ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 20, Number 3, Summer 1990

CERTAIN POLYNOMIAL SUBORDINATIONS

E.P. MERKES AND MOHAMMAD SALMASSI

Let K denote the family of analytic functions f in the open unit disk Δ that are normalized by f(0) = f'(0) - 1 = 0 and map Δ onto a convex region. Some years ago, T. Basgöze, J. Frank, and F. Keogh [1] determined necessary and sufficient conditions on the complex numbers λ, μ such that, for all $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$ in $K, \lambda z + \mu a_2 z^2$ maps Δ onto a convex region and the subordinations $z/2 \prec \lambda z + \mu a_2 z^2 \prec f(z)$ hold for z in Δ . Later Chiba [3] considered the analogous problem with z^2 replaced by z^n for an integer $n \ge 2$ and obtained necessary conditions on λ, μ for the subordinations $z/2 \prec \lambda z + \mu a_n z^n \prec f(z)$ in Δ . With this paper we present a relatively simple and direct proof of the necessary and sufficient conditions for a slightly more general version of these results.

Our principal theorem is

THEOREM A. For a given integer $n \ge 2$, let λ be a positive real number and μ a complex number such that $\lambda z + \mu z^n$ is locally univalent in Δ . The subordinations

(1)
$$z/2 \prec \lambda z + \mu a_n z^n \prec f(z) = z + \sum_{j=2}^{\infty} a_j z^j \quad (z \in \Delta)$$

are valid for all $f \in K$ if and only if $\lambda = 1/2 + (-1)^n \mu$, $0 \leq (-1)^n \mu \leq 1/(2(n^2 - 1))$.

PROOF. Since $\lambda z + \mu z^n$ is locally univalent, we have $\lambda \neq -n\mu z^{n-1}$ for $z \in \Delta$. It follows that $\lambda \ge n|\mu|$ and, hence, $\lambda z + \mu z^n$ is univalent in Δ .

Suppose (1) holds for all $f \in K$. Since $f_0(z) = z/(1-z)$ is in K, the first subordination and the univalence of $\lambda z + \mu z^n$ implies $|\lambda e^{i\theta} + \mu e^{in\theta}| \ge 1/2$ for all real θ . When $\mu \neq 0$ and $\theta = (-\arg \mu + \pi)/(n-1)$, we have $|\lambda - |\mu|| = \lambda - |\mu| \ge 1/2$. Furthermore, from the second subordination and the fact that $\Re f_0(z) \ge -1/2$ for z in Δ , it follows that

(2) $\Re(\lambda z + \mu z^n) \ge -1/2 \quad (z \in \Delta).$

Received by the editors on March 2, 1987.

Copyright ©1990 Rocky Mountain Mathematics Consortium

E.P. MERKES AND M. SALMASSI

When z = x, -1 < x < 0, and $x \to -1$, we obtain from (2) that $\lambda - (-1)^n \Re \mu \le 1/2$. Since $\lambda \ge 1/2 + |\mu|$, this implies μ is real, $(-1)^n \mu = |\mu|$, and $\lambda = 1/2 + (-1)^n \mu$. Again, by (2) with $z = e^{i\theta}, -\pi < \theta < \pi$, we have $0 \le 1 + 2\lambda \cos \theta + 2\mu \cos n\theta = 1 + \cos \theta + 2(-1)^n \mu [\cos \theta + (-1)^n \cos n\theta]$ or, when $\mu \ne 0$,

(3)
$$-\frac{\cos\theta + (-1)^n \cos n\theta}{1 + \cos\theta} \le \frac{1}{2(-1)^n \mu}.$$

Let $\theta \to \pi$ to obtain $1/(2(-1)^n \mu) \ge n^2 - 1$, which completes the proof of the necessity of Theorem A.

For the converse, it is known [2] that

$$\left|\frac{\cos\theta + (-1)^n \cos n\theta}{1 + \cos\theta}\right| \le n^2 - 1 \quad (-\pi < \theta < \pi)$$

Hence (3) holds when $0 \leq (-1)^n \mu \leq (1/2)(n^2 - 1)$ and (2) is valid for z in Δ . Since $1 + 2\lambda z + 2\mu z^n$ has positive real part in Δ , there is a probability measure α on $|\sigma| = 1$ such that

$$\lambda z + \mu z^n = \int_{|\sigma|=1} \frac{\sigma z}{1 - \sigma z} d\alpha(\sigma),$$

by the Herglotz representation theorem [5, p. 96]. Therefore, for any integer $k > 1, k \neq n$,

$$\lambda = \int_{|\sigma|=1} \sigma d\alpha(\sigma), \quad \mu = \int_{|\sigma|=1} \sigma^n d\alpha(\sigma), \quad \int_{|\sigma|=1} \sigma^k d\alpha(\sigma) = 0,$$

and, for z in Δ ,

$$\lambda z + \mu a_n z^n = \int_{|\sigma|=1} f(\sigma z) d\alpha(\sigma) \prec f(z) = z + \sum_{j=2}^{\infty} a_j z^j$$

whenever $f \in K$. Finally, $|a_n| \leq 1$ when $f(z) = z + a_2 z^2 + \cdots + a_n z^n + \cdots$ is in K [5, p. 117], so, for |z| = 1,

$$|\lambda z + \mu a_n z^n| \ge \lambda - |a_n| \ |\mu| \ge \lambda - |\mu| \ge 1/2.$$

This proves $z/2 \prec \lambda z + \mu a_n z^n$ in Δ .

REMARKS. 1. The conditions of the theorem imply that $\lambda z + \mu a_n z^n$ is a convex univalent function since [7] (See also [5, p. 128])

$$|\mu a_n|/\lambda \le |\mu|/\lambda = 2|\mu|/(2|\mu|+1) \le 1/n^2.$$

2. The assumption that λ is a positive real number can be replaced by λ complex since, for any analytic function f in the unit disk, $f(\sigma z) \prec f(z)$ for all complex $\sigma, |\sigma| = 1$.

3. We can appeal to a general result of Wilf [9] rather than the Herglotz representation theorem in the sufficiency proof of Theorem A.

In [1] the authors prove

$$z/2 \prec (1/2 + \mu)z + \mu a_2 z^2 \prec (2/3)z + (1/6)a_2 z^2$$

when $0 \le \mu \le 1/6$, that is, the polynomials $(1/2 + \mu)z + \mu a_2 z^2$ form a subordination chain when $0 \le \mu \le 1/6$. Based on the following lemma [4] (See also [8, p. 159]), we prove the corresponding result with z^2 replaced by $z^n, n \ge 2$.

LEMMA. For z in Δ and t in the real interval [a, b], let $\phi(z, t)$ be an analytic function of z for each t and let ϕ be continuously differentiable with respect to t in [a, b] for each fixed z of Δ . Let $\phi(0, t) = 0$ and $\frac{d}{dz}\phi(0, t) > 0$. Then, for z in $\Delta, \phi(z, t_1) \prec \phi(z, t_2)$ whenever $a \leq t_1 \leq t_2 \leq b$ if and only if, for $0 < |z| < 1, a \leq t \leq b$, we have

(4)
$$\Re\left\{\frac{\frac{d\phi}{dt}}{z\frac{d\phi}{dz}}\right\} \ge 0 \quad \text{or} \quad \frac{d\phi}{dt} = 0.$$

THEOREM B. The polynomials $\phi(z,t) = (1/2+t)z+(-1)^n atz^n$, where $|a| \leq 1$, form a subordination chain when $0 \leq t \leq 1/(2(n-1))$.

PROOF. We have, for $z \in \Delta$ and $0 \le t < 1/(2(n-1))$,

$$\frac{\frac{d\phi}{dt}}{z\frac{d\phi}{dz}} = \frac{1+(-1)^n a z^{n-1}}{\frac{1}{2}+t+(-1)^n t n a z^{n-1}} = \frac{1+w}{\frac{1}{2}+t+ntw}, \quad w = (-1)^n a z^{n-1}$$

E.P. MERKES AND M. SALMASSI

(The denominator is not zero for $|z| \leq 1$.) Since the last expression is analytic for $|w| \leq 1$, (4) holds if and only if it holds when |w| = 1. Now the real part of the ratio is nonnegative on |w| = 1 if and only if

$$0 \le \Re \left\{ (1+w) \left(\frac{1}{2} + t + nt\overline{w} \right) \right\}$$

= $\frac{1}{2} \Re (1+w) + nt \left[\left| w + \frac{1}{2} + \frac{1}{2n} \right|^2 - \frac{(n-1)^2}{4n^2} \right].$

But $|w+1/2+1/(2n)| \ge (n-1)/(2n)$ when |w| = 1. We conclude that (4) holds for $0 \le |z| < 1, 0 \le t < 1/(2(n-1))$, and, by a limiting process, on the closed interval $0 \le t \le 1/(2(n-1))$.

In particular, for all $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$ in K we have, by Theorem A, that

$$\frac{z}{2} \prec \big(\frac{1}{2} + (-1)^n \mu\big) z + \mu a_n z^n \prec \frac{n^2}{2(n^2 - 1)} z + \frac{(-1)^n}{2(n^2 - 1)} a_n z^n \prec f(z)$$

for z in Δ . The last subordination is 'best' even though the subordination chain in Theorem B with $t = (-1)^n \mu$ does not end at $t=1/(2(n^2-1))$.

Keogh [6] determined necessary and sufficient conditions on λ, μ such that, for all $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$ in the class S^* of analytic univalent normalized starlike functions in Δ the subordinations $z/4 \prec \lambda z + \mu a_2 z^2 \prec f(z)$ hold in Δ . When z^2 is replaced by z^n , we can prove the necessity of the extension of Keogh's result. We conjecture that the stated conditions are sufficient. \Box

THEOREM C. For a given integer $n \ge 2$, let λ be a positive real number and μ a complex number such that $\lambda z + n\mu z^n$ is locally univalent in Δ . If the subordinations

(5)
$$z/4 \prec \lambda z + \mu a_n z^n \prec f(z) = z + \sum_{j=2}^{\infty} a_j z^j \quad (z \in \Delta)$$

are valid for all $f \in S^*$, then $\lambda = 1/4 + (-1)^n n\mu, 0 \le (-1)^n \mu \le 3/(8n(n^2-1)).$

PROOF. The function $\lambda z + n\mu z^n$ is univalent in Δ and $\lambda \ge n^2 |\mu|$. The first subordination in (5) implies for $z = e^{i\theta}, -\pi < \theta \le \pi$, that

$$|\lambda e^{i\theta} + n\mu e^{in\theta}| \ge 1/4$$

when $f(z) = z/(1-z)^2 \in S^*$. Furthermore, equality holds if and only if $\lambda - n|\mu| = 1/4$ and $e^{i(n-1)\theta} = e^{-i(\beta+\pi)}$, where $\beta = +\arg \mu$ for $\mu \neq 0$. Since $z/(1-z)^2$ maps Δ onto the complex plane slit along the negative real axis from -1/4 to $-\infty$, we must therefore have a real θ_0 such that $\lambda e^{i\theta_0} + n\mu e^{in\theta_0} = -1/4$ by the two subordinations of (5). Hence $\theta_0(n-1) \equiv -(\beta + \pi)(\operatorname{mod} 2\pi)$ and

$$-1/4 = e^{i\theta_0} (\lambda + n\mu e^{i(n-1)\theta_0}) = e^{i\theta_0} (\lambda - n\mu e^{-i\beta})$$

= $e^{i\theta_0} (\lambda - n|\mu|) = (1/4)e^{i\theta_0},$

that is, $\theta_0 \equiv \pi \pmod{2\pi}$. It follows that $(n-1)\theta_0 \equiv 0$ or $\pi \pmod{2\pi}$ according to whether *n* is odd or even. Since $(n-1)\theta_0 \equiv -(\beta + \pi) \pmod{2\pi}$, we have $\beta \equiv 0 \pmod{2\pi}$ when *n* is even and $\beta \equiv \pi$ when *n* is odd. Thus μ is real, $(-1)^n \mu \geq 0$, and $\lambda = 1/4 + (-1)^n n\mu$.

To determine the upper bound on $(-1)^n \mu$, consider the function in S^* given for a fixed $t, 0 < t < \pi$, by

$$f(z,t) = \frac{z}{1 - 2z\cos t + z^2} = z + \sum_{j=2}^{\infty} \frac{\sin jt}{\sin t} z^j.$$

This function maps Δ onto the complex plane slit along the real axis from $-1/(2(1 + \cos t))$ through ∞ to $1/(2(1 - \cos t))$. By the second subordination of (5) and the fact that μ is real, we have, for z=x, -1 < x < 0,

$$-\frac{1}{2(1+\cos t)} \le \left(\frac{1}{4} + (-1)^n n\mu\right) x + \mu \frac{\sin nt}{\sin t} x^n$$

Let $x \to -1$ to obtain the inequality

_

$$-\frac{1}{2(1+\cos t)} \le -\frac{1}{4} - (-1)^n \mu \left[n - \frac{\sin nt}{\sin t} \right].$$

Since $\sin nt / \sin t < n$ when $t \in (0, \pi)$, we have

$$(-1)^n \mu \le \frac{1 - \cos t}{4(1 + \cos t)} \cdot \frac{\sin t}{n \sin t - \sin nt}.$$

Now let $t \to 0$ to obtain $(-1)^n \mu \le 3/(8n(n^2 - 1))$.

As mentioned previously the restriction of λ to positive real values is without loss of generality. Furthermore, it is easily proved that $(1/4+(-1)^n n\mu)z+\mu a_n z^n \text{ maps } \Delta$ onto a starlike region when $|a_n| \leq n$ and $0 \leq (-1)^n \mu \leq 3/(8n(n^2-1))$. (See [7] or [5, p. 128].) \square

By the proof similar to that of Theorem B, we can obtain

THEOREM D. The polynomials $\psi(z,t) = (\frac{1}{4}+nt)z+(-1)^n atz^n$, where $|a| \leq n$, form a subordination chain when $0 \leq t \leq 1/(4(n^2-n))$.

Keogh [6] proved this result for n = 2 and $0 \le t \le 1/16$.

REFERENCES

1. T. Basgöze, J.L. Frank and F.R. Keogh, On convex univalent functions, Canad. J. Math. 22 (1970), 123–127.

2. L.E. Bush, *The William Lowell Putnam mathematical competition*, Amer. Math. Monthly **64** (1957), 649–654.

 T. Chiba, On convex univalent functions, Kenkyû Kiyô-Gakushûin Kotoka, 7 (1975), 1–8.

4. P.J. Eenigenburg and J. Waniurski, On subordinationa and majorization, Ann. Univ. Mariae Curie-Sktodowska **36–37** (1982–1983), 45–49.

5. A.W. Goodman, *Univalent Functions*, Vol. I. Mariner Publ. Co., Tampa, Fl., 1983.

6. F.R. Keogh, A strengthened form of the 1/4-theorem for starlike univalent functions, Math. Essays Dedicated to A.J. Macintyre, Ohio Univ. Press., Athens, Ohio, 1970; Hari Shankar, ed., 201–211.

7. A. Kobori, Über sternige and konvexe Abbildung, Mem. Coll. Sci. Kyoto A, 15 (1932), 267–278.

8. C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.

9. H.S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc. **12** (1961), 689-693.

Department of Mathematics, University of Cincinnati, Cincinnati, OH 45221

Department of Mathematics, College of the Holy Cross, Worcester, MA $\,$ 01610-2395 $\,$