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AN APPENDIX TO “CURVATURE AND PROPER
HOLOMORPHIC MAPPINGS BETWEEN
BOUNDED DOMAINS IN C*”

E.B. LIN AND B. WONG

For the implication from Theorem 4 to Theorem 5 in [1], we merely
considered the boundary convergence case as our proof stood, because
of the following fact. This is a folklore following from those old results
in [2] and [3].

Fact. Let Dy and D5 be two strongly pseudoconvex bounded domains
in C",n > 2. A sequence of proper holomorphic mappings {f; :
Dy — D5} can never converge to a non-proper holomorphic mapping
f : D1 — D5y on compact subsets.

Proof. Let’s assume that {f;} converges on compact subsets to a
non-proper holomorphic map f : D; — D3. Consequently, there is a
sequence {zy} in D; convergent to p € 0D, such that {yx = f(zx)}
converges to a point ¢ € Do. By Pincuk’s theorem [2], all f; : D; — Do
are finite unbranching covers. We denote by d; the diameter (with
respect to the distance function dp, induced by Cheng-Yau Einstein
Kahler metric on D) of the fiber {f;l(fl(zl))} at z1 € Dy.

Suppose a subsequence of {d;} tends to co as i grows, apparently
there is a sequence of covering transformations which will bring z to
0D;. Applying [3], one concludes D; 2, B,,. By Cartan’s fixed point
theorem ([1] Theorem, (i) p. 187), this implies D; 2 B,, 2 Dy. Thus all
fi are automorphisms. By classical H. Cartan’s compactness theorem,
f must be a biholomorphism. This contradicts our assumption.

On the contrary, let’s assume {d;} are bounded above by a constant
M < +o00. By path-lifting property of coverings, triangle inequality of
metrics and the assumption of convergence of {f;} to f, it is elementary
to show, for sufficiently large k, dp, (z1,2x) < M + dp, (1, q) + €, here
dp, = distance function induced by Cheng-Yau Einstein Kéahler metric
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on Dy, e = any fixed positive number. Since lim ;_,dp, (z1,zE) = 00,
we gain a contradiction.

Acknowledgment. We are grateful to Ian Graham for pointing out
a wrong assertion of our previous version which does not influence our
proof. The present proof has been simplified by him.
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