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THE AVERAGE ERROR OF QUADRATURE FORMULAS
FOR FUNCTIONS OF BOUNDED VARIATION

S. GRAF AND E. NOVAK

1. Introduction. The purpose of this paper is to discuss the average
case error of quadrature formulas for functions of bounded variation.
If one wants to consider average case errors then the main problem is
to define a natural probability measure on the function set in question.
One natural class of such measures is that of the Gaussian measures
which have been considered by several authors (see for instance [6, 2,
7, 3]).

We take an alternative approach. The probability measures we are
interested in should reflect “uniform distribution” in some sense (see
also [4]). On bounded sets of finite dimensional spaces the normalized
Lebesgue measure is the canonical candidate. On infinite dimensional
spaces a translation invariant measure which is finite on bounded sets
does not exist. Therefore, we construct a probability measure Q on the
set BV = {f : [0, 1] → R |f continuous, f(0) = 0, Var (f) ≤ 1} in a
different way using the “natural” measure on the homeomorphisms of
[0, 1] introduced in [1].

Let eQ
n denote the infimum of the average errors of quadrature formu-

las with n knots. We show that eQ
n converges to 0 like n− log 6/(2 log 2),

where log 6/(2 log 2) = 1.29248 . . . . This contrasts with the result for
the worst case analysis. Much as in [8] one can show that, among all
quadrature formulas with n knots, the rule

f → 1
n

n∑
i=1

f
( 2i

2n + 1

)

has minimal maximal error 1/(2n + 1).

2. A probability measure Q on BV . Let H be the space of all
homeomorphisms h from [0, 1] onto itself with h(0) = 0 and h(1) = 1
equipped with the topology of uniform convergence.
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In [1] a natural probability measure P on the Borel field of H was
investigated. A typical P -random homeomorphism h can be generated
by the following construction. First choose the value h(1/2) according
to the uniform distribution on [0, 1]. Then choose h(1/4) according
to the uniform distribution on [0, h(1/2)] and independently h(3/4)
according to the uniform distribution on [h(1/2), 1]. Continue this
process. With probability one, the function constructed in that way
on the dyadic rationals extends to an element of H. The measure P is
characterized by the formula (see [1, Theorem 3.7])

(2.1)
∫

H

G(h) dP (h) =
∫

H

∫
H

∫ 1

0

G([f, g]y) dy dP (f) dP (g),

for each integrable G : H → R , where

(2.2) [f, g]y(t) =
{

yf(2t), t ≤ 1/2
y + (1 − y)g(2t − 1), t ≥ 1/2.

Using P it is easy to define a Borel probability measure Q on the space

BV = {f : [0, 1] → R |f continuous, f(0) = 0, Var (f) ≤ 1}

with the uniform topology. Here Var (f) denotes the variation of f ,
i.e.,

Var (f) = sup
n∑

i=1

|f(xi+1) − f(xi)|,

where the supremum is taken over all families 0 ≤ x1 < x2 < · · · <
xn ≤ 1. We observe that

(2.3) BV contains {c1h1 − c2h2|ci ≥ 0, c1 + c2 ≤ 1, hi ∈ H}

as a dense subset. Now we define Q on BV by
(2.4)∫

BV

G(f) dQ(f) = 2
∫

D

∫
H

∫
H

G(c1h1 − c2h2) dP (h1) dP (h2)dc1dc2,

where D = {(c1, c2)|ci ≥ 0, c1 + c2 ≤ 1} and G : BV → R + is
measurable.
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REMARKS 2.1. (a) [1, Remark 2.15] shows that the measure P has
full support. Thus it follows from the definition of Q and (2.3) that Q
also has full support.

(b) The measure P satisfies [1, Remark 4.17(a)]∫
H

f(x) dP (f) = x for all x ∈ [0, 1].

3. The average error for the trapezoidal rule. Let n ∈ N and

Tn(f) =
1
2n

· f(1) +
1
n
·

n−1∑
i=1

f
( i

n

)
, f ∈ BV,

be the n-th trapezoidal rule. We define the average error of Tn on BV
by

ΔQ(Tn) =
(∫

BV

(I(f) − Tn(f))2dQ(f)
)1/2

,

where I(f) =
∫ 1

0
f(x)dx. The number ΔP (Tn) is defined in the same

way (where Q is replaced by P ). We will calculate the value of ΔQ(Tn)
for n = 2m, m ∈ N 0.

THEOREM 3.1. For m ∈ N 0,

ΔQ(T2m) = 120−1/2 · 6−m/2.

PROOF. By (2.4),

ΔQ(Tn)2

= 2 ·
∫

D

∫
H

∫
H

(c1I(h1) − c2I(h2) − c1Tn(h1)

+ c2Tn(h2))2dP (h1)dP (h2)dc1dc2

= 2
∫

D

[ ∫
H

c2
1(I(h1) − Tn(h1))2dP (h1)

+
∫

H

c2
2(I(h2) − Tn(h2))2dP (h2)

]
dc1dc2.
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The last equality holds because it follows from Remark 2.1(b) that∫
H

Tn(f) dP (f) =
1
2

=
∫

H

I(f) dP (f).

Because
∫

D
c2
1 + c2

2dc1dc2 = 1/6, we get

(3.1) ΔQ(Tn)2 =
1
3
· ΔP (Tn)2.

For n = 1 we obtain

(3.2)
ΔQ(Tn)2 =

1
3
·
∫

H

(I(h) − 1/2)2dP (h)

=
1
12

− 1
6

+
1
3
·
∫

H

I(h)2P (h).

By means of (2.1), deduce∫
H

I(h)2dP (h)

=
∫

H

∫
H

∫ 1

0

I([f, g]y)2dydP (f)dP (g)

=
∫

H

∫
H

∫ 1

0

1
4
· (yI(f) + y + (1 − y)I(g))2dydP (f)dP (g)

=
∫

H

∫
H

∫ 1

0

1
4
· (y2I(f)2 + y2 + (1 − y)2I(g)2 + 2y2I(f)

+ 2y(1 − y)I(f)I(g) + 2y(1 − y)I(g) dy dP (f) dP (g)

=
∫

H

1
6
I(h)2dP (h) +

11
48

.

This implies

(3.3)
∫

H

I(h)2dP (h) =
11
40

.

From (3.2) we deduce that

(3.4) ΔQ(T1)2 = − 1
12

+
11
120

=
1

120
.
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For n ∈ N , by (3.1) and (2.1),

ΔQ(T2n)2 =
1
3
· ΔP (T2n)2

=
1
3
·
∫

H

∫
H

∫ 1

0

(
1
2
yI(f) +

1
2
y +

1
2
(1 − y)I(g)

− 1
4n

(y + (1 − y)g(1)) − 1
2n

·
n∑

i=1

y · f
( i

n

)

− 1
2n

·
( 2n−1∑

i=n+1

y + (1 − y) · g(
i

n
− 1)

))2

dydP (f)dP (g)

=
1
3
·
∫

H

∫
H

∫ 1

0

(1
2
y · (I(f) − Tn(f)) +

2n−1−1−2n+2
4n

y

+
(1

2
(1 − y) · (I(g) − Tn(g)

))2

dydP (f)dP (g)

=
1
18

· ΔP (Tn)2 =
1
6
· ΔQ(Tn)2.

By induction we obtain, for m ≥ 0,

(3.5) ΔQ(T2m)2 =
1

120
· (1

6
)m

.

4. The best possible rate of convergence for the average
error. For 0 ≤ a1 < · · · < an ≤ 1, let a = (a1, . . . , an) and
Na : BV → R n be defined by

Na(f) = (f(a1), . . . , f(an)).

Let An = {φ◦Na|ai ∈ [0, 1], φ : R n → R }, n ∈ N . For formal reasons
we define A0 = {M : BV → R |M constant}. Define the average error
of M ∈ An by

ΔQ(M) =

(∫ ∗

BV

(I(f) − M(f))2dQ(f)

)1/2

,

where
∫ ∗ denotes the upper integral.
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Let eQ
n = inf{ΔQ(M)|M ∈ An} be the n-th average case error bound.

The numbers ΔP (M) and eP
n are defined analogously.

We are interested in the rate of convergence of eQ
n (n → ∞).

THEOREM 4.1. There exist constants c, C in (0,∞) with

c · n− log 6/2 log 2 ≤ eQ
n ≤ C · n− log 6/2 log 2

for n ∈ N .

For the proof of the theorem we will use some lemmas.

LEMMA 4.2. (
eQ
n

)2 ≥ 1
3
(
eP
n

)2

PROOF. First we want to show that, in the definition of eP
n and eQ

n ,
it is enough to consider measurable functions M ∈ An. We will prove
this for Q, the proof for P is similar. Let a = (a1, . . . , an) be fixed
and let μ be the image of Q with respect to Na. By the disintegration
theorem (see for instance [5]) there exists a family μs, s ∈ Na(BV ), of
probability measures on BV such that the following conditions hold:

(i) For Borel measurable B ⊂ BV , the function s → μs(B) is μ-
measurable.

(ii)
∫

A
μs(B)dμ(s) = Q(B ∩ N−1

a (A)) for all Borel measurable
A, B (A ⊂ R n, B ⊂ BV ).

(iii) For μ - a.e. s the measure μs(N−1
a (s)) equals 1.

For φ : R n → R , it follows from (ii) that

∫ ∗

BV

(I(f) − φ(f(a1), . . . , f(an))2dQ(f)

≥
∫ ∗

R n

∫ ∗

BV

(I(f) − φ(f(a1), . . . , f(an))2dμs(f)dμ(s)

≥
∫ ∗

R n

∫ ∗

BV

(I(f) −
∫

Idμs))2dμs(f)dμ(s).
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The last inequality holds because of (iii) and since the function c →∫ ∗
BV

(I(f) − c)2dμs attains its smallest value for c =
∫

I dμs.

By property (i) the function s → ∫
Idμs = φ0(s) is measurable and

hence
∫ ∗

BV

(I(f) − φ(f(a1), . . . , f(an))2dQ(f)

≥
∫
R n

∫
BV

(
I(f) −

∫
Idμs

)2

dμs(f)dμ(s)

(ii)
=
∫

BV

(I(f) − φ0(f(a1), . . . , f(an)))2dQ(f).

Thus our claim is proved.

For 0 ≤ a1 < · · · < an ≤ 1 and measurable φ : R n → R , we obtain,
by (2.4),

∫
BV

(I(f) − φ(f(a1), . . . , f(an)))2dQ(f)

= 2 ·
∫

D

∫
H

∫
H

(I(c1h1 − c2h2) − φ((c1h1 − c2h2)(a1), . . . ,

(c1h1 − c2h2)(an)))2dP (h1)dP (h2)dc1dc2.

By an argument similar to the one above we see that the last expression
is greater than or equal to

2
∫

D

∫
H

∫
H

(c1I(h1) − c2I(h2) − c1φ̃(h1(a1), . . . , h1(an))

+ c2φ̃(h2(a1), . . . , h2(an)))2dP (h1)dP (h2)dc1dc2,

where φ̃ is induced by the conditional expectation of I with respect to
the σ-field generated by Na. An easy calculation shows this to be equal
to

2
∫

D

c2
1 + c2

2dc1dc2

∫
H

(I(h) − φ̃(h(a1), . . . , h(an)))2dP (h) ≥ 1
3
· (eP

n )2.

Thus our lemma is proved.
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LEMMA 4.3.

(
eP
n

)2 ≥ inf
n=k+m

1
12

· ((eP
m

)2 +
(
eP
k

)2)
.

PROOF. For measurable φ and 0 ≤ a1 < · · · < ak ≤ 1/2 < ak+1 · · · <
an ≤ 1 we have, by (2.1),∫

H

(I(h) − φ(h(a1), . . . , h(an)))2dP (h)

=
∫ 1

0

∫
H

∫
H

(1
2
yI(f) +

1
2
y +

1
2
(1 − y)I(g) − φ(yf(2a1), . . . ,

yf(2ak), y + (1 − y)g(2ak+1 − 1), . . . ,

y + (1 − y)g(2an − 1))
)2

dP (g)dP (f)dy

≥
∫ 1

0

∫
H

∫
H

(1
2
yI(f) +

1
2
y +

1
2
(1 − y)I(g) − 1

2
yφ1(f(2a1), . . . ,

f(2ak)) − 1
2
y − 1

2
(1 − y)φ2(g(2ak+1 − 1), . . . ,

g(2an − 1))
)2

dP (g)dP (f)dy,

where φ1 and φ2 are induced by the conditional expectations of I with
respect to the σ-fields generated by N2a1,...,2ak

and N2ak+1−1,...,2an−1,
respectively. The last expression is equal to

1
12

·
∫

H

(I(f) − φ1(f(2a1), . . . , f(2ak)))2dP (f)+

+
1
12

·
∫

H

(I(g) − φ2(2ak+1, . . . , g(2an)))2dP (g)

≥ 1
12
(
eP
k

)2 +
1
12
(
eP
n−k

)2
.

Thus the lemma is proved.

PROOF OF THEOREM 4.1. We define a0 = (eP
0 )2 and

(4.1) an = inf
0≤k≤n

1
12

(ak + an−k).
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Since an is obviously nonincreasing and a2 = (1/66) · a0 we know that,
for n ≥ 2,

an <
1
12

(a0 + an),

and hence

(4.2) an = inf
0<k<n

1
12

(ak + an−k).

We will show that, for n ∈ N ,

an ≥ a1 · n−α,

where α = log 6/ log 2. Assume that ak ≥ a1 · k−α for k = 1, . . . , n. By
(4.2) there exists a k, 0 < k < n, with

an+1 =
1
12

(ak + an+1−k)

≥ 1
12

a1(k−α + (n + 1 − k)−α)

≥ 1
6
a1

(n + 1
2
)−α

= a1(n + 1)−α.

By (4.1) and Lemma 4.3 we get (eP
n )2 ≥ a1n

−α. Thus Lemma 4.2
implies (

eQ
n

)2 ≥ 1
3
a1n

−α.

Using Theorem 3.1, we prove the upper bound:

(
eQ
n

)2 ≤ (eQ
2m

)2 ≤ (ΔQ(T2m))2 =
1

120
· 6−m ≤ 1

20
n− log 6

log 2

for m ∈ N with 2m ≤ n < 2m+1.
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