CERTAIN POLYNOMIAL SUBORDINATIONS

E.P. MERKES AND MOHAMMAD SALMASSI

Let K denote the family of analytic functions f in the open unit disk Δ that are normalized by $f(0)=f^{\prime}(0)-1=0$ and map Δ onto a convex region. Some years ago, T. Basgöze, J. Frank, and F. Keogh [1] determined necessary and sufficient conditions on the complex numbers λ, μ such that, for all $f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$ in $K, \lambda z+\mu a_{2} z^{2}$ maps Δ onto a convex region and the subordinations $z / 2 \prec \lambda z+\mu a_{2} z^{2} \prec f(z)$ hold for z in Δ. Later Chiba [3] considered the analogous problem with z^{2} replaced by z^{n} for an integer $n \geq 2$ and obtained necessary conditions on λ, μ for the subordinations $z / 2 \prec \lambda z+\mu a_{n} z^{n} \prec f(z)$ in Δ. With this paper we present a relatively simple and direct proof of the necessary and sufficient conditions for a slightly more general version of these results.

Our principal theorem is

THEOREM A. For a given integer $n \geq 2$, let λ be a positive real number and μ a complex number such that $\lambda z+\mu z^{n}$ is locally univalent in Δ. The subordinations

$$
\begin{equation*}
z / 2 \prec \lambda z+\mu a_{n} z^{n} \prec f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j} \quad(z \in \Delta) \tag{1}
\end{equation*}
$$

are valid for all $f \in K$ if and only if $\lambda=1 / 2+(-1)^{n} \mu, 0 \leq(-1)^{n} \mu \leq$ $1 /\left(2\left(n^{2}-1\right)\right)$.

Proof. Since $\lambda z+\mu z^{n}$ is locally univalent, we have $\lambda \neq-n \mu z^{n-1}$ for $z \in \Delta$. It follows that $\lambda \geq n|\mu|$ and, hence, $\lambda z+\mu z^{n}$ is univalent in Δ.

Suppose (1) holds for all $f \in K$. Since $f_{0}(z)=z /(1-z)$ is in K, the first subordination and the univalence of $\lambda z+\mu z^{n}$ implies $\left|\lambda e^{i \theta}+\mu e^{i n \theta}\right| \geq 1 / 2$ for all real θ. When $\mu \neq 0$ and $\theta=(-\arg \mu+\pi) /(n-1)$, we have $|\lambda-|\mu||=\lambda-|\mu| \geq 1 / 2$. Furthermore, from the second subordination and the fact that $\Re f_{0}(z) \geq-1 / 2$ for z in Δ, it follows that

$$
\begin{equation*}
\Re\left(\lambda z+\mu z^{n}\right) \geq-1 / 2 \quad(z \in \Delta) \tag{2}
\end{equation*}
$$

Received by the editors on March 2, 1987.

When $z=x,-1<x<0$, and $x \rightarrow-1$, we obtain from (2) that $\lambda-(-1)^{n} \Re \mu \leq 1 / 2$. Since $\lambda \geq 1 / 2+|\mu|$, this implies μ is real, $(-1)^{n} \mu=$ $|\mu|$, and $\lambda=1 / 2+(-1)^{n} \mu$. Again, by (2) with $z=e^{i \theta},-\pi<\theta<\pi$, we have $0 \leq 1+2 \lambda \cos \theta+2 \mu \cos n \theta=1+\cos \theta+2(-1)^{n} \mu\left[\cos \theta+(-1)^{n} \cos n \theta\right]$ or, when $\mu \neq 0$,

$$
\begin{equation*}
-\frac{\cos \theta+(-1)^{n} \cos n \theta}{1+\cos \theta} \leq \frac{1}{2(-1)^{n} \mu} \tag{3}
\end{equation*}
$$

Let $\theta \rightarrow \pi$ to obtain $1 /\left(2(-1)^{n} \mu\right) \geq n^{2}-1$, which completes the proof of the necessity of Theorem A.

For the converse, it is known [2] that

$$
\left|\frac{\cos \theta+(-1)^{n} \cos n \theta}{1+\cos \theta}\right| \leq n^{2}-1 \quad(-\pi<\theta<\pi)
$$

Hence (3) holds when $0 \leq(-1)^{n} \mu \leq(1 / 2)\left(n^{2}-1\right)$ and (2) is valid for z in Δ. Since $1+2 \lambda z+2 \mu z^{n}$ has positive real part in Δ, there is a probability measure α on $|\sigma|=1$ such that

$$
\lambda z+\mu z^{n}=\int_{|\sigma|=1} \frac{\sigma z}{1-\sigma z} d \alpha(\sigma)
$$

by the Herglotz representation theorem [5, p. 96]. Therefore, for any integer $k>1, k \neq n$,

$$
\lambda=\int_{|\sigma|=1} \sigma d \alpha(\sigma), \quad \mu=\int_{|\sigma|=1} \sigma^{n} d \alpha(\sigma), \quad \int_{|\sigma|=1} \sigma^{k} d \alpha(\sigma)=0
$$

and, for z in Δ,

$$
\lambda z+\mu a_{n} z^{n}=\int_{|\sigma|=1} f(\sigma z) d \alpha(\sigma) \prec f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}
$$

whenever $f \in K$. Finally, $\left|a_{n}\right| \leq 1$ when $f(z)=z+a_{2} z^{2}+\cdots+$ $a_{n} z^{n}+\cdots$ is in $K[\mathbf{5}, \mathrm{p} .117]$, so, for $|z|=1$,

$$
\left|\lambda z+\mu a_{n} z^{n}\right| \geq \lambda-\left|a_{n}\right||\mu| \geq \lambda-|\mu| \geq 1 / 2
$$

This proves $z / 2 \prec \lambda z+\mu a_{n} z^{n}$ in Δ. \square

REMARKS. 1. The conditions of the theorem imply that $\lambda z+\mu a_{n} z^{n}$ is a convex univalent function since [7] (See also [5, p. 128])

$$
\left|\mu a_{n}\right| / \lambda \leq|\mu| / \lambda=2|\mu| /(2|\mu|+1) \leq 1 / n^{2}
$$

2. The assumption that λ is a positive real number can be replaced by λ complex since, for any analytic function f in the unit disk, $f(\sigma z) \prec f(z)$ for all complex $\sigma,|\sigma|=1$.
3. We can appeal to a general result of Wilf [9] rather than the Herglotz representation theorem in the sufficiency proof of Theorem A.
In [1] the authors prove

$$
z / 2 \prec(1 / 2+\mu) z+\mu a_{2} z^{2} \prec(2 / 3) z+(1 / 6) a_{2} z^{2}
$$

when $0 \leq \mu \leq 1 / 6$, that is, the polynomials $(1 / 2+\mu) z+\mu a_{2} z^{2}$ form a subordination chain when $0 \leq \mu \leq 1 / 6$. Based on the following lemma [4] (See also [8, p. 159]), we prove the corresponding result with z^{2} replaced by $z^{n}, n \geq 2$.

Lemma. For z in Δ and t in the real interval $[a, b]$, let $\phi(z, t)$ be an analytic function of z for each t and let ϕ be continuously differentiable with respect to t in $[a, b]$ for each fixed z of Δ. Let $\phi(0, t)=0$ and $\frac{d}{d z} \phi(0, t)>0$. Then, for z in $\Delta, \phi\left(z, t_{1}\right) \prec \phi\left(z, t_{2}\right)$ whenever $a \leq t_{1} \leq t_{2} \leq b$ if and only if, for $0<|z|<1, a \leq t \leq b$, we have

$$
\begin{equation*}
\Re\left\{\frac{\frac{d \phi}{d t}}{z \frac{d \phi}{d z}}\right\} \geq 0 \quad \text { or } \quad \frac{d \phi}{d t}=0 \tag{4}
\end{equation*}
$$

THEOREM B. The polynomials $\phi(z, t)=(1 / 2+t) z+(-1)^{n}$ atz z^{n}, where $|a| \leq 1$, form a subordination chain when $0 \leq t \leq 1 /(2(n-1))$.

Proof. We have, for $z \in \Delta$ and $0 \leq t<1 /(2(n-1))$,

$$
\frac{\frac{d \phi}{d t}}{z \frac{d \phi}{d z}}=\frac{1+(-1)^{n} a z^{n-1}}{\frac{1}{2}+t+(-1)^{n} t n a z^{n-1}}=\frac{1+w}{\frac{1}{2}+t+n t w}, \quad w=(-1)^{n} a z^{n-1}
$$

(The denominator is not zero for $|z| \leq 1$.) Since the last expression is analytic for $|w| \leq 1$, (4) holds if and only if it holds when $|w|=1$. Now the real part of the ratio is nonnegative on $|w|=1$ if and only if

$$
\begin{aligned}
0 & \leq \Re\left\{(1+w)\left(\frac{1}{2}+t+n t \bar{w}\right)\right\} \\
& =\frac{1}{2} \Re(1+w)+n t\left[\left|w+\frac{1}{2}+\frac{1}{2 n}\right|^{2}-\frac{(n-1)^{2}}{4 n^{2}}\right] .
\end{aligned}
$$

But $|w+1 / 2+1 /(2 n)| \geq(n-1) /(2 n)$ when $|w|=1$. We conclude that (4) holds for $0 \leq|z|<1,0 \leq t<1 /(2(n-1))$, and, by a limiting process, on the closed interval $0 \leq t \leq 1 /(2(n-1))$.

In particular, for all $f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$ in K we have, by Theorem A, that

$$
\frac{z}{2} \prec\left(\frac{1}{2}+(-1)^{n} \mu\right) z+\mu a_{n} z^{n} \prec \frac{n^{2}}{2\left(n^{2}-1\right)} z+\frac{(-1)^{n}}{2\left(n^{2}-1\right)} a_{n} z^{n} \prec f(z)
$$

for z in Δ. The last subordination is 'best' even though the subordination chain in Theorem B with $t=(-1)^{n} \mu$ does not end at $t=1 /\left(2\left(n^{2}-1\right)\right)$.

Keogh [6] determined necessary and sufficient conditions on λ, μ such that, for all $f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$ in the class S^{*} of analytic univalent normalized starlike functions in Δ the subordinations $z / 4 \prec \lambda z+\mu a_{2} z^{2} \prec$ $f(z)$ hold in Δ. When z^{2} is replaced by z^{n}, we can prove the necessity of the extension of Keogh's result. We conjecture that the stated conditions are sufficient. ㅁ

THEOREM C. For a given integer $n \geq 2$, let λ be a positive real number and μ a complex number such that $\lambda z+n \mu z^{n}$ is locally univalent in Δ. If the subordinations

$$
\begin{equation*}
z / 4 \prec \lambda z+\mu a_{n} z^{n} \prec f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j} \quad(z \in \Delta) \tag{5}
\end{equation*}
$$

are valid for all $f \in S^{*}$, then $\lambda=1 / 4+(-1)^{n} n \mu, 0 \leq(-1)^{n} \mu \leq$ $3 /\left(8 n\left(n^{2}-1\right)\right)$.

Proof. The function $\lambda z+n \mu z^{n}$ is univalent in Δ and $\lambda \geq n^{2}|\mu|$. The first subordination in (5) implies for $z=e^{i \theta},-\pi<\theta \leq \pi$, that

$$
\left|\lambda e^{i \theta}+n \mu e^{i n \theta}\right| \geq 1 / 4
$$

when $f(z)=z /(1-z)^{2} \in S^{*}$. Furthermore, equality holds if and only if $\lambda-n|\mu|=1 / 4$ and $e^{i(n-1) \theta}=e^{-i(\beta+\pi)}$, where $\beta=+\arg \mu$ for $\mu \neq 0$. Since $z /(1-z)^{2}$ maps Δ onto the complex plane slit along the negative real axis from $-1 / 4$ to $-\infty$, we must therefore have a real θ_{0} such that $\lambda e^{i \theta_{0}}+n \mu e^{i n \theta_{0}}=-1 / 4$ by the two subordinations of (5). Hence $\theta_{0}(n-1) \equiv-(\beta+\pi)(\bmod 2 \pi)$ and

$$
\begin{aligned}
-1 / 4 & =e^{i \theta_{0}}\left(\lambda+n \mu e^{i(n-1) \theta_{0}}\right)=e^{i \theta_{0}}\left(\lambda-n \mu e^{-i \beta}\right) \\
& =e^{i \theta_{0}}(\lambda-n|\mu|)=(1 / 4) e^{i \theta_{0}}
\end{aligned}
$$

that is, $\theta_{0} \equiv \pi(\bmod 2 \pi)$. It follows that $(n-1) \theta_{0} \equiv 0$ or $\pi(\bmod 2 \pi)$ according to whether n is odd or even. Since $(n-1) \theta_{0} \equiv-(\beta+$ $\pi)(\bmod 2 \pi)$, we have $\beta \equiv 0(\bmod 2 \pi)$ when n is even and $\beta \equiv \pi$ when n is odd. Thus μ is real, $(-1)^{n} \mu \geq 0$, and $\lambda=1 / 4+(-1)^{n} n \mu$.
To determine the upper bound on $(-1)^{n} \mu$, consider the function in S^{*} given for a fixed $t, 0<t<\pi$, by

$$
f(z, t)=\frac{z}{1-2 z \cos t+z^{2}}=z+\sum_{j=2}^{\infty} \frac{\sin j t}{\sin t} z^{j}
$$

This function maps Δ onto the complex plane slit along the real axis from $-1 /(2(1+\cos t))$ through ∞ to $1 /(2(1-\cos t))$. By the second subordination of (5) and the fact that μ is real, we have, for $z=x,-1<x<0$,

$$
-\frac{1}{2(1+\cos t)} \leq\left(\frac{1}{4}+(-1)^{n} n \mu\right) x+\mu \frac{\sin n t}{\sin t} x^{n}
$$

Let $x \rightarrow-1$ to obtain the inequality

$$
-\frac{1}{2(1+\cos t)} \leq-\frac{1}{4}-(-1)^{n} \mu\left[n-\frac{\sin n t}{\sin t}\right]
$$

Since $\sin n t / \sin t<n$ when $t \in(0, \pi)$, we have

$$
(-1)^{n} \mu \leq \frac{1-\cos t}{4(1+\cos t)} \cdot \frac{\sin t}{n \sin t-\sin n t}
$$

Now let $t \rightarrow 0$ to obtain $(-1)^{n} \mu \leq 3 /\left(8 n\left(n^{2}-1\right)\right)$.
As mentioned previously the restriction of λ to positive real values is without loss of generality. Furthermore, it is easily proved that $\left(1 / 4+(-1)^{n} n \mu\right) z+\mu a_{n} z^{n}$ maps Δ onto a starlike region when $\left|a_{n}\right| \leq n$ and $0 \leq(-1)^{n} \mu \leq 3 /\left(8 n\left(n^{2}-1\right)\right)$. (See [7] or [5, p. 128].) \square

By the proof similar to that of Theorem B, we can obtain

THEOREM D. The polynomials $\psi(z, t)=\left(\frac{1}{4}+n t\right) z+(-1)^{n}$ atz z^{n}, where $|a| \leq n$, form a subordination chain when $0 \leq t \leq 1 /\left(4\left(n^{2}-n\right)\right)$.

Keogh [6] proved this result for $n=2$ and $0 \leq t \leq 1 / 16$.

REFERENCES

1. T. Basgöze, J.L. Frank and F.R. Keogh, On convex univalent functions, Canad. J. Math. 22 (1970), 123-127.
2. L.E. Bush, The William Lowell Putnam mathematical competition, Amer. Math. Monthly 64 (1957), 649-654.
3. T. Chiba, On convex univalent functions, Kenkyû Kiyô-Gakushûin Kotoka, 7 (1975), 1-8.
4. P.J. Eenigenburg and J. Waniurski, On subordinationa and majorization, Ann. Univ. Mariae Curie-Sktodowska 36-37 (1982-1983), 45-49.
5. A.W. Goodman, Univalent Functions, Vol. I. Mariner Publ. Co., Tampa, Fl., 1983.
6. F.R. Keogh, A strengthened form of the $1 / 4$-theorem for starlike univalent functions, Math. Essays Dedicated to A.J. Macintyre, Ohio Univ. Press., Athens, Ohio, 1970; Hari Shankar, ed., 201-211.
7. A. Kobori, Über sternige and konvexe Abbildung, Mem. Coll. Sci. Kyoto A, 15 (1932), 267-278.
8. C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
9. H.S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc. 12 (1961), 689-693.

Department of Mathematics, University of Cincinnati, Cincinnati, OH 45221

Department of Mathematics, College of the Holy Cross, Worcester, MA 01610-2395

