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APPROXIMATION BY CONSTRAINED
PARAMETRIC POLYNOMIALS

MICHAEL LACHANCE

1. Introduction. The mathematical representations of curves and
surfaces employed by computer-aided design (CAD) systems are quite
varied, having evolved in complexity over the past 25 years. Initially,
the mathematics was kept rather simple, making use of piecewise
quadratic and cubic curves, and linearly and cubicly blended surfaces.
Use of more sophisticated entities such as higher degree polynomials,
splines, B-splines and nonuniform rational B-splines had to await the
development of intuitive, nontechnical user interfaces. While the older
systems have incorporated some of the newer mathematical entities,
most are still used with much of their original mathematics intact.

Of particular importance to the users of CAD systems is the commu-
nication of geometric design data between themselves and other users
on dissimilar CAD systems. Such an exchange of data takes place rou-
tinely between manufacturers and suppliers, and often between depart-
ments of larger manufacturers. Because of the variety of entities used,
approximations are frequently required. These approximations must be
accurate (to tolerances on the order of .01 mm) and the process must
be fast (to accommodate the large volume of data being transferred).

Since low degree polynomials are among the most common entities
used by CAD systems, the problem of data exchange is often reduced
to the problem of inexpensively producing low degree parametric poly-
nomial approximations of curves and surfaces. There are two con-
straints which must be respected, in addition to user-specified bounds
on the uniform error. First, the approximates should have nearly arc-
length parametrizations. This is critical to most CAD systems since
parametrizations are used in visualizing wireframe models and in man-
ufacturing processes. Second, since complicated curves and surfaces
will, in general, be approximated in a piecewise fashion, composite ap-
proximations must have a prescribed amount of geometric or visual
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continuity. In practice, the approximations must possess at least C◦

continuity, while some systems require slope and curvature continuity.

In this article we derive lower degree polynomial approximates to
higher degree polynomials using a generalization of Chebyshev econo-
mization; approximates to nonpolynomial entities are derived using a
least square formulation. Both of the schemes described incorporate
constraints which guarantee user-controlled geometric continuity be-
tween the piecewise approximates. In each case the parametrization of
the approximate is tied to that of the original, the assumption being
that the parametrization of the original entity is satisfactory.

The outline of this article is as follows. We introduce notation in
Section 2 for vector-valued function spaces and norms on those spaces.
In Section 3 we introduce the collection of constrained Chebyshev
polynomials, and in Section 4 we discuss least square analogs of these
polynomials, the Jacobi and ultraspherical polynomials. Polynomial
approximations to polynomial and nonpolynomial curves are proposed
in Sections 5 and 6, respectively. Finally, in Section 7 we discuss how
these methods can be extended to parametric surfaces.

2. General notation. For a nonnegative integer m, let πm

denote the collection of real polynomials of degree at most m, with
π−1 ≡ {0}. Parametric polynomials of degree at most m in Euclidean
n-space are designated by πn

m. The power basis for πm is the usual
set {1, s, . . . , sm}. The Bernstein basis for πm consists of the set
{Bi,m(s)}m

i=0 where

Bi,m(s) =
(

m

i

)
si(1 − s)m−i, i = 0, 1, . . . , m, m ≥ 0.

Bezier (of Renault) and de Casteljau (of Citroen) were among the
first to make use of the Bernstein basis in CAD, principally because of
the geometric significance which could be placed upon the coefficients
in a polynomial’s Bernstein representation [3, p. 132]. Of importance
in this note is a formula which relates the power basis coefficients of
a polynomial to its Bernstein coefficients. In particular, if p(s) =∑m

i=0 viBi,m(s), then its derivatives are given by

p(k)(s) = (m!/(m − k)!)
m−k∑
i=0

[ k∑
j=0

(−1)k−j

(
k

j

)
vi+j

]
Bi,m−k(s),
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for 0 ≤ k ≤ m. Evaluating this expression at s = 0, we find that

p(k)(0) = (m!/(m − k)!)
k∑

j=0

(−1)k−j

(
k

j

)
vj ,

and, thus,

(2.1) [p(0), . . . , p(k−1)(0)] = [v0, . . . , vk−1]UD, 1 ≤ k ≤ m,

where U = [uij ] is upper triangular and D = diag [di] is diagonal,

(2.2)
uij =

{
(−1)j−i

(
j−1
i−1

)
, 1 ≤ i ≤ j ≤ k,

0, 1 ≤ j < i ≤ k;
di = m!/(m + 1 − i)!, 1 ≤ i ≤ k.

It is a simple matter to show that U−1 = [(−1)j−iuij ] so that the
coefficients vi may be computed from prescribed derivative information
at s = 0. Because of the symmetry of the Bernstein polynomials on the
interval [0, 1], a similar formula relates the coefficients vi to derivatives
at s = 1.

For a compact set B in Rm, Ck(B) denotes the collection of k-times
continuously differentiable functions on that set. Vector-valued func-
tions in n-space, each of whose components are k-times continuously
differentiable on this set, are denoted by Ck(B)n.

For any vector a = (a1, . . . , an) ∈ Rn, we denote the usual Euclidean
norm by ||a||E . In terms of this norm we define the uniform and least
square norms for f ∈ C(B)n by

(2.3)

||f ||L∞(B) = max
s∈B

||f(s)||E and

||f ||2L2(B) =
∫

B

||f(s)||2E ds.

Note that when considering the norm of the difference of two paramet-
ric functions, the parameterizations are linked. That is, for parametric
curves defined on an interval I,

||f − p||L∞(I) = max
s∈I

||f(s) − p(s)||E.
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The Euclidean distance between the two curves f and p is bounded
by this value but is not, in general, equal to it. A better mea-
sure of the “true” distance can be obtained by considering the Haus-
dorff metric [5, 6], H(f ,p) = max{d(f ,p), d(p, f)}, where d(f ,p) =
max
s∈I

min
t∈I

|f(s) − p(t)|.

3. A weighted minimax problem. In [7, 8] the collection of
constrained Chebyshev polynomials was introduced as a solution to a
weighted minimax problem. These polynomials, denoted by T

(α,β)
m (x),

are the unique monic polynomials (x− 1)α(x + 1)β(xm − g0(x)) where
g0 is extremal for

Problem 3.1. For each triple of nonnegative integers (m, α, β),
determine

minimum
g∈πm−1

maximum
−1≤x≤1

(1 − x)α(1 + x)β|xm − g(x)|.

These polynomials are a proper generalization since 2m−1T
(0,0)
m (x) is

precisely the classical Chebyshev polynomial of degree m.

Of interest here is the symmetric case, and for the remainder of this
note we will take β = α. The constrained Chebyshev polynomials in
this case are denoted by T

(α)
m (x) and take the form

(3.1) T (α)
m (x) = (x2 − 1)α(xm − · · · ) ∈ πm+2α.

There are instances when the constrained Chebyshev polynomials can
be determined explicitly (see [6, 7]). In general, this is not the case,
but they can be approximated by using a modified Remez exchange
algorithm [2].

Most CAD systems parametrize curves on the interval [0,1]. We shall
do the same and introduce more convenient notation for the constrained
Chebyshev polynomials on this interval.

Definition 3.1. For each pair of nonnegative integers (m, α), with
m ≥ 2α, the symmetric constrained Chebyshev polynomials are given
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by

C(α)
m (s) = 2−mT

(α)
m−2α(2s − 1)

= sα(s − 1)α(sm−2α + · · · ),(3.2)

E(α)
m = max

s∈[0,1]
|C(α)

m (s)|.(3.3)

Thus, m indicates the degree of the monic polynomial C
(α)
m (s), while

α indicates the order of the zero at both s = 0, 1. Some of the nor-
malized constrained polynomials C

(α)
m (s)/E

(α)
m are displayed in Figure

1; the magnification error E
(α)
m due to the constraint is summarized in

Table 1.

TABLE I. 22m−1E
(α)
m

m/α 0 1 2 3

1 1.0000

2 1.0000 2.0000

3 1.0000 1.5396

4 1.0000 1.3726 8.0000

5 1.0000 1.2852 4.5795

6 1.0000 1.2312 3.3886 32.0000

7 1.0000 1.1945 2.7860 15.2332

8 1.0000 1.1679 2.4235 9.8125

9 1.0000 1.1477 2.1821 7.2353

10 1.0000 1.1319 2.0101 5.7634

11 1.0000 1.1191 1.8814 4.8247

12 1.0000 1.1086 1.7816 4.1799

13 1.0000 1.0998 1.7020 3.7126

14 1.0000 1.0923 1.6369 3.3599

15 1.0000 1.0858 1.5828 3.0845

16 1.0000 1.0802 1.5371 2.8651

17 1.0000 1.0754 1.4981 2.6860

18 1.0000 1.0709 1.4642 2.5373

19 1.0000 1.0671 1.4348 2.4121

20 1.0000 1.0636 1.4089 2.3051

4. A least square extremal problem. The extremal problem
analogous to the weighted minimax Problem 3.1 in the least square
norm is
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FIGURE 1a. C
(α)
m (s)/E

(α)
m , m = 0, 1, 2, 3

Problem 4.1. For each triple of nonnegative integers (m, α, β),
determine

minimum
g∈πm−1

∫ 1

−1

(1 − x)α(1 + x)β[xm − g(x)]2 dx.

The solution to this problem gives rise to the classical Jacobi polynomi-
als and, in the symmetric case, the ultraspherical polynomials. Using
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FIGURE 1b. C
(α)
m (s)/E

(α)
m , m = 2, 3, 4, 5

the notation of Szego [9, pp. 80 81], the latter polynomials are denoted
P

(α)
m (x), with weight function (1 − x2)α−.5. They are normalized by
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FIGURE 1c. C
(α)
m (s)/E

(α)
m , m = 4, 5, 6, 7

P
(α)
m (x) = τ

(α)
m xm + · · · ∈ πm so that

(4.1)

min
g∈πm−1

∫ 1

−1

(1 − x2)α−.5[xm − g(x)]2 dx

= [τ (α)
m ]−2

∫ 1

−1

(1 − x2)α−.5{P (α)
m (x)}2 dx

= σ(α)
m /[τ (α)

m ]2,
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FIGURE 1d. C
(α)
m (s)/E

(α)
m , m = 6, 7, 8, 9

where

(4.2)
σ(α)

m = 21−2απ[Γ(α)]−2 Γ(m + 2α)
(m + α)Γ(m + 1)

,

Γ(α)
m = 2m

(
m + α − 1

m

)
.

A three-term recurrence relation is available for evaluating the ultra-
spherical polynomials. Alternatively, the coefficients can be generated
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and stored, offering modest computational savings. When α = .5,
the ultraspherical polynomials are the classical Legendre polynomials
Pm(x) whose recurrence relation is given by

(4.3)
P0(x) = 1, P1(x) = x,

mPm(x) = (2m − 1)xPm−1(x) − (m − 1)Pm−2(x), m ≥ 2.

Because of our specific continuity requirements, we are most interested
in the values α = 2k + .5, k = 1, 2, 3. Starting with the Legendre
polynomials, and using the differential recurrence relation

(4.4) 2αP
(α+1)
m−1 (x) =

d

dx
P (α)

m (x),

the other ultraspherical polynomials can easily be tabulated.

As with the constrained Chebyshev polynomials, it will be convenient
to introduce notation for the monic constrained ultraspherical polyno-
mials on the interval [0, 1]. Paralleling the notation of Section 3, we
have

Definition 4.1. For each pair of nonnegative integers (m, α), with
m ≥ 2α, the constrained ultraspherical polynomials are given by

U (α)
m (s) =

sα(s − 1)αP
(2α+.5)
m−2α (2s − 1)

2m−2ατ
(2α+.5)
m−2α

= sα(s − 1)α(sm−2α + · · · ),

(4.5)

[ε(α)
m ]2 =

∫ 1

0

[U(α)
m (s)]2 ds =

σ
(2α+.5)
m−2α

22m+1[τ (2α+.5)
m−2α ]2

(4.6)

The values m and α have the same interpretation as in the symmetric
constrained Chebyshev polynomials; the values of σ and τ are defined
in (4.2) above.

5. Constrained uniform approximation of curves. Consider a
parametric curve f . In practice, a polynomial approximation scheme
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constructs an approximate and then audits its performance relative to
a given tolerance. If the fit is unsatisfactory, then f is partitioned
into two or more pieces. Each of these is then fit individually by
a polynomial and is in turn audited. In order to insure that the
individual polynomials link up in a visually smooth manner, tangent
and acceleration directions are controlled. One way to gain this control
is to force the polynomials to interpolate the endpoints and derivatives
of f ’s pieces. The constraints on each polynomial lead to

Problem 5.1. For each pair of positive integers (m, α), with m ≥ 2α,
and for each vector-valued function f ∈ Cα−1[0, 1]3, determine

minimum
p∈π3

m

{||f − p||L∞[0,1] :p(i)(δ) = f (i)(δ),
(5.1)

i = 0, . . . , α − 1, δ = 0, 1}.
It is tempting to approach this problem component-wise. However,

the following simple example shows that L∞ problems over the Eu-
clidean norm on an interval cannot, in general, be handled this way.

Example 5.1. Let f(s) = (s, s2) ∈ C[−1, 1]2. The best component-
wise constant approximation to f is (0, .5), with maximum derivation√

5/2. The best uniform constant approximation which attains the
minimum of max−1≤s≤1 ||(s, s2) − (a, b)||E on the interval [−1, 1] is
(0, 1) with uniform error 1.

In the case when f is a polynomial of degree m + 1, this author
[6] showed that the minimum value of the expression (5.1) can be
determined component-wise. In particular, if

(5.2)
f(s) = am+1s

m+1 + · · · ∈ π3
m+1, am+1 �= 0, then

p(s) = f(s) − am+1C
(α)
m+1(s)

is the unique polynomial which attains the minimum in (5.1). The
reader will note that this definition is simply Chebyshev economization
where the constrained Chebyshev polynomials replace the traditional
Chebyshev polynomials. The corresponding error is

||f − p||L∞[0,1] = ||am+1||EE
(α)
m+1.
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The number ||am+1||EE
(α)
m+1 is the maximum distance between like

parametric values of f and p, and provides an a priori bound on the
Hausdorff distance.

A degree reduction routine can easily be based upon this economiza-
tion, simply by iterating to the desired degree. The errors at each stage
accumulate and will possibly force the breaking up of f . In this event,
the composite approximation will be geometrically smooth, depending
on the value of α. For a discussion of parametric versus geometric
continuity, we refer the interested reader to Bartels, et al. [1, p. 293].

6. Constrained least square approximation of curves. From
the previous discussion, Problem 5.1 for nonpolynomial f cannot, in
general, be treated component-wise. If the least square counterpart
to this problem is considered, as suggested by Goult [4], then this
objection is circumvented. In this section we show that the constrained
ultraspherical polynomials {U (α)

i (s)}∞i=2α are the natural sequence for
an orthogonal expansion of f once the interpolatory conditions are
satisfied. First we restate Problem 5.1 in terms of the L2 norm.

Problem 6.1. For each pair of positive integers (m, α), with m ≥ 2α,
and, for each vector-valued function f ∈ Cα−1[0, 1]3, determine

(6.1) minimum
p∈π3

m

{||f − p||L2[0,1] : p(i)(δ) = f (i)(δ),

i = 0, . . . , α − 1, δ = 0, 1}.

To determine the extremal polynomial for this problem, it is con-
venient to consider the Bernstein representation for p(s) : p(s) =∑m

i=0 viBi,m(s). According to (2.1), the first and last α of its coeffi-
cients are completely determined by the interpolation conditions. That
is, 2α of the vi are given by

(6.2)
[v0, . . . ,vα−1] = [f (0)(0), . . . , f (α−1)(0)]D−1U−1

[vm, . . . ,vm−α+1] = [f (0)(1), . . . , f (α−1)(1)]SD−1U−1,

where D and U are given in (2.2), S = [(−1)i+1δij ], leaving m−2α+1
as yet undetermined coefficients. Using the coefficients from (6.2), we
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define an mth degree Hermite interpolating polynomial h(α)
m (s) by

(6.3)

h(α)
m (s) =

α−1∑
i=0

[viBi,m(s) + vm−iBm−i,m(s)]

+
m−α∑
i=α

wiBi,m(s),

where the wi, α ≤ i ≤ m − α, are fixed but arbitrary. Then the
polynomial p(s) must take the form

(6.4) p(s) = h(α)
m (s) + wα(s)q(s)

where wα(s) = [s(1− s)]α and q ∈ π3
m−2α. The expression for which a

minimum is sought is

||wα[g(α)
m − q]||L2[0,1],

where

g(α)
m (s) =

[f(s) − h(α)
m (s)]

wα(s)
, 0 < s < 1.

The collection {P (2α+.5)
m (2s − 1)}∞m=0 forms an orthogonal collection

on the interval [0, 1] with respect to the weight function wα(s)2. Thus,
the minimum is obtained by taking q(s) =

∑m−2α
i=0 aiP

(2α+.5)
i (2s − 1),

with

ai =

∫ 1

0
wα(s)2g(α)

m (s)P (2α+.5)
i (2s − 1) ds∫ 1

0
wα(s)2[P (2α+.5)

i (2s − 1)]2 ds
, i = 0, . . . , m − 2α.

The integration of the vector-valued function g(α)
m (s) is understood to

be component-wise. Alternatively,

(6.5)

p(s) = h(α)
m (s) + wα(s)q(s)

=
α−1∑
i=0

[viBi,m(s) + vm−iBm−i,m(s)]

+
m∑

i=2α

biU
(α)
i (s),
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where the vi are given by (6.2) and

(6.6) bi =

∫ 1

0
[f(s) − h(α)

m (s)]U (α)
i (s) ds

[ε(α)
i ]2

, i = 2α, . . . , m.

The determination of the coefficients bi in (6.6) requires the definition
of an interpolating polynomial h(α)

m (s) as an initial guess. In [4] the
suggestion for selecting h(α)

m (s) seems to be that it be of degree 2α− 1.
A better choice could be made by choosing h(α)

m (s) to be of degree m,
taking the best desired degree polynomial approximate available and
viewing the term wα(s)q(s) as a correction to h(α)

m (s).

There are at least two drawbacks to this least square solution: An
a priori bound on the uniform error is not readily available, and the
coefficients of the correction term must be obtained using numerical
integration. These objections become more serious when the methods
are extended to surfaces.

7. Implications for parametric surfaces. For a polynomial
surface P(s, t) =

∑m
i=0

∑n
j=0 Aijs

itj , parametrized on the unit square
[0, 1]2, constrained Chebyshev economization can be accomplished in
one parametric direction or both parametric directions simultaneously
[6]. Denoting the polynomial coefficients of si and tj by

(7.1) P(s, t) =
m∑

i=0

Pi(t)si =
n∑

j=0

Pj(s)tj ,

economizations may be defined by either

Q(α, · : s, t) = P(s, t) − Pm(t)C(α)
m (s)(7.2)

or

R(α, β : s, t) = P(s, t) + Am,nC(α)
m (s)C(β)

n (t)

− Pm(t)C(α)
m (s) − Pn(s)C(β)

n (t),(7.3)

where α and β control the desired amount of continuity in each of the
parametric directions s and t, respectively.
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To develop polynomial approximations for a nonpolynomial surface
F(s, t), we parallel the development used for nonpolynomial curves in
Section 6. That is, we introduce a Hermite interpolating polynomial
H(s, t) = H(α,β)

m,n (s, t) which agrees with F(s, t) at the corners of the
unit square (depending on the values of α and β); then we consider the
weighted optimization problem of minimizing

||[F − H] − P||L2[0,1]2 = ||wαwβ [G − Q]||L2[0,1]2

where

G(s, t) =
F(s, t) − H(s, t)

wα(s)wβ(t)
, (s, t) ∈ (0, 1)2

and

P(s, t) = wα(s)wβ(t)Q(s, t)

=
m∑

i=2α

n∑
j=2β

BijU
(α)
i (s)U (β)

j (t).

The coefficients Bij in this case require iterated numerical integration,
while the determination of H(s, t) is relatively straightforward.
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