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NUMERICAL EXTREMAL METHODS
AND BIOLOGICAL MODELS

JOHN GREGORY!, CANTIAN LIN!, and RONG SHENG WANG

ABSTRACT. Discrete variable methods are given to find
extremaloid solutions (extremals with corners) in the calculus
of variations and optimal control theory for well defined mix-
tures of initial value problems and boundary value problems.
Our methods are general, efficient, and accurate with a global
a priori, pointwise error of O(h?) and a Richardson error of
O(h*). Our methods are motivated by a generalization of
Henrici’s methods for ordinary differential equations and our
discretized equations are tridiagonal, which is very important
in practical applications.

1. Introduction. A major chapter in classical applied mathematics
is to find the minimum of an integral of the form

b
(1) I(z) = / F(t 22" dt

subject to conditions which yield a unique solution. While there
are many necessary and sufficient conditions, the first and major
condition is that the minimizing solution z(¢) satisfies the Euler-
Lagrange equation

d

2 Tz = Jz

) =1
between corners on [a,b]. In this case, z(t) is called an extremaloid
solution (see [4, p. 60]). This equation follows from the first variational

equation which requires that z(t) satisfy

(3) I'(z,y) = / oy + ford/ldt = 0

for all admissible variations y(¢). Similarly, closely related problems
(defined below) occur in the field of optimal control theory.
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The general setting and background of these problems is that given
by Hestenes [4; pp. 57-62] or Leitmann [6; pp. 7-23]. In particular, we
require fz/,+ > 0 and enough smoothness on f to yield unique piecewise
smooth solutions z(¢) for (2) or (3).

This paper has several purposes. The first purpose is to give efficient,
stable and accurate algorithms for well defined combinations of the
initial value problem and the boundary value problem associated with
the numerical solution of (3) or the solution of (2) in integrated form.
A global error estimate is given in §2 with similar results holding in
83 when x is an m > 1 dimensional dependent vector. In §4 we show
how these results lead to numerical algorithms for the basic problems
in optimal control theory. In §5 we consider some biological examples.
Finally, in §6 we present a nontrivial numerical example which agrees
with our theoretical results.

2. The 1-Dimensional Problem. The purpose of this section is
to motivate the derivation of our basic algorithm and to sketch a formal
proof for the m =1 case.

We begin by choosing N to be a large positive integer, h = (b—a)/N
and a partition 7 = (a = ap < a1 < ---ay = b) of the interval [a, b]
where ar = a + kh. We define the spline hat functions

(tfak,_l)/h, if a1 <t < ag,
(4) zk(t) = (ags+1 —t)/h, if ar, <t < ag1,
0, otherwise

(5) z(t) =Y crze(t) and  ya(t) =D diz(t).
k=0 k=0

For definitiveness, we assume that (1)—(3) are concerned with a bound-
ary value problem. In this case, we assume that we require the condi-
tions

(6) z(a) =z, and z(b)=uwm

to accompany (1)—(3). The function z,(t) is the numerical solution we
seek while yp, () is the numerical variation so that, associated with (6),
we have

(7) yn(a) =do=0 and yu(b) =dy =0.
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To motivate (2) or (3) as necessary conditions, we choose a variation
y(t) of the extremal solution z(t) for the problem (1), (6). Letting
h(e) = I(z + ey) for € in |¢|] < ¢ and, assuming the usual smoothness
conditions as, for example, in Hestenes [4], we have

(8) h(e) = h(0) + €h'(0) + %e%"(o) 4o,

where h'(0) = I'(z,y) given in (3) and A”(0) is a quadratic form in
y(t). The Euler-Lagrange equation (2) is obtained by integrating (3)
by parts between corners of x(¢).

The basis of our numerical methods is the equation (9) below, which
is motivated by (3). Thus, on the subinterval [ax_1,ak+1], we have a
discretized form of (3) which is derived as follows:

Ak+1
0= I,(mazk) = / [fz(ta max,)zk + fz’ (ta x,x')z;c] dt

g/ [fa(t, 2 (), 23, (1) - (¢ — ak—1)/h + for(t, 20 (t), 23, (t))/B] dt
+ / [fo(t, 2 (t), 2} (1) - (a1 — t)/h+ far (t, 20 (t), 23, (1))
(—1/h)]dt
~ + Tt Ti—1 Tk —Tp—1 h 1
—fz(akla 2 ) A >?E
« Tt Tp_1 Tp— Tk 1
+ for (ak—la 2 ) A > Eh
Ik+ﬂ€k+1 Thi1 — Tk h_21
2 h

(aka ) h
ka + $k+1 Tepr—Tp\ (1 o
’ h h
(9)

fola: T+ Tp-1 Tk — Tg-1 Ty :vk +Tp-1 Tk — Tp1
z k—1> 92 ’ h x 2 ) L

h
2
Tp + Thy1 The1 —Ti) A Tp + Thyl Thi1 — Tk
fx'(aZa D) +a +h >+ §f (G’Za D) +a +h )ZO

fork=1,2,... ,N —1.
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In the above, a} = (ar + ar+1)/2 and = = zp(ax) is the computed
value of z(t) at ag.

Note that (9) involves N — 1 nonlinear equations in the N — 1 un-
knowns x1,x2,... ,xny—_1. However, they are stable and in tridiagonal
form so that our computations are relatively easy. In the important
case where I(xz) is quadratic, equation (9) is linear.

Our proof of Theorem 2 is in two steps. In Theorem 1 we show
that (9) yields a local truncation error of O(h®). Then, in Theorem
2, we show that (9) gives a global error of O(h?). The first theorem
is motivated by Henrici [3]. The second theorem involves new, more
general a priori error methods than those in the current literature.

Thus, if

L(t,h) =fur (t BRSO URE h))

h _hoz(t)+a(t—h) z(t) —z(t—h)
) T3l <t 2’ 2 ’ h )
h x(t) +z(t+h) z(t+h)—x(t)
_fz’ <t+ 57 2 ) h
h h x(t)+z(t+h) z(t+h)—2z()
+§fz <t+§a 2 ) h ) )

then the Taylor series of z(t + h), z(t — h), and a function F (¢, z,w) in
the form

+0(h%)

1], 9,0 , 91"
F(a+tky,btky,cths) = Y — [k1—+k2%+k3%] F
(a;b,c)

are used to establish

THEOREM 1. If z(¢) is the unique solution to (2) or (3) and (6), then,
for h sufficiently small, we have

L(t,h) = q(t)h® + O(h®),

where q(t) is a function only of the solution x(t), its derivatives, the
function f and the partial derivatives of f evaluated along (t, z(t),z'(t)).
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We note that the arguments are evaluated at the solution (¢, z(t),
2'(t)) and that, between corners, (2) holds which implies that f,¢ +
fz’le + fz’zm” = fz

Our next task is to obtain an a priori, global error estimate for (9).
We begin by defining e, = z, — xz(ag) to be the difference between
the computed value z; = zp(ar) and the actual value z(ay), and
7, = L(ag, h). We also define the quadratic form

b
(11) I”(:E, y) = / [fm’z’yIZ + 2fm’zyly + fzzy2] dt,

where the coefficient functions f,/,, etc., are evaluated along a neigh-
borhood of (¢, z(t),2'(t)), with z(¢) our solution.

We sketch a proof of Theorem 2 under the weak hypothesis that there
are no conjugate points for I (z;y) in (11). In this case, from [1] or
[6], we have that there exists a C3 > 0 such that the quadratic form
I"(z;y) > CoJ(y) on the space of variations y(t) on [a,b] where

Tew = [ #@y©d ad Ty =T,

We note that J(zx, 21) = jri/h, where the matrix (jy;) is the tridiag-
onal matrix J = diag (—1,2, —1). Henrici shows that ||J ™|l < D/h?
for some positive constant D. The inequality 1/||A~!|| < |A| where A
is any nonsingular matrix and ) is any eigenvalue of A shows that all
eigenvalues of the positive definite matrix J satisfy A = |\| > h?/D.

If e = (e1,...,en_1)T and 7 = (71,...,7§_1), We may use an
extension of the first author’s quadratic form theory and the above ideas
to show that there exist positive constants Cs, C3 and C,4 independent
of h, for small A > 0, such that

Cahllel3 < Csh®[lell2|7l2
or

lelloo < llell2 < Cah®2.

Writing the difference between (9) and (11) in the form Ape = 7, it
can be shown, using the above results, that Ay is invertible and the
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elements of the inverse are bounded. Complete details of these results
are too long to be given here and will be given in a later paper for the
m > 1 case. From Theorem 1, we have ||e| s < [|A4]|7'C1h® < C1A?,
and, hence,

THEOREM 2. If I''(z;y) > 0 in (11), or, equivalently, if there are no
conjugate points in [a,b], then |ex| < C1h? for some Cy > 0 independent
of h for h sufficiently small.

3. The m-Dimensional Problem. The purpose of this brief
section is to indicate that the results in §2 hold with the obvious
modifications in notation when z(t) is an m-vector, m > 1.

The major change will be in notation. Thus, we now have z(t) =
(z1(t),z2(t), ... ,zm(t))T; fr and frr in (2) and (3) are m-vectors;
y(t) is an m-vector of variations; the integrand in (3) is replaced by
Ty + fLy/; etc. In particular, our basic algorithm is still (9) which is
now a system of m(N — 1) equations in m(N — 1) unknowns for the
two-point boundary value problem. Theorem 1 is as given except that
L and ¢ are m-vectors. A very long and difficult proof of Theorem 2
now follows, which will appear elsewhere.

To complete our error results, we define the Richardson value and
error vectors by

wp(ar) = [4zp)2(ar) — za(ar)]/3  and e (ax) = z(ar) — 5 (ax)

and note that each component ez, of ejf(ax) satisfies |e;| < Ch*.

4. Optimal control problems. The purpose of this section is to
show that numerical solutions for very general classes of optimal control
problems can be obtained by converting these problems to the calculus
of variations setting in §§2 and 3. For convenience of exposition we
first summarize these problems in slightly different notation (our m-
vector will become an n-vector), give a general theorem and describe
the subproblems. We then give some specific example of how the actual
conversion is accomplished.
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Hestenes [4, pp. 346-351] shows that “A General Control Problem of
Bolza” defined by the conditions

(12) Ip(m):gp(b)—l—/t Lt o) u)dt, p=0,1,....p,

(13)
Yal(t,z,u) <0, 1<a<m, Yalt,z,u) =0, m' <a<m,
and

(15) 5 =T%(b), z'(t°)=X"®), i=1,...,n, s=0,1,
(16)  IL(z) <0, 1<y<p, IL(z)=0, p'<y<p,

has a minimizing solution for Iy(x) of the form
(17) zo:xo(t), bo, we(t), t°<t<th

if there exist multipliers

>\0 > 07 >\'ya pi(t)a /J’Oc(t)7

not vanishing simultaneously, and functions
H(t,x,u,p, ,u) :pifi - )\pr — HaPas G(b) = )‘pgpa
p = 07 17 R 7ﬁ

satisfying the usual, expected conditions (see [4, pp. 348-350]).

Finally, we claim

THEOREM 3. The definitions of x"T1(t),... , " 9T™(t) given by

(18a) it =u""", z'(a) =0, i=n+1,...,n+gq,
(18b) , '
& =p, "9 2'(a) =0, i=n+gq+1,...,n+qg+m,
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allow us to convert the General Control Problem of Bolza to a problem
of the form (1) and allows a numerical solution with errors described
in Theorem 2 abowve.

In the above, (14) is the trajectory equation; (15) is the endpoint
condition; (12) with p # 0, (13) and (16) are the constraints on our
problem. The problem is to find the solution x¢ in (17) so that Iy(z) in
(12) is a minimum subject to the constraints, the endpoint conditions
and the trajectory equation.

We now consider specific subproblems of the general problem dis-
cussed above. We begin with a basic problem characterized by
(19)—(21). For convenience, we change our notation somewhat. Thus,
let

b
(19) Ji(z) = /1 F(t, 2, ) dt = min,
(20) a'(t) = g(t, z,u)
(21a) z(1) = zq, z(b) =
(21b) z(a) = x4, z(b) arbitrary,

where we assume x is an m-vector, u is an m vector, there exists a
unique solution to our problem and that f and g are smooth enough
to obtain the results given below.

The optimal control problem (19)—(21) is converted to an equivalent
problem in the calculus of variations by defining

(222) 21(t) = 2 (t),
(22b) 2a(t) = / “u(s)ds,  ma(a) =0,
and

(22) 24(t) = / Ne)ds,  ws(a) =0,

where A(t) is the Lagrange multiplier associated with J3(X) below.
Using (22) we define the 2n 4+ m vector

(23) X (t) = (21 (), 23 (1), 25 ()"
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and

b
Jo(X) = / () + 2T (), — g(t a0, )]} de
(24) e

b
:/ F(t, X, X")dt

We note that, except for the values z2(b), z3(b) considered below, the
solution to (19)—(21) is equivalent to the minimizing solution of (24)
which can be obtained by (9) with the accuracy in Theorem 2. We also
note that (19)—(21) includes the well-known “linear regulator problem.”

The class of basic problems (19)—(21) can be enlarged and is included
in a class of problems where inequality constraints (13) are given. For
strict equality, our results in (9) and Theorem 2 follow by use of auxil-
iary state vectors as we have done with 4 in (24) and (22c). Inequality
constraints can be treated similarly by Kuhn-Tucker methods or by in-
troducing a slack variable z/;, with 27 2} + ¢4 (t,,u) = 0, and then a
multiplier for this equality. These results will appear elsewhere.

Finally, we consider transversality conditions which are of the form
(15) or which occur because of variables such as z3(t) and z3(t) in
(22). For example, the optimal control u(t) is assumed to be unique
but z4(T) = w(t) is only unique up to a constant. The condition
z2(a) = 0 makes z2(t) unique, but, since z2(b) cannot be specified,
there is a “natural” boundary condition and, hence, a further equation
similar to (9) is required.

While (analytic) transversality conditions are known, they are not
useful to us. Instead, motivated by the development leading to (9) for
m > 1, extra equations can be derived when k¥ = N to balance the
components of X (an) in (23) which are not explicitly specified. It can
be shown that these equations have a local truncation error of O(h?)
and that theorems similar to Theorem 2 hold.

To illustrate these ideas we will give four examples with the “same”
solution. Let

1 2
(25) I(z) = 5/0 (2" + 222’ 4 42%) dt = min,

z(0) =1, (2) arbitrary,
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1 2
J(w,u):§/0 (u? + 2zu + 42?) dt = min

26
(26) z = u,
z(0) =1, x(2) arbitrary
4 .
(27) same as (26) except that z(2) = F e d;
21
L(X)= /0 [i(x'f + 2z @y + da?) + ay (2] — xh)| dt
(28) 1 d1
X0)=1{(0], z(2) = | do
0 ds

Example (25) is a one-dimensional calculus of variations problem
which is solved by (9) when &k = 1,...,N — 1 and the transversality
condition

2 ’ h

h . TN +ITN_1 TN —TN-1
+ §fw (aN17 2 ) h =0

(20) fur (aa_l,

TN +TN-1 TN — il?N—1>

holds, where f,» = 2’ + z, f, = 2’ + 4z. We will not concern ourselves
with the solution z(t) except to note that z(2) = d; is defined in (27).

Example (26) is an optimal control problem which becomes I; (X) in
(28) with the definitions in (22). In this case,

xh xh + dxy
(30) fxe=|ah+tam—ay )|, fx= 0
x| —xh 0

in (9) and (29). Thus, we have 3N equations in 3N unknowns
Xy, X, XN



NUMERICAL EXTREMAL MODELS 943

Example (27) is the same as Example (26), except that (9) and the
least two components of (29) are used since z(b) is given, and, hence,
we have 3N — 1 equations in 3N — 1 unknowns.

Example (28) is a three-dimensional calculus of variations problem
with the 3(IN —1) equations in (9) and (30) used along with the 3(N—1)
unknowns Xy, Xo,... , Xn_1.

We note the minimizing solutions in (25) and (26) lead to minimum
values I(zg) = J(zg,up) and that this value is not larger than the
minimized integral in (27) which is equal to the minimized integral of
I(Xy) in (28) if d2 and ds are fixed to be the same values as in (27).

5. Some biological examples. The theme of this brief section
is to indicate that there are many important biological problem areas
which can be successfully handled in a calculus of variations setting and
efficiently solved using our methods. The hangup in these examples
is almost always the lack of a good trajectory equation. Once this
is obtained, many meaningful problems, including the minimal time
problem (discussed below), immediately suggest themselves.

The first example was formulated with the help of Hugh Barclay.
Thus, if we let F(t), N(t) and r(t) be, respectively the biomass of
females, males, and the release rate of sterile males into a population
of fruit-flies (for example) we have the trajectory equations

CLlF
F'(t) =
®) F+ N

N'(t) =r — ayN — bN(F + N),

—az —b(F+N)

where (F(t), N(t))T is the state vector and r(t) is the control vector.
The values a;,a2 and b depend upon the particular population.

The objective functional to be minimized could be the integral from
0 to t* (not necessarily fixed) with integrand r(¢), F + N or 1. In this
latter case, we would have a minimum time problem. An example
of inequality constraints is that 0 < 7(¢) < rmax, where rpay is
a fixed constant. The reader can easily formulate other meaningful
problems by using other meaningful integrands, boundary conditions
and constraints.
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The same general remarks hold for weight loss and gain problems.
If z(t) and u(t) are, respectively, the weight and caloric intake of a
person, a reasonable trajectory equation would immediately lead to a
variety of important and interesting problems. A rough model can be
formulated using the constant 3500 calories/Ib.

6. A nontrivial example. To illustrate Theorem 2 we consider the
case when m = 3 in §3 and the integrand in (1) is

1
flt,z, ') = 3 _t;v'f’—i— —x? + 1 Tl —|——e_2t 1+ 48¢e% 2,

2 2

—e wgacl — t:v3 — xosint

subject to z(0) = (1,0,1)T and z(1) = (e,sin1,e?)T on the interval
[a,b] = [0,1]. The reader may verify that z(t) = (e!,sint,e?) is the
unique solution to this nonlinear problem on the interval [0, 1].

Using (9), the nonlinear system of 3(IN — 1) equations in 3(N — 1)
unknowns was found using Newton’s method. The initial guess for
Newton’s method was the linear values between z(0) and z(1).

To save space we only list the errors at t = .5. The complete run gives
similar errors for t = k/8, k = 1,2,...,9. Note that each component
ratio of egp/ep below, is approximately four, while each component
ratio of eQRh / ef is approximately 16:

e1/s(:5) = (—0.157D — 02, —0.383D — 04, —0.499D — 01)7,
e1/16(-5) = (=0.401D — 03, —0.956D — 05, —0.127D — 01)7,
e1/32(.5) = (—0.101D — 03, —0.239D — 05, —0.318D — 02",

efs(:5) = (-~0.100D — 04, 0.131D — 07, —0.255D — 03)7,
ef16(:5) = (~0.600D — 06, 0.816D — 09, —0.150D — 04)7,
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