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In honor of W.J. Thron on his 70th birthday.

ABSTRACT. We obtain the general solution to the recur-
rence relation for Wilson polynomials for the special cases
a+b+c+d=1,2,.... We derive a subdominant solution
and, thus, from Pincherle’s theorem, an explicit expression for
the associated continued fraction and weight function. In the
cases a+b+c+d = 1, 2 this yields the convergence properties
of some continued fractions of Ramanujan. We also indicate
how these results may be generalized to the g-Askey-Wilson
case.

1. Introduction. Wilson polynomials form the most general class
of orthogonal hypergeometric polynomials in the Askey-Wilson chart
[1]. Here we examine properties associated with these polynomials by
obtaining a subdominant solution to their recurrence relation

(1) Xny1—(z—apn) X, +02X,, 1 =0

and applying Pincherle’s theorem to the corresponding continued frac-
tion

) CF(z):z—ao+ﬁ<_bzb>.

n=1\ 2 —an

Definition 1. X,(f)(z) is a subdominant solution of (1) at z € C
iff there exist linearly independent solutions X,(f)(z), XT(Ld)(z) with the
property

(3) lim X (2)/X@(z) = 0.

n—roo

Prepared for the U.S.-Norway Joint Seminar on Padé Approximants and Related
Topics, University of Colorado, Boulder, June 21-25, 1988.

Supported in part by NSERC (Canada).

Received by the editors on October 16, 1988, and in revised form on December
9, 1988.

Copyright ©1991 Rocky Mountain Mathematics Consortium

489



490 D.R. MASSON

Theorem 2. (Pincherle, 1894, see [5]). Let b2 # 0, n > 1. Then
CF(z) converges iff XT(LS)(Z) exists and, in this case,

1 X{(2)

@ CF(z) ~ 12x0)(z)

The denominators of the approximants to (4) are monic polynomials
P, (%) which are initial value solutions (Py = 1,P; = z — ag) to (1)
and orthogonal on the real axis with respect to a probability measure
dw(z) when b2 | >0, a, € R, n > 0. That is,

(5) /Pn(w)Pm(x) dw(z) = Spmbibs - -b2.

Furthermore, one has the Cauchy representation

Z—T

(6) C;(z) :/dw(m), Tmz # 0.

From the real axis boundary values of (6), one can recover the weight
function w'(z) for z in the absolutely continuous spectrum and, by
combining (4) and (6), obtain [6]

1 W(X%)(z +i0), X) (z — i0))
o RXE (e +i0)

(7) w'(x) =

where the numerator in (7) is the Wronskian

(8) W(Xn,Y,) = X0Yni1 — Vo Xyt

We recommend the use of (7) as a general means of obtaining w’'(z)

in cases where X,(LS) (2) can be obtained explicitly and suggest that the
term “classical” be reserved for such cases.

In what follows, we construct the subdominant solution to certain
special cases of Wilson polynomials by applying a symmetry transfor-
mation to the Wilson solution and a transformation due to Whipple.
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For two special subcases, with indeterminate ratios defined in terms
of limits, we obtain continued fractions of Ramanujan and a weight
function that differs from that given by Wilson [9].

We also indicate how these results may be extended to the g-Askey-
Wilson case [1].

2. Wilson polynomials. The recurrence relation for monic Wilson
polynomials [8] is given by (1) with
(9)

v2(a,b,c,d) = An_1(a,b,c,d)By(a,b,c, d),

an(a,b,c,d) = A,(a,b,c,d) + B,(a,b,c,d) — a?,

(n+a+b+c+d—1)(n+a+bd)(n+a+c)(n+a+d)
2n+a+b+c+d—1)2n+a+b+c+d)

Bu(a,b,c, d) = nn+b+c—1)(n+b+d—1)(n+c+d-1)

T Qn+a+bte+rd—-2)2n+a+btctd—1)

An (a’ b? C? d) =

?

The Wilson polynomial solution (renormalized) is
(10)
XT(LI)(z; a,b,c,d) =
(71)nF(n+a+b+c+d—l)F(n +a+bl(n+a+c)l'(n+a+d)
F'2n+a+b+c+d-1)

(n,n+a+b+c+dl,ai\/g,a+i\/5;l>
X 4F3 .

a+ba+ca+d

The coefficients a,,, b2 and the solution xV (2)/T(a+b)T(a+c)T(a+
d) are symmetric functions of the four (in general, complex) parameters
a,b,c,d.

3. New solution. An additional symmetry for the coefficients a,,, b2
is given by
v, (1—a,1—-b,1—-¢c1—d)=0b2(a,b,c,d),

(11)
a—p-1(1—a,1-b,1—-¢,1—d)=an(a,b,c,d).

Applying the transformation n - —n—1, (a,b,¢,d) = (1—a,1-b,1—
¢,1 —d) to (1) and (10) and renormalizing yields a second polynomial
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solution
(12)

L(n+)l(n+b+c)l(n+b+dl d
X (za,b,¢,d) = (—1)" (n+DL(n+b+c)l(n+b+dI(n+c+d)
T(2n+a+b+ct+d—1)
% L F. n+1l,—-n—a—b—c—d+2,1—a—i/z,1 — a+iy/z;1
4143 270/71),27@*0,27@7(1, )

a+b+c+d=1,2,....

4. Subdominant solution. To construct the subdominant solu-
tion, one needs an appropriate linear combination of X,(Ll),X,(lz) de-
duced from their large n behavior. For general values of the para-
meters, this is best accomplished by expressing solutions in terms of
well-poised 7 Fy hypergeometric functions [2]. However, for the special
values a+b+c+d =1,2,..., the asymptotics may be obtained directly
from the Whipple transform [2, 7.2(1)]:

(13) 4F3(n,x,y,z;l> —

U, Uy W
(U_Z)n(w_z)n F -n,u—z,u—y,z2l
(V)n (W) I\l —v+z—nl—w+z-—n)’

utvt+w=x+y—+z—n-+1.
Applying (13) to (10) yields, for n — oo,
(14)

XD~ Cp(a,bye, dyn~2VZ ['(—2iy/2)'(a +b)I'(a + c)['(a + d)
n b B F

(a—iv2)L(b—iy/2)T(c—iv/2)T(d—iyvz)’

Culasbevd) = (-1 (2m) (2) (2

Im+/z > 0.
Applying (13) to (12) yields

n

(15) X ~ Cy(a,b,c,d)n=2v?
I'(-2iyz)I(2—a-bT(2—a—c)l'(2—a—d)

I'(1—a—iyV2)T(1—b—iyV/2)['(1 —c—iy/2)[(1 —d —iyz)’
Imyz>0, a+b+c+d=1,2,....

X
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From (14) and (15) we deduce, for Im+/z > 0 and a + b+ c+d =
1,2,...,
(16)
Xr(LS) (Z; a, ba ¢ d) = aXr(Ll)(z; a, ba ¢ d) o ﬂX'r(zZ) (Z; a, ba ¢ d)a
_ Fr2—a-b0Ir'2—a-cl'(2—a—-4d)
CT(1—a—iyV2)T(1—b—iy2)[(1 —c—iy/2)[(1 —d — iy/2)’
5 [(a+bI'(a+c)(a+d)
- T(a—iy2)[(b—iyz)[(c—iyz)[(d—iyz)’
with large n behavior
X{)(2) ~ Da(a,b, ¢, L (2iv/2)n* V= f(a, b, c,d, 2),
Cnla,b,e,d)(1—a—0b)(1—a—c)(l1—a—d)
wsin7(a + b)sinm(a + ¢) sin7(a + d)
fla,b,e,d, z)=sinm(a+iy/z)sinw(b+iy/z) sinm(c+iv/z) sinw(d+iy/2)
—sin7(a—iy/2)sinw(b—iy/2) sinw(c—iy/2) sinw(d—iy/2).
From (4), (6), (10), (12) and (16) we obtain explicit expressions for
the continued fraction and hence the weight function associated with

the resolvent for the tridiagonal Jacobi matrix having diagonal and
off-diagonal elements (ag,ay,...) and (b1, ba,...), respectively.

(07

D’ﬂ(a7 b’ c’ d) =

7

5. Extra special cases. For the two cases a+b+c+d=1,2 we
obtain continued fractions given by Ramanujan and a weight function
that differs from that given by Wilson [9] by taking limits n — 0 in

(9).
Case I. a + b+ ¢+ d = 2. From (10), (12) and (16) we obtain
X{P(2) 2 (iv/7) — Ta(iv/2)) /(I (iv/Z) + Ma(i/2))

an RxO () (atb—1)(a+c—1)(at+d—1)

(18)

I (ivz) = I(a — iv2)L(b — iv/2)T(c — iv2)I(d — iv/z),

y(ivz) =T(1—a—iv2)T(1-b—iv2)[(1 — ¢ — iv/2)[(1—d—i/z).
With a change of notation,
a=(1+k+1+m)/2, b=(1—-k+1—-m)/2,

(19) c=(1-k-14+m)/2, d=1+k-1-m)/2,
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we obtain Ramanujan’s Entry 35 [3] from Pincherle’s theorem (equation
(4)). That is,

(20)
2(I, (iv/2) — T2 (iv/2)) /klm 1 o
MEVD+ (V) o+ Ko, (25 Ve =0
with
(21) a; i (27212;’— zn —‘_217_2]{:2 _Zli i gn2)/4’ 2 _
b= (0~ k) (0~ 12)(n? — m?)/4(4n® 1),
and, hence,

Theorem 3. Ramanujan’s Entry 35 (given by (20)) is valid iff either
Im+/z > 0, or k2,1%> or m? is a positive integer squared.

Case II. a + b+ ¢+ d = 1. From (10), (12) and (16) we obtain

(22)

X5"(2) 2
RXY)(z) 7 a0~ a(ivz)/IL(ivz)
With the change of notation

a=(1+k+1+m)/4, b=(1-k+1—m)/4,

(23) c=(1-k-14+m)/4, d=1+k-1-m)/4,

we obtain from Pincherle’s theorem (equation (4)), for Im/z > 0,

(24) = - ,
LA oo+ Ko, (25)
an = (8n* + 1 —k* — 1% — m? — 2kim/(4n> — 1)) /16,

(25) p2 — (@n—1)2 —k)((2n — 1) - *)((2n - 1)” —m?)

(16)2(2n — 1)

For the subcase m = 0, we obtain Ramanujan’s Entry 39 [3], and,
hence,
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Theorem 4. Equation (24) (and hence Ramanugjan’s Entry 39) is
valid iff either Im /z > 0, or k2,1% or m? is an odd integer squared.

Comments. (a) Both (20) and (24) give a weight function that
differs from that given by Wilson since, for these special cases, one
has the first-degree polynomial Pi(z) = z + a?> — Ag — By, By # 0
while Wilson [9] replaces (Ag, Bp) by (Ao, 0) or (244,0) in Case I or
II, respectively.

(b) The condition Im+/z > 0 differs from the condition given by
Berndt et al. [3] for Entry 39.

(c) Ramanujan’s Entries 35 and 39 are two of the entries described
by Berndt et al. as “especially enigmatic.” They are important entries
since Entry 35 implies Entries 18, 30, 31, 32iii, 33, 36, 37 and 38 while
Entry 39 implies Entries 25, 26, 28 and 32i [3].

(d) From the special form of the coefficients a,, = A,, + B, — a2,
b2 = A,,_1B, (equation (9)), it follows that 1/CF(z) is the even part
of the S-fraction

Ay
By

z+a®>— By —
1—

z—i—azf

1—"

(See [7, Chapter 12].)

6. Wilson cases. For normal special cases a+b+c+d = 3,4,...,
one has By = 0. These same calculations yield, for Im 1/z > 0,
(26a)
1 IFl-a—b)T(1—a—c)l'(1—a—d)I;(iv/2)T (a+b+c+d)

CF(z) L(b+ c)I'(b+ d)I(c + d)Ix(i/2)
B (a+b+c+d—1)
(a+b—-1)(a+c—1)(a+d—1)

(1,2—a—b—c—d, l1—a—ivz,1—a+iy/z; 1>
X 4F3 ’

2—a—b2—a—c2—-—a—d



496 D.R. MASSON

and, hence, for z > 0,

(26b)
oy 1 T(l—a=hl(1-a—T(1-a—d) (M(iyz) IL(-iVa)
w/(a) i

210 D(b+c)T(b+d)T(c+d) (ivz) Ty(—iy/z)

x Tla+b+c+d).

These results agree with Wilson [9].

The substitution in (26a) and (26b) of a +b+c+d =1 or 2 yields
additional Wilson cases with the (A, By) in Section 5 replaced by
(24,,0) or (Ay,0), respectively (see comments (a) and (b) above).

Note that, for real orthogonality in the Wilson cases, (26a) yields
an explicit discrete spectrum in (—o0,0) from the pole singularities of
IT;. Thus, mass points exist for € (—00,0) if and only if one of the
parameters, say a, is negative [9].

For the exceptional cases of Section 5, this discrete spectrum is no
longer explicit. In Case I, for example, one must examine the location
of the zeros of II; + II,. However, from the location of the poles of II;
and IIo, it clear that mass points in (—o0o,0) exist for this exceptional
case if two of the parameters, say a and b, satisfy a < 0 and b > 1.
From the positivity of II;, II; for z < 0, there can be no mass points in
(—00, 0] if all real parameters are between 0 and 1. Also, by considering
the case a = —g, b=c=d =2/3+¢/3, € > 0, one sees that a negative
parameter is no longer sufficient for the existence of a mass point in

(—00,0).

For the exceptional Case II orthogonality, one has a mass point in
(—00,0) if some parameter, say a, satisfies a > 1, since this implies
that II = oo for some z < 0. Hence, (24) has a zero in (—o0,0] and
therefore a mass point in (—oo,0). If all parameters are between 0 and
1, there are no mass points in (—00,0) from the positivity of ay,II; and
II,. Here, again, a negative parameter does not imply the existence of
a mass point in (—o0,0) from a consideration of the case a = —e¢,
b=c=d=1/3+¢/3,e>0.

7. q-Askey-Wilson polynomials [1]. The classical hypergeomet-
ric polynomials have g-series generalizations which are expressed in
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terms of bastc hypergeometric functions

oo . jn(n—1)

TOyero s Ty ( ]_)anT n

r+1@r4j el :| t",
Ly v ; - [Yrtilnldln
[2]n = (1 —2)(1 —2q) -- (1—3%1 1), [z]o = 1.

The g-analogue of the Wilson case is the g-Askey-Wilson case with
the recurrence relation (1) having

(27)
b,i ((l, b7 c, da q) = An,]_(a, b7 c, da q)Bn(a7 b7 c, da q)7

1
an(aa b,c, d; q) = _An(aa b, c, d; q) - Bn(a7 b,c,d; q) + g + %’
(1 — abedg™1)(1 — abg™)(1 — acq™)(1 — adq™)
2a(1 — abedg®—1)(1 — abedg®™) ’
a(l —¢")(1 = beg"")(1 — bdg"")(1 — cdg" ")
B . — .
n(a:b,c, d;q) 2(1 — abedg?*—2)(1 — abedg?™—1)

An (a7 b’ c’ d; q) =

The Askey-Wilson polynomial solution (renormalized) is

bedg ! dl,
XD (za,b,6,d50) = (2Ll
X 46 ,abcdq ,aeia,aefw,q,q
473 ab, ac,ad

with z = cos 9.

In addition to the permutation symmetry with respect to the param-
eters (a, b, c,d), one has

b?,.(a/a,q/b,q/c,q/d; q) = b} (a,b, ¢, d; q),

(29) 71(q/a7 q/b7 q/c, Q/d; q) = Qan (a7 b, ¢, d; Q)'

Applying the transformation n ——n-1, (a, b, ¢,d) = (q/a, q/b, q/c, q/d)
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to (1) and (28) and renormalizing yields a second polynomial solution
(30)
beln [ed]r, [bd]
X 2) ; b d; _ [q]n[ n n n
x ay (OO abed, qe[a,qe7 [a;q,q
3 q?/ab,q?/ac,q*/ad ’

abed = ¢4, ¢%, ... .

For these special cases abed = ¢™, m = 1,2,..., |¢| < 1, one can

obtain the large n asymptotics of both XT(LI) and Xr(LZ) from the Sear’s
transformation [4]

b3 (Q”,x,y,z;q,Q) _ (%)" [uv /yz]n[uw /y2],

u, v, w u [U]n[w]n
(31) " /Yy, /74,4
X 4¢3 ’
u, uv/yz, uw/yz
n+1'

UVW = TY2q

One can then obtain the subdominant solution XT(f)(z) to (1) for
z ¢ [-1,1], abed = ¢, m = 1,2,..., and, in particular, the g-analogue
of (20), (24) and (26a,b).

For more general values of abed # 0, one can express the subdominant
solution in terms of well-poised g¢7 basic hypergeometric functions
instead of Saalschiitzian 4¢3’s using Watson’s formulas [2, p. 69]. This
will yield a general proof of the Askey-Wilson orthogonality which
avoids the use of contour integration [1].

With solutions to (1) expressed in terms of well-poised g¢7’s (7Fs’s)
one may also introduce an extra parameter by a translation of n
(n — n+e) and do the large n asymptotics to obtain the subdominant
solution for the associated g-Askey-Wilson (Wilson) case.

Acknowledgment. We thank the referee for raising the question of
the existence of mass points.
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