INNER MULTIPLIERS OF THE BESOV SPACE, $0<p \leq 1$

## PATRICK AHERN AND MIROLJUB JEVTIĆ

0. For $\alpha>0$ let $k$ be the integer so that $k-1 \leq \alpha<k$. Then, for $p>0$, the Besov space $B_{\alpha}^{p}$ is the set of functions $f$, holomorphic in the unit disc $U$ such that

$$
\|f\|_{p, \alpha}^{p}=\int\left|f^{(k)}(z)\right|^{p}(1-|z|)^{p(k-\alpha)-1} d m(z)<\infty
$$

Here $d m$ denotes area measure in $U$. We will assume from now on that $1-p \alpha>0$. (When $1-p \alpha<0$ the functions in $B_{\alpha}^{p}$ are continuous out to the boundary of $U$.) In [9], I. Verbitsky characterized those inner functions $B \in M B_{\alpha}^{p}$, i.e., for which $B f \in B_{\alpha}^{p}$ for all $f \in B_{\alpha}^{p}, p \geq 1$. See [5, Chapter 17], for a discussion of inner functions. In this paper we consider the case $0<p \leq 1$.
The first step is to show that any such inner function is a Blaschke product whose zero set is a finite union of interpolating sequences. The proof of this for $p \leq 1$ is similar to Verbitsky's proof for $p \geq 1$. Indeed, after some preliminaries we appeal directly to his argument. So the question becomes: Which such Blaschke products are in $M B_{\alpha}^{p}$ ?

For $p>1$, the Carleson measures for $B_{\alpha}^{p}$ were determined by D . Stegenga [6]. Using this result one immediately gets a necessary and sufficient condition on $B$ in order that $B \in M B_{\alpha}^{p}$. However, this condition does not involve the distribution of zeros of $B$ in any direct way. The whole point of Verbitsky's paper is to find a necessary and sufficient condition on the zeros of $B$ in order that $B \in M B_{\alpha}^{p}$. We take the same point of view.

In the first section we find the Carleson measures for $B_{\alpha}^{p}, 0<p \leq 1$. For the case $p>1$, Stegenga used the ideas involved in E. Stein's proof [7] of the original Carleson measure theorem together with the strong capacitary estimates of D. Adams [1]. Our proof is the same except we must use the recently proved "strong Hausdorff capacity" estimates

[^0]of Adams [2]. Then we find that (at least in the case $0<\alpha<1$ ), $B \in M B_{\alpha}^{p}$ if and only if
\[

$$
\begin{equation*}
\int_{S(I)}\left|B^{\prime}\right|^{p}(1-|z|)^{p(1-\alpha)-1} d m(z) \leq C|I|^{1-\alpha p} \tag{0.1}
\end{equation*}
$$

\]

for all arcs $I$. Here $S(I)=\left\{r e^{i \theta}: e^{i \theta} \in I, 1-|I| \leq r<1\right\},|I|=$ length of $I$. Our main result is that if $p>1 /(1+\alpha)$, then the above condition is equivalent to

$$
\begin{equation*}
\sum_{a_{n} \in S(I)}\left(1-\left|a_{k}\right|\right)^{1-\alpha p} \leq C|I|^{1-\alpha p} \tag{0.2}
\end{equation*}
$$

for all arcs $I$. Here $\left\{a_{k}\right\}$ are the zeros of $B$. Indeed we show that, for any $\alpha>0$ and $p \leq 1$ such that $1 /(1+\alpha)<p<1 / \alpha$, the condition 0.2 is equivalent to $B \in M B_{\alpha}^{p}$. We also show that there is no theorem for $p \leq 1 /(1+\alpha)$, i.e., in this case 0.2 need not imply that $B \in M B_{\alpha}^{p}$.

We end the introduction by introducing some more notation. For $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ and $\alpha>0$, let

$$
D^{\alpha} f(z)=\sum_{k=0}^{\infty}(k+1)^{\alpha} a_{k} z^{k}
$$

We will often use

$$
\begin{equation*}
\int\left|D^{\alpha} f(z)\right|^{p}(1-|z|)^{\gamma} d m \doteq \int\left|D^{\beta} f(z)\right|^{p}(1-|z|)^{p(\beta-\alpha)+\gamma} d m \tag{0.3}
\end{equation*}
$$

as long as $\gamma$ and $p(\beta-\alpha)+\gamma$ are greater than -1 . Here $A \doteq B$ means that $A / c \leq B \leq C A$ for some universal constant $C$.

It follows from 0.3 that $f \in B_{\alpha}^{p}$ if and only if

$$
\int\left|D^{1+\alpha} f(z)\right|^{p}(1-|z|)^{p-1} d m<\infty
$$

And from this it follows, by the Littlewood-Paley inequality that

$$
B_{\alpha}^{p} \subseteq\left\{f: D^{\alpha} f \in H^{p}\right\}, \quad 0<p \leq 2
$$

Finally we will use the estimate $\left|D^{\alpha} f(z)\right| \leq C(1-|z|)^{-\alpha}\|f\|_{\infty}$. For proofs of this and 0.3 see the paper of T. Flett [4].
Our main result is that if $p \leq 1, \alpha>0$ and $1 /(1+\alpha)<p<1 / \alpha$, then $B \in M B_{\alpha}^{p}$ if and only if 0.2 holds. We will give detailed proof only in case $0<\alpha<2$. The general case is technically rather complicated but requires no new ideas. Our proof in the case $1 \leq \alpha<2$ will be rather sketchy.

1. To determine the Carleson measure for $B_{\alpha}^{p}$ we need the strong Hausdorff capacity estimates of D. Adams [2].

Definition. For $0<m<1$ define, for $E \subseteq T, H^{m}(E)=$ $\inf \left\{\sum\left|I_{n}\right|^{m}: E \subseteq \cup I_{n}, I_{n}\right.$ open $\left.\operatorname{arc}\right\}$.

Theorem A. Suppose $0<m=1-\alpha p<1,0<p \leq 1$. Then there is a constant $C$ such that

$$
\int_{0}^{\infty} H^{m}(\{N f>t\}) t^{p-1} d t \leq C\left\|D^{\alpha} f\right\|_{H^{p}}
$$

Here $N f$ denotes the usual non-tangential maximal function of $f$.

LEMMA. Suppose $0<m<1,\left\{I_{n}\right\}$ is a sequence of open intervals and $\cup I_{n}=\cup J_{k}$, where $\left\{J_{k}\right\}$ are disjoint open intervals. Then

$$
\sum\left|J_{k}\right|^{m} \leq \sum\left|I_{n}\right|^{m}
$$

Proof. Since $\left\{J_{k}\right\}$ are pairwise disjoint $J_{k}=\cup\left\{I_{n}: I_{n} \subseteq J_{k}\right\}$ and hence $\left|J_{k}\right| \leq \sum_{I_{n} \subseteq J_{k}}\left|I_{n}\right|$. Since $0<m<1$ we have

$$
\left|J_{k}\right|^{m} \leq \sum_{I_{n} \subseteq J_{k}}\left|I_{n}\right|^{m}
$$

so

$$
\sum_{k}\left|J_{k}\right|^{m} \leq \sum_{k} \sum_{I_{n} \subseteq J_{k}}\left|I_{n}\right|^{m}=\sum_{n}\left|I_{n}\right|^{m}
$$

Definition. A positive Borel measure on $U$ is called a Carleson measure for $B_{\alpha}^{p}$ if there is a constant $C$ so that

$$
\int|f|^{p} d \mu \leq C| | f \|_{p, \alpha}, \text { all } f \in B_{\alpha}^{p}
$$

THEOREM 1. If $0<p \leq 1$, then $\mu$ is a Carleson measure for $B_{\alpha}^{p}$ if and only if there is a constant $C$ so that

$$
\begin{equation*}
\mu(S(I)) \leq C|I|^{1-\alpha p} \tag{*}
\end{equation*}
$$

Proof. To prove sufficiency of $(*)$, take $f \in B_{\alpha}^{p}$, then

$$
\int|f|^{p} d \mu=\int_{0}^{\infty} \mu(\{|f|>t\}) t^{p-1} d t
$$

Fix $0<t<\infty$ and suppose $\left\{I_{n}\right\}$ is a sequence of open intervals such that $\{N f>t\} \subseteq \cup I_{n}$ and $\cup I_{n}=\cup J_{k}$, where $\left\{J_{k}\right\}$ are pairwise disjoint open intervals. Now if $|f(z)|>t$, then $N f>t$ on some interval of length greater than $1-|z|$ and hence $z \in S\left(J_{k}\right)$ for some $k$. That is $\{|f(z)|>t\} \subseteq \cup S\left(J_{k}\right)$, so

$$
\begin{aligned}
\mu(\{|f|>t\}) & \leq \sum \mu\left(S\left(J_{k}\right)\right) \\
& \leq C \sum\left|J_{k}\right|^{1-\alpha p} \leq C \sum\left|I_{n}\right|^{1-\alpha p}
\end{aligned}
$$

by the lemma. It follows from the definition of $H^{1-\alpha p}$ that $\mu(\{|f|>t\}) \leq C H^{1-\alpha p}(\{N f>t\})$. From this it follows that

$$
\int|f|^{p} d \mu \leq C\left\|D^{\alpha} f\right\|_{H^{p}} \leq C\|f\|_{p, \alpha}^{p}
$$

The necessity of condition $(*)$ follows in a standard way by testing $\mu$ against functions of the form $f(z)=(1-\bar{w} z)^{-\beta}$. We omit the details.
2. Our first step is to show that if $B$ is an inner function that multiplies $B_{\alpha}^{p}$, then $B$ is a Blaschke product whose zero set is a finite union of interpolating sequences.

LEMMA 2.1. If $0<p \leq 1$ and $B \in M B_{\alpha}^{p}$ is inner, then

$$
\int_{S(I)}(1-|B(z)|)(1-|z|)^{-1-\alpha p} d m(z) \leq C|I|^{1-\alpha p}
$$

Proof. We assume that $I$ has its center at $\zeta=1$. Let $f(z)=$ $(1-r z)^{-1}$, where $r=1-\delta, \delta=|I|$. Now $|f(z)| \doteq \delta^{-1}$ in $S(I)$, so we have

$$
\begin{aligned}
\int_{S(I)} & (1-|B(z)|)(1-|z|)^{-1-\alpha p} d m(z) \\
& \leq C \delta \int_{S(I)}|f(z)|(1-|B(z)|)(1-|z|)^{-1-\alpha p} d m(z) \\
& \leq C \delta \int_{U}|f(z)|(1-|B(z)|)(1-|z|)^{-1-\alpha p} d m(z)
\end{aligned}
$$

Since $B$ is inner,

$$
1-\left|B\left(r e^{i \theta}\right)\right| \leq \int_{r}^{1}\left|B^{\prime}\left(\rho e^{i \theta}\right)\right| d \rho \quad \text { a.e. } d \theta
$$

Hence we have

$$
\begin{aligned}
& \int_{S(I)}(1-|B(z)|)(1-|z|)^{-1-\alpha p} d m(z) \\
& \leq C \delta \int_{0}^{2 \pi} \int_{0}^{1}\left|f\left(r e^{i \theta}\right)\right|(1-r)^{-1-\alpha p} \int_{r}^{1} \mid B^{\prime}\left(\rho e^{i \theta}\right) d \rho d r d \theta \\
& \leq C \delta \int_{0}^{2 \pi} \int_{0}^{1}\left|B^{\prime}\left(\rho e^{i \theta}\right)\right| \int_{0}^{\rho}\left|f\left(r e^{i \theta}\right)\right|(1-r)^{-1-\alpha p} d r d \rho d \theta \\
& \leq C \delta \int_{0}^{2 \pi} \int_{0}^{1}\left|B^{\prime}\left(\rho e^{i \theta}\right)\right|\left|f\left(\rho e^{i \theta}\right)\right| \int_{0}^{\rho}(1-r)^{-1-\alpha p} d r d \rho d \theta \\
& \leq C \delta \int_{0}^{2 \pi} \int_{0}^{1}\left|B^{\prime}\left(\rho e^{i \theta}\right)\right|\left|f\left(\rho e^{i \theta}\right)\right|(1-\rho)^{-\alpha p} d \rho d \theta . \\
& \leq C \delta\left[\int\left|(B f)^{\prime}(z)\right|(1-|z|)^{-\alpha p} d m\right. \\
&\left.\quad+\int|B(z)|\left|f^{\prime}(z)\right|(1-|z|)^{-\alpha p} d m(z)\right] \\
& \leq C \delta \int\left|(B f)^{\prime}(z)\right|(1-|z|)^{-\alpha p} d m+C \delta \int\left|f^{\prime}(z)\right|(1-|z|)^{-\alpha p} d m .
\end{aligned}
$$

An elementary calculation shows that $\delta \int\left|f^{\prime}(z)\right|(1-|z|)^{-\alpha p} d m \leq$ $C \delta^{1-\alpha p}$, so we turn our attention to

$$
\begin{aligned}
\delta \int \mid & (B f)^{\prime}(z) \mid(1-|z|)^{-\alpha p} d m \\
& \leq C \delta \int\left|D^{1+\alpha}(B f)\right|(1-|z|)^{\alpha-\alpha p} d m \\
& =C \delta \int\left|D^{1+\alpha}(B f)\right|^{p}\left|D^{1+\alpha}(B f)\right|^{1-p}(1-|z|)^{\alpha-\alpha p} d m \\
& \leq c \delta\|B f\|_{\infty}^{1-p} \int\left|D^{1+\alpha}(B f)\right|^{p}(1-|z|)^{(1+\alpha)(p-1)+\alpha-\alpha p} d m \\
& \leq C \delta\|f\|_{\infty}^{1-p} \int\left|D^{1+\alpha}(B f)\right|^{p}(1-|z|)^{p-1} d m(z) \\
& =C \delta\|f\|_{\infty}^{1-p}\|B f\|_{p, \alpha}^{p} \leq C \delta\|f\|_{\infty}^{1-p}\|f\|_{p, \alpha}^{p}
\end{aligned}
$$

because $B \in M B_{\alpha}^{p}$. Now $\|f\|_{\infty} \doteq \delta^{-1}$, and we may calculate that $\|f\|_{p, \alpha}^{p} \doteq \delta^{1-\alpha p-p}$. This completes the proof of the lemma. $\square$

We now give our main result.

THEOREM 2.1. Suppose $0<p \leq 1,1 /(1+\alpha)<p<1 / \alpha$, and $B$ is an inner function. Then $B \in M B_{\alpha}^{p}$ if and only if $B$ is a Blaschke product whose zeros $\left\{a_{k}\right\}$ satisfy

$$
\begin{equation*}
\sum_{a_{k} \in S(I)}\left(1-\left|a_{k}\right|\right)^{1-\alpha p} \leq C|I|^{1-\alpha p}, \quad \text { all } I \tag{*}
\end{equation*}
$$

Proof. Suppose $B \in M B_{\alpha}^{p}$. Then, by Lemma 2.1, we see that

$$
\int_{S(I)}(1-|B(z)|)(1-|z|)^{-1-\alpha p} d m(z) \leq C|I|^{1-\alpha p}, \quad \text { all } I .
$$

In [9] Verbitsky shows that $B$ is a Blaschke product whose zero set $\left\{a_{k}\right\}$ is a finite union of interpolating sequences. This in turn implies that

$$
\frac{1-|B(z)|}{1-|z|} \geq C \sum \frac{1-\left|a_{k}\right|}{\left|1-\bar{a}_{n} z\right|^{2}}
$$

see [8]. If we use this and Lemma 2.1 again we see that

$$
\begin{aligned}
|I|^{1-\alpha p} & \geq C \int_{S(I)} \sum \frac{1-\left|a_{k}\right|}{\left|1-\bar{a}_{k} z\right|^{2}}(1-|z|)^{-\alpha p} d m \\
& \geq C \sum_{a_{k} \in S(I)}\left(1-\left|a_{k}\right|\right) \int_{S(I)} \frac{(1-|z|)^{-\alpha p}}{\left|1-\bar{a}_{k} z\right|^{2}} d m
\end{aligned}
$$

We need to show that if $a_{k} \in S(I)$ then

$$
\int_{S(I)} \frac{(1-z)^{-\alpha p}}{\left|1-\bar{a}_{k} z\right|^{2}} d m(z) \geq C\left(1-\left|a_{k}\right|\right)^{-\alpha p}
$$

Fix such an $a_{k}$; then there is an arc $J \subseteq I$ such that $a_{k} \in S(J)$ and $|J| / 2 \leq 1-\left|a_{k}\right| \leq|J|$. It follows that, for $z \in S(J),\left|1-\bar{a}_{k} z\right| \doteq|J| \doteq$ ( $1-\left|a_{k}\right|$ ). So,

$$
\begin{aligned}
\int_{S(I)} \frac{(1-|z|)^{-\alpha p}}{\left|1-\bar{a}_{k} z\right|^{2}} d m & \geq \int_{S(J)} \frac{(1-|z|)^{-\alpha p}}{\left|1-\bar{a}_{k} z\right|^{2}} d m \\
& \geq C\left(1-\left|a_{k}\right|\right)^{-2} \int_{S(J)}(1-|z|)^{-\alpha p} d m \\
& =C\left(1-\left|a_{k}\right|\right)^{-\alpha p}
\end{aligned}
$$

We turn to the proof of the sufficiency. We will let $d_{k}=1-\left|a_{k}\right|$. Note, if (*) holds, that

$$
\sum_{a_{k} \in S(I)} d_{k}=\sum_{a_{k} \in S(I)} d_{k}^{\alpha p} d_{k}^{1-\alpha p} \leq C|I|^{\alpha p}|I|^{1-\alpha p}=C|I|
$$

and hence $(*)$ implies that

$$
\sum \frac{d_{k}}{\left|1-\bar{a}_{k} z\right|^{2}} \doteq \frac{1-|B(z)|}{1-|z|}
$$

as we have seen. We will use this fact later. First we assume that $0<\alpha<1$. Since $(B f)^{\prime}=f B^{\prime}+f^{\prime} B$ it follows that $B \in M B_{\alpha}^{p}$ if and only if $\left|B^{\prime}\right|^{p}(1-|z|)^{p(1-\alpha)-1} d m(z)$ is a Carleson measure for $B_{\alpha}^{p}$. By Theorem 1.1 this is equivalent to

$$
\begin{equation*}
\int_{S(I)}\left|B^{\prime}\right|^{p}(1-|z|)^{p(1-\alpha)-1} d m \leq C|I|^{1-\alpha p} \tag{**}
\end{equation*}
$$

We need to show that $(*)$ implies $(* *)$. Suppose that $I$ is centered at $\zeta$ and let $\delta=|I|$. Then $S(I) \subseteq\{z:|z-\zeta|<2 \delta\}$. Now

$$
\begin{aligned}
\left|B^{\prime}(z)\right| & \leq \sum \frac{d_{k}}{\left|1-\bar{a}_{k} z\right|^{2}}=\sum_{\left|\zeta-a_{k}\right| \leq 3 \delta} \frac{d_{k}}{\left|1-\bar{a}_{k} z\right|^{2}}+\sum_{j=0}^{\infty} \sum_{a_{k} \in A_{j}} \frac{d_{k}}{\left|1-\bar{a}_{k} z\right|^{2}} \\
& =I+I I
\end{aligned}
$$

where $A_{j}=\left\{z: 2^{j} 3 \delta<|\zeta-z| \leq 2^{j+1} \cdot 3 \delta\right\}$. Notice that, if $z \in S(I)$ and $a_{k} \in A_{j}$, we have

$$
\begin{aligned}
\left|1-\bar{a}_{k} z\right| & =\left|\bar{\zeta}-\bar{a}_{k} \bar{\zeta} z\right|=\left|\bar{\zeta}-\bar{a}_{k}+\bar{a}_{k} \bar{\zeta}(\zeta-z)\right| \\
& \geq\left|\zeta-a_{k}\right|-|\zeta-z| \geq 2^{j} \cdot 3 \delta-2 \delta \geq 2^{j} \delta
\end{aligned}
$$

Hence

$$
\begin{aligned}
\sum_{a_{k} \in A_{j}} \frac{d_{k}}{\left|1-\bar{a}_{k} z\right|^{2}} & \leq \frac{1}{2^{2 j} \delta^{2}} \sum_{a_{k} \in A_{j}} d_{k} \\
& =2^{-2 j} \delta^{-2} \sum_{a_{k} \in A_{j}} d_{j}^{1-\alpha p} d_{k}^{\alpha p} \\
& \leq 2^{-2 j} \delta^{-2}\left(2^{j+1} \cdot 3 \delta\right)^{\alpha p} \sum_{a_{k} \in A_{j}} d_{k}^{1-\alpha p}
\end{aligned}
$$

Now $A_{j} \subseteq S\left(I_{j}\right)$, where $\left|I_{j}\right|=2^{j+3} \cdot 3 \delta$, and so

$$
\begin{aligned}
\sum_{a_{k} \in A_{j}} d_{k}^{1-\alpha p} & \leq \sum_{a_{k} \in S\left(I_{j}\right)} d_{k}^{1-\alpha p} \leq C\left|I_{j}\right|^{1-\alpha p} \\
& \leq C\left(2^{j} \delta\right)^{1-\alpha p}
\end{aligned}
$$

As a consequence

$$
\sum_{a_{k} \in A_{j}} \frac{d_{k}}{\left|1-\bar{a}_{k} z\right|^{2}} \leq C 2^{-j} \delta^{-1}
$$

and hence

$$
I I \leq C \sum_{j=0}^{\infty} 2^{-j} \delta^{-1} \leq C \delta^{-1}, \quad \text { for all } z \in S(I)
$$

We now have

$$
\begin{aligned}
\int_{S(I)} & \left|B^{\prime}\right|^{p}(1-|z|)^{p(1-\alpha)-1} d m(z) \\
& \leq \int_{S(I)}\left(I^{p}+C \delta^{-p}\right)(1-|z|)^{p(1-\alpha)-1} d m(z) \\
& \leq C \sum_{\left|\zeta-a_{k}\right| \leq 3 \delta} d_{k}^{p} \int_{S(I)} \frac{1}{1-\left.\bar{a}_{k} z\right|^{2 p}}(1-|z|)^{p(1-\alpha)-1} d m(z) \\
& +C \delta^{-p} \int_{S(I)}(1-r)^{p(1-\alpha)-1} d m(z) \\
& \leq C \sum_{\left|\zeta-a_{k}\right| \leq 3 \delta} d_{k}^{p} \int_{U} \frac{(1-|z|)^{p(1-\alpha)-1}}{\left|1-\bar{a}_{k} z\right|^{2 p}} d m(z)+C \delta^{1-\alpha p} \\
& \leq C \delta^{1-\alpha p} .
\end{aligned}
$$

3. We suppose that $1<\alpha<2, p \leq 1, p \alpha<1$. Now we want to find a condition on a measure $\mu$ so that

$$
\begin{equation*}
\int^{\left|f^{\prime}\right|^{p}} d \mu \leq C\|f\|_{p, \alpha}, \quad \text { all } f \in B_{\alpha}^{p} \tag{3.1}
\end{equation*}
$$

Since $\alpha>1, f \in B_{\alpha}^{p}$ if and only if $f^{\prime} \in B_{\alpha-1}^{p}$, and hence 3.1 holds if and only if

$$
\mu(S(I)) \leq C|I|^{1-p(\alpha-1)}=C|I|^{1-p \alpha+p}
$$

From this it follows from Leibnitz's rule and Theorem 1.1 that $B \in$ $M B_{\alpha}^{p}$ if and only if

$$
\begin{equation*}
\int_{S(I)}\left|B^{\prime \prime}\right|^{p}(1-|z|)^{p(2-\alpha)-1} \leq C|I|^{1-p \alpha} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{S(I)}\left|B^{\prime}\right|^{p}(1-|z|)^{p(2-\alpha)-1} \leq C|I|^{1-p \alpha+p} \tag{3.3}
\end{equation*}
$$

for all arcs $I$.
We will show that condition $(*)$ of Theorem 2.1 implies 3.2 and 3.3.

First we discuss 3.2. An easy calculation shows that

$$
\left|B^{\prime \prime}(z)\right| \leq C\left[\left(\sum \frac{d_{k}}{\left|1-\bar{a}_{k} z\right|^{2}}\right)^{2}+\sum \frac{d_{k}}{\left|1-\bar{a}_{k} z\right|^{3}}\right]
$$

We divide up each sum dyadically, just as in the case $0<\alpha<1$. The terms corresponding to the dyadic annuli $A_{j}$ are handled exactly as in the case $0<\alpha<1$. The remaining terms must be handled slightly differently. They are

$$
\left(\sum_{\left|\zeta-a_{k}\right| \leq 3 \delta} \frac{d_{k}}{\left|1-\bar{a}_{k} z\right|^{2}}\right)^{2}+\sum_{\left|\zeta-a_{k}\right| \leq 3 \delta} \frac{d_{k}}{\left|1-\bar{a}_{k} z\right|^{3}}
$$

Hence we must estimate

$$
\begin{equation*}
\int_{S(I)}\left(\sum_{\left|\zeta-a_{k}\right| \leq 3 \delta} \frac{d_{k}}{\left|1-\bar{a}_{k} z\right|^{3}}\right)^{2 p}(1-r)^{p(2-\alpha)-1} d m \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{S(I)}\left(\sum_{\left|\zeta-a_{k}\right| \leq 3 \delta} \frac{d_{k}}{\left|1-\bar{a}_{k} z\right|^{3}}\right)^{p}(1-r)^{p(2-\alpha)-1} d m \tag{3.5}
\end{equation*}
$$

The estimations of 3.5 offer no difficulty, just replace the $p^{\text {th }}$ power of the sum by the sum of the $p^{\text {th }}$ powers and integrate over all of $U$, not just $S(I)$ to get the right result. If $2 p<1$, then 3.4 can be handled the same way. Suppose $2 p>1$. As we have noted, in our situation (the sum extended over $\left.\left|\zeta-a_{k}\right| \leq 3 \delta\right)$,

$$
\sum \frac{d_{k}}{\left|1-\bar{a}_{k} z\right|^{2}} \leq C \frac{1-|B(z)|}{1-|z|} \leq \frac{C}{1-|z|}
$$

hence, 3.4 is at most a constant times

$$
\begin{aligned}
& \int_{U}\left(\sum \frac{d_{k}}{\left|1-\bar{a}_{k} z\right|^{2}}\right)(1-r)^{1-2 p+p(2-\alpha)-1} d m \\
& \quad \leq \sum d_{k} \int_{U} \frac{(1-r)^{-p \alpha}}{\left|1-\bar{a}_{k} z\right|^{2}} d m \leq C \sum d_{k}^{1-\alpha p}
\end{aligned}
$$

Recalling that the sum is extended only over those $a_{k}$ such that $\left|\zeta-a_{k}\right| \leq 2 \delta$, we have our result.

This leaves the case $p=1 / 2$ which is similarly treated.
We turn to 3.3 . We estimate $\left|B^{\prime}(z)\right| \leq \sum d_{k} /\left|1-\bar{a}_{k} z\right|^{2}$, and break up the sum dyadically. The only term that offers any difficulty is

$$
\sum_{\left|\zeta-a_{k}\right| \leq 3 \delta} \frac{d_{k}}{\left|1-\bar{a}_{k} z\right|^{2}} .
$$

The part of 3.3 corresponding to this term is at most

$$
\begin{equation*}
\sum d_{k}^{p} \int_{S(I)} \frac{(1-r)^{p(2-\alpha)-1}}{\left|1-\bar{a}_{k} z\right|^{2 p}} d m \tag{3.6}
\end{equation*}
$$

the sum extended over $\left|\zeta-a_{k}\right| \leq 3 \delta$. If $2 p>1$, replace the integral over $S(I)$ by the integral over $U$ and the result follows. Suppose $2 p<1$, then note that

$$
\int_{I} \frac{d \theta}{\left|1-\bar{a}_{k} r e^{i \theta}\right|^{2 p}} \leq C|I|^{1-2 p}
$$

Using this we see that 3.6 is at most

$$
\begin{aligned}
\sum d_{k}^{p}|I|^{1-2 p}|I|^{p(2-\alpha)} & =\sum d_{k}^{1-\alpha p+\alpha p-1+p}|I|^{1-\alpha p} \\
& \leq C \sum d_{k}^{1-\alpha p}|I|^{\alpha p-1+p}|I|^{1-\alpha p}
\end{aligned}
$$

(here we have used the fact that $p>1 /(1+\alpha)$ and that the sum is extended over $\left.\left|\zeta-a_{k}\right| \leq 3 \delta\right)$. Now the result follows.

The case $\alpha=1$ follows in a similar way.
To show that there is no theorem when $p \leq 1 /(1+\alpha)$, we show that if $p=1 / 2$ and $\alpha=1$ then there is a Blaschke product $B$ whose zeros satisfy condition $*$ of Theorem 2.1 but $B \notin M B_{\alpha}^{p}$, in fact $B \notin B_{\alpha}^{p} \supseteq M B_{\alpha}^{p}$. In [3], in the proof of Lemma 2 on page 112 , there is constructed a Blaschke product $\sum d_{k}^{1 / 2}<2 \pi$, but $B^{\prime} \notin H^{1 / 2}$. The zeros are given as

$$
\theta_{n}=\sum_{k=n}^{\infty} d_{k}^{1 / 2}
$$

and

$$
a_{n}=\left(1-d_{n}\right) e^{i \theta_{n}}
$$

Now, it is clear from this construction that

$$
\sum_{a_{k} \in S(I)} d_{k}^{1 / 2} \leq C|I| \leq C|I|^{1 / 2}
$$

But $B \in B_{1}^{1 / 2}$ implies $B^{\prime} \in H^{1 / 2}$, so $B \notin B_{1}^{1 / 2}$.

## REFERENCES

1. D.R. Adams, On the existence of capacitary strong type estimates in $\mathbf{R}^{n}$, Ark. Mat. 14 (1976), 125-140.
2. —, The classification problem for capacities associated with the Besov and Triebel-Lizorkin spaces, preprint.
3. P.R. Ahern and D.N. Clark, On inner functions with $B^{p}$ derivative, Michigan Math. J. 23 (1976), 107-118.
4. T. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765.
5. W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966.
6. D. Stegenga, Multipliers of the Dirichlet space, Illinois J. Math. 24 (1980), 113-139.
7. E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970.
8. I. Verbitsky, On Taylor coefficients and $L_{p}$-continuity moduli of Blaschke products, LOMI, Leningrad Seminar Notes 107 (1982), 27-35.
9.     - Inner functions, Besov spaces and multipliers, Soviet Math. Dokl. 29 (1984).

Mathematics Department, University of Wisconsin-Madison, Madison, WI 53706


[^0]:    Received by the editors on February 3, 1987 and in revised form on August 24, 1987.

    This research was partially supported by a grant from N.S.F.

