is a set of multiplicity in the group G × G.

THEOREM 2. The graph of the partial order in Example 2 is a set of
uniqueness in the group 2∞ × 2∞.

COROLLARY 1. The operator algebra Alg (2∞,≤, m1/2) contains no
nonzero compact operators.

COROLLARY 2. The lattice L (2∞,≤) is not attainable by a nonzero
compact operator.
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