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WHERE DO ALL THE VALUES GO?
PLAYING WITH TWO-ELEMENT
CONTINUED FRACTIONS

HAAKON WAADELAND

To Professor W.J. Thron on the occasion of his 70th birthday.

1. Introduction. In the present paper we deal with continued
fractions

0,2 ap

1.1 K& 2 -n ,
(1.1) a=1 1 1+1+ 1 et

where a,, € C, a, # 0 for all n (except for one example in Section 4).

In using continued fractions the situation is often as follows: All
continued fractions in question are in a certain family, given by the
condition that all a,, belong to a given set E, which is a convergence
region or a conditional convergence region (for definitions, see [3 pp. 78
and 80]). For a given such set E let F g denote that particular family:

(1.2) FE:= {I_{laTn;an € E for all n}

Information on F g generally is of value in computation of values
of continued fractions from F . We shall here concentrate on one
particular type of information, i.e., the set Lg of possible values,

(1.3) I§ T”

of continued fractions in F g:

(1.4) Lp= { f:% T EeF }
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558 H. WAADELAND

The set Lg is of crucial importance in the process of establishing
truncation error estimates, see, for instance, [5] and the references
therein. In many cases the set Lg is hard to get at, in which case
we often are well served by using sets L O L (not too large, compared
to LE)

We illustrate the set Ly in some simple cases by examples:

Example 1.
E = {a}, a¢ <—oo, —i) .

In this case F g has exactly one element K(a/1), and Lg has also
exactly one element

f= %(M—l).

Example 2.
1
Ez{W;W|§Z}.

This is the “Worpitzky case” [8]. Here the set Lg is the punctured disk

1
LE:{W;0<|W§§}.

'
N | =

N
AR

FIGURE 1.
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Example 3. (a) Let E be the closed interval E = [p, ¢ of the positive
real axis. Then it is easy to prove that Lgy = [X,Y], where

P g4 P g 1[
x=2 1 1 =-|va 2 _dpg—1- }
1+ 14+14+1+ + 2 \/( +p+q) Pq q+p|,
¢ P q P 1
o | V) e S |
T T Tg s~ VAFP+a —dpg—14q—p
E L,
—I— N
p=3 g=4 X=1 Y=2

FIGURE 2.

(b) If E merely consists of the two endpoints p,q, E = {p, ¢}, it is
easy to prove that if
Pq = p+q,

the set Ly, o1 is dense in [X,Y7], i.e., that

cl Lipqy = X,Y]= Lp.q (see [6]).

— .
p=3 g=4 X=1 Y=2
FIGURE 3.

If pg < p+ g, however, the set cl Ly, o3 is a Cantor type set, not dense
in [X,Y], in which case

cl L{p,q} # L[WI] 6].
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Example 4. If Ey, ,, consists of two points in the complez plane,
different things may happen. In the illustration below, two possible
structures of Ly, ;1 are shown:

FIGURE 4a.

FIGURE 4b.
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In the present paper we shall be concerned with sets Ly, ,3, where
p,q € C, p # q. We shall partly discuss structure, partly probabilistic
questions.

2. Remarks on motivation. Why should one be interested in
F {p.ay OF Lipgy?

An obvious answer to this question is that it is natural to proceed from
the one-element to the two-element case and look for results, hopefully
pointing towards more general knowledge. Maybe it is tempting to
guess that it would be the easiest case, next to the one-element case.
This, however, is not true, as will be seen in the complexity of the
glimpses to be presented in this paper as compared, e.g., to the
Worpitzky case in Example 2. It should also be mentioned that we do
not even know which 2-element sets are convergence regions (although
we know a lot of sufficient conditions).

The main reason here to discuss Ly, o3 is that in many cases a rather
sparse subfamily of F g can give substantial information on Lg, and
even Ly, 1 for some choice of p,q may be of interest. We recall that
in Example 3b we sometimes had

cl Lipqy = Lip,q-

We include another example where a sparse subset of F g can describe
Lg completely. The example is not of the “F , ,1-type,” but since the
underlying idea of the present paper is to emphasize the role of certain
sparse subsets of F g rather than merely F , ,; for its own sake, we
feel that it should be included.

Example 5. Let o € (—7/2,7/2) and p € (0,1/2] be fixed, and let
E be the parabolic region

; 2p(1 — p) cos? o
E=FE =lz=refr <2 27 T
(P, ) {Z resr=az cos(f — 2a)

E is a conditional convergence region for continued fractions (1.1). A
complete description of L is given in the paper [4] and is illustrated
below (Figure 5a).
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FIGURE 5a.

The description itself shall be left out, since we do not need it explicitly.
In [4] it was also established that any point of the boundary of Lg is
the value of a certain 2-periodic continued fraction with elements from
the boundary of E. Let P gg be the family of all 2-periodic continued
fractions (1.1) with elements from the boundary of E. A computer
graphics illustration of the corresponding set of values (19044 points)
is given in Figure 5b. In Figure 5c only the values with the “proper
match” for the boundary of Ly are computed. Further discussions on
the use of sparse subsets of some F g to obtain information on Lg are
given in [1].

Section 3 will contain a discussion of some structural aspects of Ly, ;1
when |p — ¢ is small. Section 4 will contain a probabilistic discussion
on Ly, .3 for some special real values of p and q.
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FIGURE 5b.

FIGURE 5c.
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3. F {p,q; With small [p —q|. The tool in this discussion will be
the following Proposition.

Proposition 3.1. With a ¢ (—oo0,—1/4],' = (V1+4a —1)/2,
Rev1+4a >0 and e, € C,

la+ 1 forla| < %,

3.1 en| <r < R(a) =
(3.1) &nl (a) { WH% for lal > 1,

the following holds:

o0 N 1 00 T n—1
(3.2) nIgla—zE :F+1+F > < ) - €p + error term,

1+T
where
M (a) r\2
(3.3) |Error term| < ———— < > ,
1-— m R(a)

(3.3') M(a) = 2(|a| + R(a))d%.

(See [7]. For (3.1) see [3, Theorem 4.45].)

The way this tool is used in the present situation is as follows:

For p ¢ (—oo0,—1/4] and r = |p — ¢q| < R(p), take a = p, r = |q — p|
and €, to be 0 or ¢ — p. We then have, for a,, € {p, q}

(3.4) I:{T_F+1~|-—FZ <1+F> + error term,

where d,, =0 for a,,41 = p, and d,, =1 for a,,+1 = q.
This shows that the set

(3.5) S(T) = {Zdnz”;dn = {0,1}}, - 1;_2
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is of interest. Here we always have |I'| < |1 +T'|, hence z is in the open
unit disk U. The set S(T') may also be described in the following way:
Let G be the family of power series g(z) = > -, d,2", where the only
permitted values of d,, are 0 and 1, and let z be a fixed value in the
open unit disk U. Then S(I') is the range of the evaluation functional
z(9),9€G.

We shall use the following notation:

(3.6a) L(p,q) := Lip g
(3.6b)
L.(p,q):=T+ % -cl S(T) (Multiplication by a factor
and translation.)
(3.6¢)
L*(p,q) := Union of all “errorterm disks” around

the points of L, (p, q).

Obviously,

L{p,q} g L* (p7 Q)

The purpose of the present section is to throw some light on the
structure of S(I'), and thereby on L.(p,q), which again, in turn, for
small 7/R(a), gives valuable information on L*(p,q). The results will
be obtained by using the following simple lemma, which deals with the
case when z is positive, z = 2, 0 < z < 1, in which caseT' = —z/(1+z).

Lemma 3.2.

— 1 1~
(3.7) cl S( r ) = { [07 1—z] for 3 <z <],
1+ A Cantor set  for0 <z <1/2.

The Cantor set is described by using

1
M =
0 |:071_$:|

T 1
M, = e 1
1 |:O’]_—LL‘:|U|:,].—£I?:|’
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where M, 11 is obtained from M,, by removing from each of the 2"
subintervals an open interval of length 2™(1 — 2z)/(1 — x), centered at
the mid-point of the subinterval. Then

oo
Cantor set = ﬂ M,,

where M,, contains 2" intervals of total length (2z)"/(1 — x).

The proof of Lemma 3.2 is straightforward, is based upon arguments
of standard nature, and shall be omitted here.

In what follows we shall restrict the discussion of the structure of
S(T") to the cases when
1 -
Zare [ ——
by & 1+T

is rational. Then Lemma 3.2 is the key to the following result.

Proposition 3.3. Let s and t be natural numbers, and (s,t) = 1.
Furthermore, let

(3.8) z= 71—|—L1" = p-exp(2wsi/t), 0<p<l.
Then

t—1 _pt
(3.9) cl S(T kz%p -exp(2kmsift) - cl S < T pt> .

Outline of proof.

Z dpz" = Z dpp" - exp(2mnsi/t)
n=0 n=0
t—1

—Zp - exp(2kmsi/t) - <Z Ak mep™ >

k=0
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The closure of the set determined by the inner sum is

t
—p
1 .
¢ S<1+pt>

We shall illustrate this result in some “good cases” and some “bad
cases.”

Good case.
(3.10) 27t <p< L.

The reason for calling this a good case is as follows: If, in the definition
of S(T') in (3.5), we permit the whole interval [0, 1] and not only the
set {0,1} as d,,-values, we get, for z = z, 1/2 < z < 1, exactly the set
cl S(—z/(1+ z)). This, in turn, means that if F is the segment from
p to g, including the endpoints, we actually get

(3.11) Lg C L*(p,q),

which is in the spirit of the intention of the paper. (See Section 2.)

In this case cl S(T') is a polygon. We shall look at two particular
simple examples.

Example 6. (s,t) = (1,3) and p = .8 > 27/3 in Proposition 3.3.

ree2i/3

1- 7

clS() : 1
1 1- 7

264 1/3

-7

FIGURE 6. p=r = .8.
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Example 7. (s,t) = (1,4) and p = .9 > 2~ /4 in Proposition 3.3.

clS(): g ¢ — 4

-
4

1-F

FIGURE 7. p=r =.9.

We recall that the road from cl S(I') to L*(p, ¢) goes as follows:

cl §(T) ~rvrrn> Li(p,q) =T + (11 ; ?Cl S(I') ~rorerene> L7 (p, q)
Rotation, Covering
change of with “error
scale and disks”
translation
Bad case. L
p <277,

The reason for calling this a bad case is that, here, cl S(—z/(1+ z)) is
not the interval [0,1/(1 — x)], but only a small subset of it, actually a
subset of measure 0, and consequently we will not have Lg C L*(p, q)
as in (3.11). Since in this case the terms in 3.9 are Cantor sets, we
could say that cl S(I') in this case is a “vector sum of Cantor sets.” To
give an idea of what this may look like we show two examples.
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Example 8. (s,t) = (1,3), p = .7 < 27/ in Proposition 3.3.

FIGURE 8.

Example 9. (s,t) = (1,4) in Proposition 3.3.
(a) p=.6<2°%

FIGURE 9a. p=.6 <27 1%.

569
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FIGURE 9b. p=.7 <27 1.

Based upon the underlying intention of this paper, the case p < 2-% is
regarded as a bad case. But, from another point of view, keeping
in mind the increasing interest in fractals, it is, in fact, the most
interesting case and deserves attention. We hope to come back to this
particular case (and extensions thereof) in a later paper.

4. The distribution of values. In the paper [2] the distribution of
values of a continued fraction (1.1) was discussed for given convergence
regions F and given distribution of a,, on E. The discussion was limited
to the case of uniform distribution, i.e., each a, was supposed to be
uniformly distributed on E. As for F, in most cases certain intervals
on the real axis were considered, but also the complex Worpitzky
disk was discussed. In the present paper we look at three different
2-point sets FE, all of them located on the real axis and all being
supports for some probability measure. They lead to three very
different kinds of distribution of values, thus indicating the variety of
possible distributions the 2-element sets can lead to.

Example 10. Normally the possibility a,, = 0 in (1.1) is ruled out in
the definition of a continued fraction. In the present example we shall
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accept it. Let, for a given a > 0,
E ={0,a},

and let Pr(a, = 0) = a, Pr(a, = a) = 1 — a, where Pr stands for
“probability” and 0 < a < 1. The possible values of the continued
fractions in F g, i.e., the set Lg, consists of the numbers

0 a a a a
a .. —_— —_ DY
) ) 1+a7 a ) ) 1+"'+l, b
1+
1+a
and of the number
a a a 1
4 g - ==(vV1+4a—-1).
1+14-4+1+---+ 2( )
0 a
. L4
Probability: 1-
VALUES:
X XX X X
N N /N
0 a 1 oa a
I+a 114 ¢4
! +a
a
1+ 2 a
1+ -4
1+
FIGURE 10.

Simple use of the rules of probability leads to the following probabilities
for the values f of the continued fraction:

Pr(f=0)=«
Pr(f=a

)

a a a
P =- = =1 -a)"-
r( 1+1+---+1> (1-a)-a
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Of course, Pr (f = £) = 0. Furthermore, Pr (f € I) = 0 for all intervals
I containing values in Lg.

The cumulative distribution function has a discontinuity at every
possible value of the continued fraction, except at &, where it is
continuous. It is constant on any interval not containing a value of
a continued fraction.

The influence of « is illustrated, for instance, by

Pr(f<&)=a+a(l-a)i+al-a)*+---
o 1
T1-(1-a? 2-a
a(l—a)+a(1—a)3+a(1_a)5+...
a(l-a) 1-a
1-(1-a)? 2-a

Pr(f >¢)

Part of the graph of the cumulative distribution function is shown in
Figure 11. In the illustration we have chosena =2 and a = 1—a = 1/2.

A
1 F------"-"=-"-"=--"=-"---—--"--"-"=-"=-"=-= S——
G——
2 _____________ .-.
3 _"?
i P—— 1
2 :
1
1
1
XK K—AK—X X
0 a : a a
1+a 1 1 a
: 1+a
a
1+ -4 4
1+ =
* 1+a

FIGURE 11.
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Example 11. Let

and let

1 1
Pr <an:Z>:a and Pr (an:Z>:la,

where 0 < a < 1. Since E consists of the two endpoints of the real

diameter of the Worpitzky element disk, this may be called the “two-
point Worpitzky case”.

1 1
E: - 7

4 4
® f ®
a PR

Probability: 1

o

FIGURE 12.

In the next illustration we shall use the notation

=
=

1

_4 .
+ i+ 1 4

=l
'S
!

'S

|

+

Furthermore, boldface print shall indicate “no c.f. values in the open

-+
interval.” X shall denote values. The signs —, F, +, £ indicate how the
continued fractions start in that particular closed interval, such that

— means

[y
’u:-lr—t
|
N

+

=

F means

~|

'y

+

== =

and so on.
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VALUES :
= o )(+\/ ¥ +
x 78 8 )( )( )( x
1 3 31 1303 T
2 10 14 6 6 14 10 2
I : : [
1 : | 1
4 . . 4
1+]- L \ | 1+]- L
2 1 ! 2
[ [ [ [
_1 -1 1 1
4 4 4 4
1 i il 1
1+ 1+ 4 1+ 4 1+ 4
1+]- L 1+~ L 1+]-L 1+~ L
2 2 2 2

FIGURE 13.

In the illustration below we show (part of) the cumulative distribution
function. In the illustration we have chosen o =1 — o = 1/2.

In this case the cumulative distribution function F' is continuous,
nondecreasing and with F’(x) = 0 a.e. (with respect to linear Lebesgue
measure). We omit the proof here, since it is very much related to the
proof of the same properties for the ternary Cantor function (although
there are differences making the proof far from trivial).

Example 12. Let p and ¢ be positive numbers such that p+¢q < pg,
and let

E={p,q}.
We then know from Section 1 that

cl LE = L[p,q] = [X, Y],
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[ e -al_
1
1
1
1
1
|
1
) M — |
Z 1 1 :
1 1
1 1 !
1 1 !
1 1 !
1 1 !
1 1 !
1 1 !
1 1 !
y ! 1 :
: 1 o !
| 2 ! ! |
, po 1 '
) Do 1 '
h Lo 1 '
, po 1 '
) Do 1 '
' I |
'I—P-—:— —————— : 1 1 :
1 1 | i | : : .
: : : 4 : 1 1 :
1 (- Lo 1 '
1 - po 1 '
1 - Do 1 '
1 (- Lo 1 '
1 - po 1 '
I i ol ] | : !
1 1 1 1 1 1
1 3 31 13 3 i
2 10 14 6 6 14 10 B3
FIGURE 14.

where X and Y are as in Example 3. With Pr(a, = p) = a and
Pr(a, =q) =1—a, 0 < a <1 it can be proved in a way, very much
related to arguments in [2], that the distribution of the values of f
in [X,Y] is given by a measure which is absolutely continuous with
respect to Lebesgue measure.

Final remarks. We hope to come back later to problems of the type
discussed in the present section, hopefully in a wider context, which
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then will also contain the complex case. Here the main purpose was to
show some of the variety in cumulative distribution functions occurring
for E = {p, q}, where p and ¢ are real: (1) a piecewise constant function;
(2) a continuous, but not absolutely continuous function; and (3) an
absolutely continuous function.
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