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POSITIVE SOLUTIONS OF
A BOUNDARY VALUE PROBLEM

DARREL HANKERSON AND ALLAN PETERSON

For the moment, let L be a cone in R"™. Then it is easy to prove that
if

—u"(t) € K, t € [a,b],
u(a) € K, u(b) € K,

then u(t) € K for t € [a,b]. This result was used in the work of Schmitt
and Smith [3] on extremal solutions. Our main goal is to prove a
generalization of this result.

First, we give some preliminary definitions and results. Let X be a
Banach space. A closed subset I C X is said to be a cone provided

(i) if u,v € K, then au+ Bv € K for all a, 8 > 0,
(ii) if u, —u € K, then u = 6 (the zero element of X).

A cone K is solid if its interior K° # @. Asin [2], if u,v € X, we write
u < v in case v — u € K, and we write u < v in case v — u € K°.

LEMMA 1. Let K be a cone in a Banach space X. If y(t) is the
solution of the boundary value problem

y(n)(t) :9, te [avb]a

¥ (a) =6, 0<i<k-—1,

yDb) =6, 0<i<n—k-—1,i#]j
)(b)

where j is a fixed integer with 0 < j < n — k — 1, then

y(t) € K, t €la,b].
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PROOF. Using the boundary conditions at a we get that

where ¢; € X, k < i <n—1. It follows that y(t) satisfies the differential
equation
y(”fl)(t) =cCp_1, t € a,b].

We now show that
(1) (-1 k=1, € K.

From the boundary conditions at b we get that

W,

(2) et = (1),

where W» is the Wronskian of (t — a)*/k! ..., (t — a)""2/(n — 2)!
evaluated at b and W7 is the determinant obtained from W5 by deleting
the (j + 1)-st row and last column. It is well known that W, > 0. To
see that W7 > 0, interchange the rows and columns, then shuffle the
rows (i-th row becomes the (n — k — ¢)-th row, 1 < i < k), and, finally,
shuffle the columns to get a determinant which is well known to be
positive. Hence, (1) follows from (2) and the fact that 5; € K.

Note that y(t) is a solution of the boundary value problem
(_l)n—k—ly(n—l)(t) _ (—1)"_k_lcn,1,

yD(@) =0, 0<i<k-1,
YD) =0, 0<i<n—k—1, %]
Hence,
b
3) u(t) = [ Gts)-1)" e,y ds,

where Gj(t,s) is the Green’s function for the scalar boundary value
problem

(=1~ E D (@) = h(),

u®(a) =0 0<i<k—1,

' 0 0<i<n—Fk—1,i%#j.

)
)
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But, for example, by results in [1], the Green’s function for this
boundary value problem where we “skip” a condition at b satisfies

(4) G,(t,s) > 0, on (a,b)>.

It follows from (3), (4), and (1) that y(t) € K for ¢ € [a,b]. O

LEMMA 2. Let K be a cone in the Banach space X. If y(t) is the
solution of the boundary value problem

y™(t) =0, t € [a,bl],

yD(a) =0, 0<i<k-—1, i#j,
y9(a) = a; €K,

y O (b) =0, 0<i<n—k-1,

where 0 < j < k —1 is fized, then

y(t) e K, t € a,bl].

The proof of Lemma 2 is similar to the proof of Lemma 1 and will be
omitted. We now can state and prove our main result.

THEOREM 1. Assume K is a cone in the Banach space X and
y € C"([a,b], X) satisfies
()" Ty ek, telad),
yD(a) ek, 0<i<k-1,
(-)yPb) ek, 0<i<n-—k-1
Then y(t) € K fort € [a,b]. If, in addition, K is a solid cone and one
of
(i) (=1)"*y(™)(to) € K° for some ty € [a,b],
(ii) y9) (a) € K° for some 0 < j <k —1, or
(iii) (—=1)7y9)(b) € K° for some 0 < j<n—k—1
holds, then y(t) € K° for t € (a,b).
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PROOF. Set

and

h(t) = (=)™ *y™ (1),  tee,b]
Then a; e £, 0<i<k—-1,8€K,0<j<n—-k—-1,and h(t) e K
for ¢ € [a, b].

Let y;(t), 0 < j < n —k — 1, be the solution of the boundary value
problem in Lemma 1, and let z;(t), 0 < j < k — 1, be the solution of
the boundary value problem in Lemma 2. Then

n—k—1 k—1
(5) y(t) = D i)+ D z() +wl(),
7=0 7=0
where

b
w(t) = / G(t, s)h(s) ds

and G(t, s) is the appropriate Green’s function, which is well known to
be positive on (a,b)2. It follows that

w(t) € K, t € [a,b].
Using Lemmas 1 and 2, we get from (5) that y(t) € K for ¢ € [a, b].

Now fix ¢t € (a,b). To complete the proof, we need to show that if
K is a solid cone and any of (i)—(iii) hold, then y(¢) € K£°. Note that
if 8 < u < w, then v € K°. Hence, it suffices to show that one of the
terms in the expression (5) is in K°.

First, suppose that (i) holds; that is, there exists ¢y € [a, b] such that
h(to) € K°. By continuity, there is a ¢; € (a, b) such that h(t;) € K°.
Since t € (a,b), we have G(t,t1) > 0 and so G(t,t1)h(t1) € K°. Let B
be a ball about G(t,t1)h(t;) such that B C K°. By continuity, there
is an interval [¢,d] C (a,b) including t1, such that G(t,s)h(s) € B for
s € [¢,d]. Consider the Riemann sum for 1/(d — ¢) fcd G(t, s)h(s) ds,
given by

1 m - ASZ'

d—c Z G(t, Si)h(si)ASi = Z G(t, si)h(si) d— C’

i=1 i=1
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where ¢ = sg < -+ < sy, = d is a partition of [¢,d] and As; = s; — s;—1
for 1 <4 < m. This sum is in the convex hull of B, hence in B since B
is convex. It follows that

1
d—c

d
/ G(t, s)h(s)ds € B C K°
so that fcd G(t,s)h(s)ds € K°. Since

b < /dG(t,s)h(s) ds < /bG(t,s)h(s) ds = w(t),

it follows that w(t) € K°. Then 0 < w(t) < y(t), which implies
that y(t) € K°. Since ¢t € (a,b) was arbitrary, we have y(t) € K° for
t € (a,b).

Now suppose that (iii) holds. The proof of Lemma 1 shows that

b
y(t) = / G;(t,5)3 ds

for some § € K°. Using the sign condition on G;(¢,s) and arguments
similar to those above, it can be shown that y;(¢t) € K°. Since
y;(t) < y(t) it follows that y(t) € K£°.

The proof in the case that (ii) holds is similar to the case for (iii) and
will be omitted. O

A direct application of the theorem gives the following comparison
result.

COROLLARY 1. Assume K is a cone in the Banach space X. If the
functions y, z € C™([a,b], X) satisfy

(—1)" Ry (k) < (-1)"FM(E), e [ab],
vy (a) < 2(a), 0<i<k-1,
(—1)'y @ (b) < (-1)°z0(b), 0<i<n-k-1,

then y(t) < z(t) fort € [a,b]. If, in addition, one of the following holds:
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(1) (—1)Fy™ (ty) < (~1)* *2M)(ty) for some ty € [a,b],
(ii) y9) (a) < 219 (a) for some 0 < j <k —1, or

(i) (—=1)7yW) (b) < (=1)720)(b) for some 0 < j <n—k—1,
then y(t) < z(t) for t € (a,b).

As an example of these results, consider the sequence space X = (2

and the cone K = {(z;) € X : ¢; > xj41 > 0}. Let n =4, k =2, and
suppose y(t) satisfies

yD(t) = (j%sin §> te [0, g]
o -(3). vo

/D-() VG-

It is easy to verify that

Il
/N
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@]

Ly -
(S
+
—_
SN—r
N——

()R ek,  telo3],

yD0)ek, 0<i<k-1,
1)@ (T <i<n—l—
(-1)’y (2)EIC, 0<i<n—k-1L1

Hence, by Theorem 1 it follows that y(¢) € K for ¢t € [0,7/2]. O
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