
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 20, Number 3, Summer 1990

INNER MULTIPLIERS OF THE BESOV SPACE, 0 < p ≤ 1

PATRICK AHERN AND MIROLJUB JEVTIĆ

0. For α > 0 let k be the integer so that k − 1 ≤ α < k. Then, for
p > 0, the Besov space Bp

α is the set of functions f , holomorphic in the
unit disc U such that

||f ||pp,α =
∫

|f (k)(z)|p(1 − |z|)p(k−α)−1dm(z) < ∞.

Here dm denotes area measure in U . We will assume from now on that
1 − pα > 0. (When 1 − pα < 0 the functions in Bp

α are continuous out
to the boundary of U .) In [9], I. Verbitsky characterized those inner
functions B ∈ MBp

α, i.e., for which Bf ∈ Bp
α for all f ∈ Bp

α, p ≥ 1. See
[5, Chapter 17], for a discussion of inner functions. In this paper we
consider the case 0 < p ≤ 1.

The first step is to show that any such inner function is a Blaschke
product whose zero set is a finite union of interpolating sequences. The
proof of this for p ≤ 1 is similar to Verbitsky’s proof for p ≥ 1. Indeed,
after some preliminaries we appeal directly to his argument. So the
question becomes: Which such Blaschke products are in MBp

α?

For p > 1, the Carleson measures for Bp
α were determined by D.

Stegenga [6]. Using this result one immediately gets a necessary and
sufficient condition on B in order that B ∈ MBp

α. However, this
condition does not involve the distribution of zeros of B in any direct
way. The whole point of Verbitsky’s paper is to find a necessary and
sufficient condition on the zeros of B in order that B ∈ MBp

α. We take
the same point of view.

In the first section we find the Carleson measures for Bp
α, 0 < p ≤ 1.

For the case p > 1, Stegenga used the ideas involved in E. Stein’s proof
[7] of the original Carleson measure theorem together with the strong
capacitary estimates of D. Adams [1]. Our proof is the same except
we must use the recently proved “strong Hausdorff capacity” estimates
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of Adams [2]. Then we find that (at least in the case 0 < α < 1),
B ∈ MBp

α if and only if

(0.1)
∫

S(I)

|B′|p(1 − |z|)p(1−α)−1dm(z) ≤ C|I|1−αp,

for all arcs I. Here S(I) = {reiθ : eiθ ∈ I, 1− |I| ≤ r < 1}, |I| = length
of I. Our main result is that if p > 1/(1+α), then the above condition
is equivalent to

(0.2)
∑

an∈S(I)

(1 − |ak|)1−αp ≤ C|I|1−αp,

for all arcs I. Here {ak} are the zeros of B. Indeed we show that, for
any α > 0 and p ≤ 1 such that 1/(1 + α) < p < 1/α, the condition 0.2
is equivalent to B ∈ MBp

α. We also show that there is no theorem for
p ≤ 1/(1 + α), i.e., in this case 0.2 need not imply that B ∈ MBp

α.

We end the introduction by introducing some more notation. For
f(z) =

∑∞
k=0 akzk and α > 0, let

Dαf(z) =
∞∑

k=0

(k + 1)αakzk.

We will often use

(0.3)
∫

|Dαf(z)|p(1 − |z|)γdm
.=
∫

|Dβf(z)|p(1 − |z|)p(β−α)+γdm

as long as γ and p(β −α) + γ are greater than −1. Here A
.= B means

that A/c ≤ B ≤ CA for some universal constant C.

It follows from 0.3 that f ∈ Bp
α if and only if

∫
|D1+αf(z)|p(1 − |z|)p−1dm < ∞.

And from this it follows, by the Littlewood-Paley inequality that

Bp
α ⊆ {f : Dαf ∈ Hp}, 0 < p ≤ 2.
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Finally we will use the estimate |Dαf(z)| ≤ C(1 − |z|)−α||f ||∞. For
proofs of this and 0.3 see the paper of T. Flett [4].

Our main result is that if p ≤ 1, α > 0 and 1/(1+α) < p < 1/α, then
B ∈ MBp

α if and only if 0.2 holds. We will give detailed proof only in
case 0 < α < 2. The general case is technically rather complicated but
requires no new ideas. Our proof in the case 1 ≤ α < 2 will be rather
sketchy.

1. To determine the Carleson measure for Bp
α we need the strong

Hausdorff capacity estimates of D. Adams [2].

Definition. For 0 < m < 1 define, for E ⊆ T, Hm(E) =
inf{∑ |In|m : E ⊆ ∪In, In open arc}.

THEOREM A. Suppose 0 < m = 1− αp < 1, 0 < p ≤ 1. Then there is
a constant C such that∫ ∞

0

Hm({Nf > t})tp−1dt ≤ C||Dαf ||Hp .

Here Nf denotes the usual non-tangential maximal function of f .

LEMMA. Suppose 0 < m < 1, {In} is a sequence of open intervals
and ∪In = ∪Jk, where {Jk} are disjoint open intervals. Then

∑
|Jk|m ≤

∑
|In|m.

PROOF. Since {Jk} are pairwise disjoint Jk = ∪{In : In ⊆ Jk} and
hence |Jk| ≤

∑
In⊆Jk

|In|. Since 0 < m < 1 we have

|Jk|m ≤
∑

In⊆Jk

|In|m,

so ∑
k

|Jk|m ≤
∑

k

∑
In⊆Jk

|In|m =
∑

n

|In|m.
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Definition. A positive Borel measure on U is called a Carleson
measure for Bp

α if there is a constant C so that∫
|f |pdμ ≤ C||f ||p,α, all f ∈ Bp

α.

THEOREM 1. If 0 < p ≤ 1, then μ is a Carleson measure for Bp
α if

and only if there is a constant C so that

(∗) μ(S(I)) ≤ C|I|1−αp.

PROOF. To prove sufficiency of (∗), take f ∈ Bp
α, then∫

|f |pdμ =
∫ ∞

0

μ({|f | > t})tp−1dt.

Fix 0 < t < ∞ and suppose {In} is a sequence of open intervals such
that {Nf > t} ⊆ ∪In and ∪In = ∪Jk, where {Jk} are pairwise disjoint
open intervals. Now if |f(z)| > t, then Nf > t on some interval of
length greater than 1 − |z| and hence z ∈ S(Jk) for some k. That is
{|f(z)| > t} ⊆ ∪S(Jk), so

μ({|f | > t}) ≤
∑

μ(S(Jk))

≤ C
∑

|Jk|1−αp ≤ C
∑

|In|1−αp,

by the lemma. It follows from the definition of H1−αp that
μ({|f | > t}) ≤ CH1−αp({Nf > t}). From this it follows that∫

|f |pdμ ≤ C||Dαf ||Hp ≤ C||f ||pp,α.

The necessity of condition (∗) follows in a standard way by testing μ
against functions of the form f(z) = (1 − wz)−β. We omit the details.

2. Our first step is to show that if B is an inner function that
multiplies Bp

α, then B is a Blaschke product whose zero set is a finite
union of interpolating sequences.
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LEMMA 2.1. If 0 < p ≤ 1 and B ∈ MBp
α is inner, then∫

S(I)

(1 − |B(z)|)(1 − |z|)−1−αpdm(z) ≤ C|I|1−αp.

PROOF. We assume that I has its center at ζ = 1. Let f(z) =
(1 − rz)−1, where r = 1 − δ, δ = |I|. Now |f(z)| .= δ−1 in S(I), so we
have ∫

S(I)

(1 − |B(z)|)(1 − |z|)−1−αpdm(z)

≤ Cδ

∫
S(I)

|f(z)|(1 − |B(z)|)(1 − |z|)−1−αpdm(z)

≤ Cδ

∫
U

|f(z)|(1 − |B(z)|)(1 − |z|)−1−αpdm(z).

Since B is inner,

1 − |B(reiθ)| ≤
∫ 1

r

|B′(ρeiθ)|dρ a.e. dθ.

Hence we have∫
S(I)

(1 − |B(z)|)(1 − |z|)−1−αpdm(z)

≤ Cδ

∫ 2π

0

∫ 1

0

|f(reiθ)|(1 − r)−1−αp

∫ 1

r

|B′(ρeiθ)dρdrdθ

≤ Cδ

∫ 2π

0

∫ 1

0

|B′(ρeiθ)|
∫ ρ

0

|f(reiθ)|(1 − r)−1−αpdrdρdθ

≤ Cδ

∫ 2π

0

∫ 1

0

|B′(ρeiθ)| |f(ρeiθ)|
∫ ρ

0

(1 − r)−1−αpdrdρdθ

≤ Cδ

∫ 2π

0

∫ 1

0

|B′(ρeiθ)| |f(ρeiθ)|(1 − ρ)−αpdρdθ.

≤ Cδ

[∫
|(Bf)′(z)|(1 − |z|)−αpdm

+
∫

|B(z)| |f ′(z)|(1 − |z|)−αpdm(z)

]

≤ Cδ

∫
|(Bf)′(z)|(1 − |z|)−αpdm + Cδ

∫
|f ′(z)|(1 − |z|)−αpdm.
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An elementary calculation shows that δ
∫ |f ′(z)|(1 − |z|)−αpdm ≤

Cδ1−αp, so we turn our attention to

δ

∫
|(Bf)′(z)|(1 − |z|)−αpdm

≤ Cδ

∫
|D1+α(Bf)|(1 − |z|)α−αpdm

= Cδ

∫
|D1+α(Bf)|p |D1+α(Bf)|1−p(1 − |z|)α−αpdm

≤ cδ||Bf ||1−p
∞

∫
|D1+α(Bf)|p(1 − |z|)(1+α)(p−1)+α−αpdm

≤ Cδ||f ||1−p
∞

∫
|D1+α(Bf)|p(1 − |z|)p−1dm(z)

= Cδ||f ||1−p
∞ ||Bf ||pp,α ≤ Cδ||f ||1−p

∞ ||f ||pp,α,

because B ∈ MBp
α. Now ||f ||∞ .= δ−1, and we may calculate that

||f ||pp,α
.= δ1−αp−p. This completes the proof of the lemma.

We now give our main result.

THEOREM 2.1. Suppose 0 < p ≤ 1, 1/(1+α) < p < 1/α, and B is an
inner function. Then B ∈ MBp

α if and only if B is a Blaschke product
whose zeros {ak} satisfy

(∗)
∑

ak∈S(I)

(1 − |ak|)1−αp ≤ C|I|1−αp, all I.

PROOF. Suppose B ∈ MBp
α. Then, by Lemma 2.1, we see that∫

S(I)

(1 − |B(z)|)(1 − |z|)−1−αpdm(z) ≤ C|I|1−αp, all I.

In [9] Verbitsky shows that B is a Blaschke product whose zero set
{ak} is a finite union of interpolating sequences. This in turn implies
that

1 − |B(z)|
1 − |z| ≥ C

∑ 1 − |ak|
|1 − anz|2 ,
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see [8]. If we use this and Lemma 2.1 again we see that

|I|1−αp ≥ C

∫
S(I)

∑ 1 − |ak|
|1 − akz|2 (1 − |z|)−αpdm

≥ C
∑

ak∈S(I)

(1 − |ak|)
∫

S(I)

(1 − |z|)−αp

|1 − akz|2 dm.

We need to show that if ak ∈ S(I) then∫
S(I)

(1 − z)−αp

|1 − akz|2 dm(z) ≥ C(1 − |ak|)−αp.

Fix such an ak; then there is an arc J ⊆ I such that ak ∈ S(J) and
|J |/2 ≤ 1 − |ak| ≤ |J |. It follows that, for z ∈ S(J), |1 − akz| .= |J | .=
(1 − |ak|). So,∫

S(I)

(1 − |z|)−αp

|1 − akz|2 dm ≥
∫

S(J)

(1 − |z|)−αp

|1 − akz|2 dm

≥ C(1 − |ak|)−2

∫
S(J)

(1 − |z|)−αpdm

= C(1 − |ak|)−αp.

We turn to the proof of the sufficiency. We will let dk = 1 − |ak|.
Note, if (∗) holds, that∑

ak∈S(I)

dk =
∑

ak∈S(I)

dαp
k d1−αp

k ≤ C|I|αp|I|1−αp = C|I|,

and hence (∗) implies that

∑ dk

|1 − akz|2
.=

1 − |B(z)|
1 − |z| ,

as we have seen. We will use this fact later. First we assume that
0 < α < 1. Since (Bf)′ = fB′ + f ′B it follows that B ∈ MBp

α if and
only if |B′|p(1 − |z|)p(1−α)−1dm(z) is a Carleson measure for Bp

α. By
Theorem 1.1 this is equivalent to

(∗∗)
∫

S(I)

|B′|p(1 − |z|)p(1−α)−1dm ≤ C|I|1−αp.
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We need to show that (∗) implies (∗∗). Suppose that I is centered at ζ
and let δ = |I|. Then S(I) ⊆ {z : |z − ζ| < 2δ}. Now

|B′(z)| ≤
∑ dk

|1 − akz|2 =
∑

|ζ−ak|≤3δ

dk

|1 − akz|2 +
∞∑

j=0

∑
ak∈Aj

dk

|1 − akz|2

= I + II,

where Aj = {z : 2j3δ < |ζ − z| ≤ 2j+1 · 3δ}. Notice that, if z ∈ S(I)
and ak ∈ Aj , we have

|1 − akz| = |ζ − akζz| = |ζ − ak + akζ(ζ − z)|
≥ |ζ − ak| − |ζ − z| ≥ 2j · 3δ − 2δ ≥ 2jδ.

Hence

∑
ak∈Aj

dk

|1 − akz|2 ≤ 1
22jδ2

∑
ak∈Aj

dk

= 2−2jδ−2
∑

ak∈Aj

d1−αp
j dαp

k

≤ 2−2jδ−2(2j+1 · 3δ)αp
∑

ak∈Aj

d1−αp
k .

Now Aj ⊆ S(Ij), where |Ij | = 2j+3 · 3δ, and so

∑
ak∈Aj

d1−αp
k ≤

∑
ak∈S(Ij)

d1−αp
k ≤ C|Ij |1−αp

≤ C(2jδ)1−αp.

As a consequence

∑
ak∈Aj

dk

|1 − akz|2 ≤ C2−jδ−1,

and hence

II ≤ C
∞∑

j=0

2−jδ−1 ≤ Cδ−1, for all z ∈ S(I).
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We now have∫
S(I)

|B′|p(1 − |z|)p(1−α)−1dm(z)

≤
∫

S(I)

(Ip + Cδ−p)(1 − |z|)p(1−α)−1dm(z)

≤ C
∑

|ζ−ak|≤3δ

dp
k

∫
S(I)

1
|1 − akz|2p

(1 − |z|)p(1−α)−1dm(z)

+ Cδ−p

∫
S(I)

(1 − r)p(1−α)−1dm(z)

≤ C
∑

|ζ−ak|≤3δ

dp
k

∫
U

(1 − |z|)p(1−α)−1

|1 − akz|2p
dm(z) + Cδ1−αp

≤ Cδ1−αp.

3. We suppose that 1 < α < 2, p ≤ 1, pα < 1. Now we want to find
a condition on a measure μ so that

(3.1)
∫ |f ′|p

dμ ≤ C||f ||p,α, all f ∈ Bp
α.

Since α > 1, f ∈ Bp
α if and only if f ′ ∈ Bp

α−1, and hence 3.1 holds if
and only if

μ(S(I)) ≤ C|I|1−p(α−1) = C|I|1−pα+p.

From this it follows from Leibnitz’s rule and Theorem 1.1 that B ∈
MBp

α if and only if

(3.2)
∫

S(I)

|B′′|p(1 − |z|)p(2−α)−1 ≤ C|I|1−pα,

and

(3.3)
∫

S(I)

|B′|p(1 − |z|)p(2−α)−1 ≤ C|I|1−pα+p,

for all arcs I.

We will show that condition (∗) of Theorem 2.1 implies 3.2 and 3.3.
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First we discuss 3.2. An easy calculation shows that

|B′′(z)| ≤ C

[(∑ dk

|1 − akz|2
)2

+
∑ dk

|1 − akz|3
]
.

We divide up each sum dyadically, just as in the case 0 < α < 1. The
terms corresponding to the dyadic annuli Aj are handled exactly as in
the case 0 < α < 1. The remaining terms must be handled slightly
differently. They are

( ∑
|ζ−ak|≤3δ

dk

|1 − akz|2
)2

+
∑

|ζ−ak|≤3δ

dk

|1 − akz|3 .

Hence we must estimate

(3.4)
∫

S(I)

( ∑
|ζ−ak|≤3δ

dk

|1 − akz|3
)2p

(1 − r)p(2−α)−1dm

and

(3.5)
∫

S(I)

( ∑
|ζ−ak|≤3δ

dk

|1 − akz|3
)p

(1 − r)p(2−α)−1dm.

The estimations of 3.5 offer no difficulty, just replace the pth power of
the sum by the sum of the pth powers and integrate over all of U , not
just S(I) to get the right result. If 2p < 1, then 3.4 can be handled the
same way. Suppose 2p > 1. As we have noted, in our situation (the
sum extended over |ζ − ak| ≤ 3δ),

∑ dk

|1 − akz|2 ≤ C
1 − |B(z)|

1 − |z| ≤ C

1 − |z| ;

hence, 3.4 is at most a constant times

∫
U

(∑ dk

|1 − akz|2
)

(1 − r)1−2p+p(2−α)−1dm

≤
∑

dk

∫
U

(1 − r)−pα

|1 − akz|2 dm ≤ C
∑

d1−αp
k .
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Recalling that the sum is extended only over those ak such that
|ζ − ak| ≤ 2δ, we have our result.

This leaves the case p = 1/2 which is similarly treated.

We turn to 3.3. We estimate |B′(z)| ≤ ∑
dk/|1 − akz|2, and break

up the sum dyadically. The only term that offers any difficulty is

∑
|ζ−ak|≤3δ

dk

|1 − akz|2 .

The part of 3.3 corresponding to this term is at most

(3.6)
∑

dp
k

∫
S(I)

(1 − r)p(2−α)−1

|1 − akz|2p
dm,

the sum extended over |ζ−ak| ≤ 3δ. If 2p > 1, replace the integral over
S(I) by the integral over U and the result follows. Suppose 2p < 1,
then note that ∫

I

dθ

|1 − akreiθ|2p
≤ C|I|1−2p.

Using this we see that 3.6 is at most

∑
dp

k|I|1−2p|I|p(2−α) =
∑

d1−αp+αp−1+p
k |I|1−αp

≤ C
∑

d1−αp
k |I|αp−1+p|I|1−αp

(here we have used the fact that p > 1/(1 + α) and that the sum is
extended over |ζ − ak| ≤ 3δ). Now the result follows.

The case α = 1 follows in a similar way.

To show that there is no theorem when p ≤ 1/(1 + α), we show
that if p = 1/2 and α = 1 then there is a Blaschke product B
whose zeros satisfy condition ∗ of Theorem 2.1 but B 	∈ MBp

α, in fact
B 	∈ Bp

α ⊇ MBp
α. In [3], in the proof of Lemma 2 on page 112, there

is constructed a Blaschke product
∑

d
1/2
k < 2π, but B′ 	∈ H1/2. The

zeros are given as

θn =
∞∑

k=n

d
1/2
k
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and
an = (1 − dn)eiθn .

Now, it is clear from this construction that

∑
ak∈S(I)

d
1/2
k ≤ C|I| ≤ C|I|1/2.

But B ∈ B
1/2
1 implies B′ ∈ H1/2, so B 	∈ B

1/2
1 .
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