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BOUNDS ON THE ORDER OF GENERATION
OF SO(n,R) BY ONE-PARAMETER SUBGROUPS

F. SILVA LEITE

ABSTRACT. A Lie group G is said to be uniformly finitely
generated by one-parameter subgroups exp(tXi), i = 1, . . . , n,
if there exists a positive integer k such that every element of
G may be expressed as a product of at most k elements chosen
alternatively from these one-parameter subgroups.

In this paper we construct sets of left invariant vector fields
on SO(n), in particular, pairs {A, B}, whose one-parameter
subgroups uniformly finitely generate SO(n) and find an up-
per bound on the order of generation of SO(n,R) by these
subgroups. We give special attention to the case n = 3.

0. Introduction. If the Lie algebra of a connected Lie group G is
generated by the elements X1, . . . , Xn, then every element of G may be
expressed as a finite product of elements of the form exp(tXi), where
t is real and i = 1, . . . , n (Jurdjevic and Sussmann [6]). However,
the number of elements required for g ∈ G may not be uniformly
bounded as g ranges through G. If, in addition, G is compact and
exp(tXi), i = 1, . . . , n are also compact, then it follows from Theorem
1.1 that there exists a positive integer k such that every element of G
may be expressed as a product of at most k elements from exp(tXi),
i = 1, . . . , n. That is, G is uniformly finitely generated by these one-
parameter subgroups with order of generation k.

For two and three-dimensional Lie groups, the problem has been com-
pletely solved by Koch and Lowenthal. In [1], Crouch and the present
author take the initial steps in the problem of uniform finite generation
of SO(n,R) (the real n(n− 1)/2-dimensional special orthogonal group
with Lie algebra so(n)) and concentrate on finding pairs of generators
for so(n), orthogonal with respect to the killing form 〈·, ·〉 and whose
one-parameter subgroups uniformly finitely generate SO(n).

This paper is still devoted to the uniform generation problem of
SO(n). Section 1 is introductory. Sections 2 and 3 are concerned with
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the main problem. The basic idea is to use a decomposition theory for
semisimple Lie groups based on the theory of symmetric spaces and
briefly discussed in Section 2. The resultant decomposition of SO(n)
into a product of a finite number of one-parameter subgroups involves
a certain set {X1, . . . , Xr} of elements of so(n), the corresponding
generating set of so(n). An upper bound is found for the uniform
finite generation of SO(n) by exp(tXi), i = 1, . . . , r, t ∈ R.

Special attention is, however, given to pairs {A,B} of generators of
so(n) which are known to exist for every semisimple Lie algebra [10].
In Section 3, pairs {A,B} of generators of so(n) nonorthogonal with
respect to 〈·, ·〉 are constructed. Each of these pairs is such that every
element belonging to exp(tXi), i = 1, . . . , r, t ∈ R ({X1, . . . , Xr} is
a generating set obtained in Section 2) may be expressed as a finite
product involving only elements from the one-parameter subgroups
generated by A and B. This result is combined with one obtained in
Section 2 to find an upper bound on the order of generation of SO(n)
by exp(tA) and exp(tB). The results obtained from Sections 1, 2 and 3
can be improved if n = 3. We treat this special case in the Appendix.

1. Uniform finite generation of Lie groups and its order of
generation.

Definition 1.1. A connected Lie Group G is said to be uniformly
finitely generated by one-parameter subgroups exp(tX1), . . . , exp(tXn)
if there is a positive integer k such that every element of G can be
written as a product of at most k elements chosen from these subgroups.
The least such k is called the order of generation of G.

Although the order of generation of G depends on the one-parameter
subgroups, it must be greater than or equal to the dimension of G
(Sard’s theorem [18]).

The following theorem, whose proof is included here just for the sake
of completeness, was proved by Lowenthal [13] for a pair of generators,
and it gives a sufficient condition for the uniform finite generation of a
connected and compact Lie group.
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Theorem 1.1. Let G be a connected and compact Lie Group,
X1, . . . , Xn generators of the Lie algebra L(G) and exp(tXi), i = 1, . . . ,
n, compact. Then G is uniformly finitely generated by exp(tXi),
i = 1, . . . , n.

Proof. Let Gm be the set of all products of m elements exp(tXi),
i = 1, . . . , n. As exp(tXi) is compact for every i, then Gm is also
compact. G is connected and {X1, . . . , Xn}L.A. = L(G), that is, L(G)
is the smallest Lie algebra that contains X1, . . . , Xn. Hence, there is
an integer l such that g is a product of l elements of the form exp(tXi),
i = 1, . . . , n, t ∈ R (Jurdjevic and Sussmann [5]). Then ∀g ∈ G, g ∈ Gl

and G = ∪∞
l=1Gl. G is complete since, being connected and compact, it

is metrizable (Riemannian metric); so, by the Baire category theorem,
G is of second category and Gl, for some l, contains an open set U .
Hence G = ∪g∈GgU ; since ∀g ∈ G, gU is open, this is an open cover
for G and clearly it contains a finite subcover, i.e., there are g1, . . . , gr

such that G = ∪r
i=1giU . But each gi, i = 1, . . . , r, is a finite product of

elements of exp(tXi), i = 1, . . . , n, and U ⊂ Gl so the proof is complete.

The uniform finite generation problem has been completely solved
by Lowenthal and Koch for two and three-dimensional Lie groups;
[7 9, 12 15]. In particular, in [13] Lowenthal calculates the order
of generation of SO(3) by any two one-parameter subgroups exp(tA),
exp(tB), ([A,B] �= 0) and shows that it is a function of the angle
between the axes of the two generators. (Note that so(3) is generated
by any two noncommutative elements and that the corresponding one-
parameter subgroups are compact.)

Now a canonical basis of so(n) is defined, namely the skew symmetric
matrices Aij , 1 ≤ i < j ≤ n, where

[Aij ]kl =
{
δikδjl, 1 ≤ k ≤ l ≤ n,
−δilδjk, 1 ≤ l ≤ k ≤ n,

([A]kl stands for the kl-th component of a matrix A) with commutation
relations ([A,B] = AB −BA)

[Aij , Akl] = δjkAil + δilAjk − δikAjl − δjlAik.
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Although there are Lie groups that can be uniformly finitely gener-
ated by one-parameter subgroups that are not compact (for instance
T = SO(2)×SO(2) is generated by exp(tA12) and exp(t(A12+

√
2A34))

and the order of generation is 2), only compact one-parameter sub-
groups of SO(n) will be considered in order to be able to use Theorem
1.1.

2. Decomposition of Lie groups based on symmetric spaces
and corresponding generating sets of SO(n). The first part of
this section contains general ideas concerning Riemannian symmetric
manifolds (R.S. manifolds). We have decided to include here these ideas
for the sake of completeness.

A Riemannian manifold M is called symmetric if each point p ∈ M
is an isolated fixed point of an involutive isometry sp of M .

Let M be an R.S. manifold. The set I(M) of all the isometries of
M acts transitively on M . This action gives M the structure of a
homogeneous space G/K where G = I0(M) and K is the (compact)
isotropy subgroup of G at a point x0. The mapping σ : G→ G defined
by σ(x) = sx0xsx0 is an involutive automorphism of G and K = {x ∈
G : σ(x) = x}. If G and T denote the Lie algebras of G and K,
respectively, (dσ)e is an involutive automorphism of G and G admits a
direct sum decomposition G = T ⊕P with T = {X ∈ G : (dσ)eX = X}
and P = {X ∈ G : (dσ)eX = −X}. Since (dσ)e is an automorphism,
it follows that

(2.1) [T , T ] ⊂ T , [T ,P] ⊂ P and [P,P] ⊂ T .

T is a subalgebra of G, and P is a vector space.

If π denotes the natural mapping of G into M defined by x → x · x0,
(dπ)e is a linear mapping of G onto Tx0M (the tangent space of M
at x0) with kernel T that maps P isomorphically onto Tx0M . Now if
P = expP, π maps one-parameter subgroups contained in P into the
geodesics emanating from x0, exp(tX) → exp tX · x0.

A Lie algebra G which admits a direct sum decomposition, G = T ⊕P,
into the ±1 eigenspaces of an involutive automorphism s satisfying (2.1)
and such that the group of inner automorphisms of G generated by T
is compact, is said to be an orthogonal symmetric Lie algebra (G, s).
A pair (G,K), where G is a connected Lie group with Lie algebra G
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and K is a Lie subgroup of G with Lie algebra T , is said to be the pair
associated with the orthogonal symmetric Lie algebra (G, s), and K is
called the symmetric subgroup.

A Cartan subalgebra of (G, s) is a maximal abelian subalgebra of G
contained in P. All Cartan subalgebras of (G, s) are conjugate under
AdGK, the adjoint representation of K.

Lemma 2.1. If M is an R.S. manifold G/K, then G = KAK where
A = expA for any Cartan subalgebra A of the orthogonal symmetric
Lie algebra associated with (G,K).

The proof can be found in Crouch and Silva Leite [1].

To decompose a Lie group one simply identifies an involutive auto-
morphism of G and corresponding symmetric subgroup K1 and forms
the decomposition G = K1A1K1. Since each involutive isometry of
M = G/K1 gives rise to an involutive automorphism of G, to decom-
pose a Lie group one must find first an R.S. manifold of the form G/K1.
It is clear that R.S. manifolds play an important part in decompositions
of Lie groups.

After having decomposed G = K1A1K1, K1 can be decomposed
similarly to obtain G = K2A2K2A1K2A2K2. If this procedure is
continued until an abelian group Ki is encountered, G becomes a
product of abelian subgroups Ki, Ai, Ai−1, . . . , A1, namely,

(2.2)
G = KiAiKiAi−1KiAiKiAi−2 · · ·KiAiKiA1KiAiKi · · ·

· · ·Ai−2KiAiKiAi−1KiAiKi.

At each stage, different choices of involutive automorphisms may
exist, each of which gives a different decomposition of the symmetric
subgroup Kj , and consequently of G.

After decomposing G as a product of abelian subgroups, the decom-
position of G as a product of one-parameter subgroups is a trivial mat-
ter.

Involutive automorphisms σ for the classical matrix groups always
exist. Full details can be found in Helgason [3].

Throughout this paper we only consider R.S. manifolds M =
SO(n)/K and associated orthogonal symmetric Lie algebras (so(n), σ)
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given by

G = so(p+ q)
p ≥ q ≥ 1

=
{(

X1X2

−Xt
2X3

)
;
X1 ∈ so(p), X3 ∈ so(q)
X2 arbitrary

}

(∗) σ(X) = Ip,qXIp,q, Ip,q =
(
−Ip 0
0 Iq

)

T =
{(

X1 0
0 X3

)
;X1 ∈ so(p), X3 ∈ so(q)

}
,

P =
{(

0 X2

−Xt
2 0

)
, X2 arbitrary

}
K = SO(p)× SO(q).

A Cartan subalgebra of (G, σ) is A =
∑q

i=1 RAi,p+i with dimension
q.

When p+ q is even there are other choices for σ and K (see Chapter
X of Helgason [3]). However, only the symmetric space structure (∗)
(which is unique up to conjugacy when p+ q is odd) will be considered
in this article.

As a consequence of the decompositions of SO(n) outlined in the
beginning of this section and in (∗) above, into r one-parameter sub-
groups of the form exp(tAij), one can associate with each such decom-
position a generating set of SO(n), the corresponding generating set
and a number, the number r of one-parameter subgroups that such a
decomposition yields. Although in some cases this number coincides
with the order of generation of SO(n) by the one-parameter subgroups
belonging to the corresponding generating set, in general it only is an
upper bound on the order of generation. We shall refer to this as the
number of generation relative to the given decomposition.

Whereas the order of generation only depends on the generating set,
the number of generation is also a function of the decomposition chosen
and the relation to each other.

Lemma 2.2. The number of generation of SO(n) corresponding
to a decomposition of SO(n) by one-parameter subgroups of the form
exp(tAij) increases with p being minimal (equal to the dim of SO(n))
when SO(m), ∀m ∈ [3, n]∩Z, is decomposed according to the symmetric
space structure in (∗), with p = q or p = q + 1 (p+ q = m).
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The proof can be found in [1, Section 3].

Lemma 2.3. The cardinality of the generating set of SO(n) (or
so(n)) corresponding to a decomposition of SO(n) decreases when p
increases, being minimal (equal to n−1) when SO(m), ∀m ∈ [3, n]∩Z,
is decomposed according to the symmetric space structure in (∗), with
p = m− 1, q = 1.

Proof. If, ∀i = 0, 1, . . . , n− 3, SO(n− i) is decomposed according to
the symmetric space structure (∗) with p = n− i− 1, q = 1, the result
is the decomposition

SO(n) = Kn−2An−2Kn−2An−1Kn−2An−2Kn−2 · · ·Kn−2An−2Kn−2A1

Kn−2An−2Kn−2 · · ·Kn−2An−2Kn−2An−1Kn−2An−2Kn−2,

where Kn−2, An−2, . . . , A2, A1 are distinct one-parameter subgroups of
the form exp(tAij). So, the generating set of so(n) contains n − 1
elements and is clearly a minimal generating set.

To prove that # (generating set) increases when p decreases, it is
sufficient to show that if, for a certain i, SO(n − i) is decomposed
as in (∗) with p < n − i − 1 then #(generating set) is greater than
n − 1. Without loss of generality i can be taken equal to zero. Now
SO(n) = KAK where K = SO(p)×SO(n−p), p < n−1 and A is n−p
dimensional. Then, #(generating set) ≥ (p− 1)+ (n− p− 1)+n− p=
2n − 2 − p > n − 1 (p − 1 and n − p − 1 being the cardinal number
of minimal generating sets of SO(p) and SO(n− p− 1), respectively).
Clearly 2n − 2 − p increases when p decreases and the lemma follows.

Remark . It is clear from Lemma 2.2 that when SO(m), ∀m ∈ [3, n]∩
Z, is decomposed as in (∗) with p = q or p = q+1 (p+q = m), SO(n) is
uniformly finitely generated by the one-parameter subgroups belonging
to the corresponding generating set with order of generation equal to
n(n− 1)/2. However, this generating set contains more elements than
the generating set corresponding to any other decomposition based on
(∗) (Lemma 2.3).
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In the next section only generating sets of SO(n) with n elements
will be considered. The reason for that choice will become clear later.

Lemma 2.4. The generating set corresponding to a decomposition
of SO(n) by one-parameter subgroups resulting from decompositions
of SO(n) and subsequent symmetric subgroups as in (∗) contains n
elements if and only if for some m1 ∈ [4, n]∩Z, SO(m1) is decomposed
with p = m1 − 2, q = 2 and SO(m), ∀m ∈ [3, n] ∩ (Z\{m1}) is
decomposed with p = m− 1, q = 1.

Proof. Without loss of generality, we can take m1 = n. Then,
SO(n) = KAK with K = SO(n− 2)× SO(2) and A two-dimensional.
Now if, ∀i ∈ [2, n − 3] ∩ Z, SO(n − i) is decomposed as SO(n − i) =
KiAiKi with Ki = SO(n− (i+1)) and Ai one-dimensional, by Lemma
2.3 the corresponding generating set of SO(n − 2) contains n − 3
elements. Therefore, the generating set of SO(n) corresponding to
the decomposition above contains (n − 3) + 1 + 2 = n elements. Now
the lemma follows as a consequence of Lemma 2.3.

Theorem 2.1. SO(n) is uniformly finitely generated by the n one-
parameter subgroups corresponding to the decomposition outlined in
Lemma 2.4 with m1 = n, and the number of generation is 2n−2 + 2.

Proof. The first part is a consequence of the last lemma. Now,
if the decomposition mentioned in Lemma 2.4 is applied to SO(n),
we have SO(n) = SO(n − 2) × SO(2)ASO(n − 2) × SO(2), with
A a two-dimensional abelian subgroup and hence SO(n − 2) =
KiAiKiAi−1 · · ·KiAiKiA1KiAiKi · · ·Ai−1KiAiKi with i = n − 4,
Ki, Ai, Ai−1, . . . , A1 one-parameter subgroups. In this decomposition
of SO(n− 2), Ki occurs 2i times and Aj , 1 ≤ j ≤ i occurs 2j−1 times.
Thus SO(n−2) is a product of 2n−4+

∑n−4
j=1 2j−1 =

∑n−4
j=0 2j = 2n−3−1

one-parameter subgroups. Therefore, SO(n) can be decomposed as a
product of 2(2n−3 − 1 + 1) + 2 = 2n−2 + 2 one-parameter subgroups.
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Remark . It is easy to conclude that in particular {exp(tAi,i+1);
i = 1, . . . , n − 1; t ∈ R} ∪ {exp(tA1n)} is a generating set of SO(n)
satisfying Theorem 2.1.

3. The use of permutation matrices in constructing nonor-
thogonal pairs {A,B} of vector fields that generate so(n) and
the uniform generation of so(n) by exp (tA) and exp (τB). In
this section, pairs of generators of so(n), nonorthogonal with respect
to the killing form, will be constructed and the uniform generation
problem of SO(n) partially solved for these pairs. As in the method
used by Crouch and Silva Leite [1] to construct orthogonal pairs,
permutation matrices play an important role here.

The diagram below, showing the canonical basis elements of so(n),
provides a good visualization of some of the results obtained here and
will be often referred to throughout this section.

A12 A13 A14 A15 . . . A1,n−1 A1n

A23 A24 A25 . . . A2,n−1 A2n

A34 A35 . . . A3,n−1 A3n

A45 . . . A4,n−1 A4n

. . .
...

...
An−2,n−1 An−2,n

An−1,n

DIAGRAM 3.1.

Lemma 3.1. If Pα
Π is a real permutation matrix defined by Pα

Πei =
αieΠ(i), i = 1, . . . , n, α2

i = 1, Π a permutation on n letters, then
∀i, j ∈ {1, . . . , n},

Pα
ΠAij(Pα

Π)−1 = αiαjAΠ(i),Π(j).

The proof only involves a few calculations.

Given a permutation matrix Pα
Π ∈ SO(n), the existence of Aα

Π ∈
so(n) such that exp(Aα

Π) = Pα
Π is a consequence of the exponential map

being surjective (see Helgason [3, p. 135]). Conditions on the entries
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of Aα
Π may be found using the fact that if Pα

Π has the eigenvector x
corresponding to the eigenvalue λ then A has the same eigenvector
corresponding to the eigenvalue Hλ = logθ λ, for some θ.

Let P be the permutation matrix defined by Pei = ei+1, i =
1, . . . , n − 1, Pen = (−1)n+1e1, and let A ∈ so(n) be such that
exp(A) = P . If n is odd, A has the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 α1 α2 . . . α n−1
2

− α n−1
2

. . . − α2 − α1

− α1 0 α1

. . .
.
.
. α n−1

2

. . . − α2

− α2 − α1 0
. . . α2

.

.

.
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . . α1 α2

. . . − α n−1
2

− α n−1
2

. . . − α2 − α1 0 α1 α2 . . . α n−1
2

α n−1
2

− α n−1
2

. . . − α2 − α1 0 α1 α2

.

.

.

.

.

.
. . .

. . . − α2 − α1 0
. . . α2

α2

. . . − α2

. . . 0 α1

α1 α2 . . . α n−1
2

− α n−1
2

. . . − α2 − α1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where α1, . . . , α(n−1)/2 satisfy the system of (n− 1)/2 equations,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
(n−1)/2∑

l=1

2αl sin(lθ1) = θ1 + 2πk1

−
(n−1)/2∑

l=1

2αl sin(2lθ1) = 2θ1 + 2πk2

...

−
(n−1)/2∑

l=1

2αl sin( (n−1)
2 lθ1) = (n− 1)θ1/2 + 2πk(n−1)/2

for some k1, . . . , k(n−1)/2 ∈ Z, θ1 = 2π/n. And if n is even, A has the
form
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 α1 α2 . . . α n−2
2

α n
2

α n−2
2

. . . α2 α1

− α1 0 α1

. . . α n−2
2

. . .
. . . α2

− α2 − α1 0
. . . α2

.

.

.
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . . α1 α2

. . .
. . .

. . . α n−2
2

α n−2
2

− α2 − α1 0 α1

. . .
. . .

. . . α n
2

− α n
2

− α n−2
2

. . . − α2 − α1 0 α1 α2 . . . α n−2
2

− α n−2
2

. . .
. . .

. . . − α1 0 α1

. . .
.
.
.

.

.

.
. . .

. . .
. . . − α2 − α1 0

. . . α2

− α2

. . .
. . .

. . .
.
.
.

. . .
. . .

. . . α1

− α1 − α2 . . . − α n−2
2

− α n
2

− α n−2
2

. . . − α2 − α1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with α1, . . . , αn/2 satisfying the following set of n/2 equations,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
(n−2)/2∑

l=1

2αl sin(lθ1) − αn/2 = θ1 + 2πk1

−
(n−2)/2∑

l=1

2αl sin(3lθ1) + αn/2 = 3θ1 + 2πk2

...

−
(n−2)/2∑

l=1

2αl sin((n− 1)lθ1) + (−1)1+n/2αn/2 = (n− 1)θ1 + 2πkn/2

for some k1, k2, . . . , kn/2 ∈ Z, θ1 = π/n.

As a consequence of the definition of P together with Lemma 3.1, the
canonical basis B = {Aij ; i, j = 1, . . . , n, i < j} of so(n) can be divided
into [n/2] equivalence classes. The equivalence class of a certain element
Aij is the set of canonical basis elements that belong to the orbit of
exp(t Ad A), t ∈ R, that passes through Aij .

Let [αi], i = 1, . . . , [n/2] denote the equivalence classes. (This
notation is used to agree with the structure of A.) Note that for a
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certain i, [αi] is the set of canonical basis elements with coefficients
±αi in the expression of A. Clearly,

[αi] = {Akl ∈ B : l − k = i} ∪ {Akl ∈ B : l − k = n− i}

∀i = 1, . . . , [n/2]. If βi and βn−i denote {Akl ∈ B : l − k = i} and
{Akl ∈ B : l−k = n− i}, respectively, [αi] = βi∪βn−i, i = 1, . . . , [n/2].
Hence, ∀j = 1, . . . , n − 1, #βj = n − j and βj can be seen as the
set of elements along the j-th diagonal (counted from left to right) in
Diagram 3.1.

β1 is a generating set of so(n) and it is minimal in the sense that
no subset of β1 generates so(n). In fact, if SO(m), m = 3, . . . , n, is
decomposed according to the symmetric space structure (∗) in Section
2, with p = m − 1, q = 1, the corresponding canonical decomposition
of so(n) is as follows:

so(n) = Tn−2 ⊕
(n−2⊕

i=1

Pi

)
,

Pi = span{Aij , j = i+ 1, . . . , n}, Tn−2 = RAn−1,n .

Since Ai,i+1 ∈ Pi, ∀i = 1, . . . , n − 2 Ai,i+1 can be chosen to generate
Ai = exp(Ai) and it follows that {Ai,i+1; i = 1, . . . , n − 1} = β1 is a
generating set of so(n). That it is minimal is due to the fact that any
minimal generating set of so(n) whose elements belong to the canonical
basis B has cardinality n − 1. In fact, if X = {X1, . . . , Xn−2} ⊂ B is
a minimal generating set of so(n), there exists i ∈ {1, . . . , n − 1} such
that Aij /∈ X, j = 2, . . . , n, j > i. We can assume, without any loss of
generality, that i = 1. Then, using the commutation relations in Section
1 we see that A1j /∈ {X1, . . . , Xn−2}L.A., that is, {X1, . . . , Xn−2} does
not generate so(n). Clearly, [α1] is a generating set since it contains
β1, and βi, i �= 1 is not a generating set.

Theorem 3.1. For n > 3, let A ∈ so(n) satisfy exp(A) = PΠ,
PΠ the permutation matrix defined by PΠei = eΠ(i), i = 1, . . . , n − 1,
PΠen = (−1)n+1eΠ(n), Π the cyclic permutation on n letters and
B ∈ {exp(t ad A) · An−1,n, t ∈ R} ⊂ so(n). Then SO(n) is uniformly
generated by exp(tA) and exp(sB) with number of generation 2n−1 + 5
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and {A,B}L.A. = so(n). If B also belongs to B, then the number of
generation is 2n−1 + 3 and 〈A,B〉 is not zero in general.

Proof. Let SO(n) be decomposed as in Lemma 2.4 with m1 =
n and so(n) decomposed according to the corresponding canonical
decomposition, i.e., so(n) = T1 ⊕ P1, T1 = so(n − 2) ⊕ so(2) =
so(n− 2)⊕RA12, P1 = span({A1j , j = 3, . . . , n} ∪ {A2j , j = 3, . . . , n})
and T2 = so(n−2) = Tn−2⊕

(
⊕n−2

i=3 Pi

)
, Pi = span{Aij , j = i+1, . . . , n}.

Since A1 is a two-dimensional abelian subalgebra contained in P1, and
Ai is a one-dimensional abelian subalgebra of Pi ∀i = 3, . . . , n − 2,
take A1 = RA1n + RA23, Ai = RAi,i+1, i = 3, . . . , n − 2 and
Tn−2 = RAn−1,n. Then SO(n) is uniformly generated by the n one-
parameter subgroups generated by [α1] with number of generation
2n−2 + 2 (Theorem 2.1). That is,

SO(n) = Kn−2An−2Kn−2An−3 · · ·Kn−2An−2Kn−2An−3Kn−2An−2︸ ︷︷
∗

Kn−2 · · ·An−3Kn−2An−2Kn−2︸ exp(tA12)A1 exp(sA12)Kn−2An−2︸
Kn−2An−3 · · ·Kn−2An−2Kn−2A3Kn−2An−2Kn−2 · · ·An−3Kn−2︷︷

∗

An−2Kn−3︸
t, s ∈ R, Kn−2 = exp tAn−1,n, Ai = L(Ai), i = 3, . . . , n− 2.

By construction of A and B there exist real numbers t1, . . . , tn such
that exp(ti ad A) ·B = Ai,i+1, i = 1, . . . , n−1, exp(tn ad A) ·B = A1n.
The use of the Baker Campbell Hausdorff formula allows every one
of the 2n−2 + 2 one-parameter subgroups that appear in (3.1) to be
expressed as a product of three one-parameter subgroups generated by
A and B. Hence, taking into account the composition of terms with the
same generator a total number of 3(2n−2 + 2)− (2n−2 + 1) = 2n−1 + 5
subgroups generated by A and B is obtained.

If B = An−1,n, then the product ∗ in (3.1) contains 2n−2−3 elements,
the first and the last of which is exp(tB) and, after reducing the terms
with the same generator in exp(tA12)A1 exp(sA12), a total number of
2(2n−2 − 3) + 9 = 2n−1 + 3 one-parameter subgroups is obtained. The
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result when B is another element of [α1] is a consequence of taking a
decomposition of SO(n) that is conjugate to the one considered above.
(For instance, if B = An−2,n−1, the automorphism of so(n) defined by
X → e−AXeA maps An−1,n into An−2,n−1. Under this automorphism
the direct sum decomposition of so(n) above,

so(n) = Tn−2 ⊕
(n−2⊕

i=3

Pi

)
⊕ RA12 ⊕ P1,

gives rise to a direct sum decomposition

so(n) = T 1
n−2 ⊕

(n−2⊕
i=3

P1
i

)
⊕ RA1n ⊕ P1

1 ,

where T 1
n−2 = RAn−2,n−1, P1

i = span{e−AAije
A, j = i+1, . . . , n}, i =

3, . . . , n−2 and P1
1 = span(e−AA1je

A, j = 3, . . . , n} ∪ span{e−AA2je
A,

j = 2, . . . , n}. Thus, taking A1 = exp(tAn−1,n) exp(sA12), Ai =
exp(tAi−1,i), i = 3, . . . , n − 2 and Kn−2 = exp(tAn−2,n−1) the result
follows.) Now, to each vector x = (x1, . . . , xm), m = n(n− 1)/2 of Rm

we associate an element X ∈ so(n) defined by

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 x1 x2 x4 . . . xm−n+1

− x1 0 x3 x5

.

.

.

− x2 − x3 0 x6

.

.

.

− x4 − x5 − x6 0

.

.

.
. . . xm

− xm−n+1 . . . − xm 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A simple calculation shows that ∀X,Y ∈ so(n), trace (XY ) = −2(x, y)
((·, ·) is the inner product). Then, since 〈A,B〉 = trace (adA · adB) =
(n− 2)trace (AB) (Helgason [3, p. 189]), 〈A,B〉 = −2(n− 2)(a, b) and
by construction A and B can be chosen nonorthogonal.

Clearly, A and B can be replaced by UAU−1 and UBU−1 for some
permutation matrix U without changing the result.

It is not clear whether or not canonical basis elements other than
those already considered (belonging to [α1]) may satisfy our require-
ments; that is, maybe candidates for an element B such that exp(tB)



BOUNDS 893

and exp(tA) (A defined as in the theorem above) uniformly finitely
generate SO(n). From earlier results it is known that if B belongs
to the orbit of exp(t ad A) that passes through [αk] for some k, then
∀Aij ∈ [αk], ∃ tij ∈ R such that exp(tijadA) · B = Aij . Thus, if [αk]
is a generating set of so(n), exp(tA) and exp(tB) uniformly generate
SO(n). The next step is to prove that [αk] generates so(n) if and only
if n and k are coprime numbers.

Let βj , j = 1, . . . , n− 1 be defined as before. We use the notation

−[βi, βj ] = {Asr ∈ B : Ars ∈ [βi, βj ]}.

The next lemma can be easily proved by using the structure formulas
of so(n) with respect to the canonical basis

Lemma 3.2. (1) ∀i �= 1, ∪m∈Nβmi belongs to a proper subalgebra
of so(n).

(2) ∀i < j, i+ j ≤ n, βj−1 ⊂ −[βi, βj ].

(3) ∀i, j, βj+i ⊂ [βi, βj ].

Lemma 3.3. If both n and k have a common divisor m �= 1, [αk] is
not a generating set of so(n).

Proof. This is an immediate consequence of Lemma 3.2 (1) since if
both n and k have a common divisor m, both n and n−k also have the
same divisor m and both βk and βn−k belong to a proper subalgebra
of so(n). βm is a generating set of this subalgebra.

Next we prove that if n and k are coprime numbers, then [αk] is a
generating set of so(n). If every element of β1 can be obtained by Lie
brackets of elements of βk and βn−k, obviously [αk]L.A. = so(n).

Assume that n and k are coprime numbers. Then n ≡ k1 mod k,
i.e., n = j0k + k1 for some k1 ∈ {1, . . . , k − 1}, j0 ∈ N. Consider the
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class Cj0 = {βn−k, βn−2k, . . . , βn−j0k = βk1} whose elements satisfy
the following j0 − 1 relations.

(3.2)

(1) βn−2k ⊂ −[βk, βn−k]
(2) βn−3k ⊂ −[βk, βn−2k]
...

...
(j0 − 1) βk1 = βn−j0k ⊂ −[βk, βn−(j0−1)k].

(See Lemma 3.2(2).) From (1), ∀Z2 ∈ βn−2k there exist X2 ∈ βk

and X1 ∈ βn−k such that Z2 = −[X2, X1]. From (2), ∀Z3 ∈ βn−3k

there exist X3 ∈ βk and Y1 ∈ Bn−2k such that Z3 = −[X3, Y1]. But
Y1 ∈ βn−2k; thus, Y1 = −[X2, X1] for some X2 ∈ βk, X1 ∈ βn−k.
So Z3 = [X3, [X2, X1]], for some X1, X2 and X3 belonging to [αk].
The same argument used throughout the relations (3), . . . , (j0 − 1)
clearly leads to the following. ∀Zj0 ∈ βn−j0k = βk1 , there exist
X1, X2, . . . , Xj0 ∈ [αk] such that

(3.3) Zj0 = (−1)j0+1[Xj0 , [Xj0−1, [. . . [X3, [X2, X1]] . . . ]]].

Note that n − j0k = k1 < k and n − (j0 − i)k = k1 + ik > k, ∀i ≥ 1.
Therefore, if βj is viewed as the j-th diagonal in Diagram 3.1 (rigorously
the set of elements along the j-th diagonal), Cj0 is a set of diagonals,
βk1 being the only diagonal in this set situated below βk.

If k1 = 1, then every element of β1 can be obtained by Lie brackets
of elements of [αk] and [αk] is a generating set of so(n). If k1 �= 1, then
k ≡ k2 mod k1, i.e., k = j1k1 +k2 for some k2 ∈ {1, . . . , k1−1}, j1 ∈ N.
Cj1 = {βk, βk−k1 , . . . , βk−j1k1 = βk2} and its elements satisfy the j1
relations,

(3.4)

(1′) βk−k1 ⊂ −[βk1 , βk]
(2′) βk−2k1 ⊂ −[βk1 , βk−k1 ]

...
...

(j′1) βk2 = βk−j1k1 ⊂ −[βk1 , βk−(j1−1)k1 ].

It is easy to conclude, just using the same arguments as above, that
∀Z ′

j1
∈ βk−j1k1 = βk2 , there exist X ′

1 ∈ βk and X ′
2, X

′
3, . . . , X

′
j1+1 ∈ βk1
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such that Z ′
j1

= (−1)j1 [X ′
j1+1, [X

′
j1
, [. . . [X ′

3, [X ′
2, X

′
1]] . . . ]]]. Hence,

(3.3) can be applied to every element of βk1 and the result is that
every element of βk2 can be obtained by Lie brackets of elements of
[αk]:

k − j1k1 = k2 < k1, k − (j1 − i)k1 = k2 + ik1 > k1, ∀i ≥ 1.

So, βk2 is the only diagonal of Cj1 situated below βk1 (in Diagram 3.1)
and also no elements of Cj1 are situated above βk.

If k1 = 1, the process ends here and [αk] is a generating set of
so(n). If k1 �= 1, then k1 ≡ k3 mod k2, i.e., k1 = j2k2 + k3 for some
k3 ∈ {1, . . . , k2 − 1}, j3 ∈ N. Once again one proceeds as previously.
The system of equations

n = j0k + k1 (0 < k1 < k)
k = j1k1 + k2 (0 < k2 < k1)
k1 = j2k2 + k3 (0 < k3 < k2)

...
kN−2 = jN−1kN−1 + kN (0 < kN < kN−1)
kN−1 = jNkN ,

known as Euclid’s algorithm is used in elementary arithmetic to deter-
mine the greatest common divisor kN of n and k. Since it has been
assumed that n and k are coprime, this process will end up with the
equation kN−2 = jN−1kN−1 + kN , with kN = 1, and some integer
N . CjN−1 = {βkN−2 , βkN−2−kN−1 , . . . , βkN−2−jN−1kN−1 = β1} with ele-
ments satisfying the jN−1 relations,

(3.5)

βkN−2−kN−1 ⊂ −[βkN−1 , βkN−2 ]
βkN−2−2kN−1 ⊂ −[βkN−1 , βkN−2−kN−1 ]

...
β1 = βkN

⊂ −[βkN−1 , βkN−2−(jN−1−1)kN−1 ].

Clearly, every element of β1 may be written as brackets of elements
from [αk].

Therefore, one can formulate the lemma that has just been proved.
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Lemma 3.4. If n and k are coprime numbers, then [αk]L.A. = so(n).

Lemmas 3.3 and 3.4 can be put together in the following theorem.

Theorem 3.2. Let g = so(n,R), [αk] as defined in the beginning
of this section. Then, [αk]L.A. = g if and only if n and k are coprime
numbers.

Now, if we use the fact that any two noncommutative elements of
B generate a subalgebra of so(n) that is isomorphic to so(3), the
procedure used above to show that [αk]L.A. = so(n) when n and k are
coprime numbers also shows that ∀X belonging to any of the following
sets: βn−ik, i = 2, . . . , j0, βk−ik1 , i = 1, . . . , j1, . . . , βkN−2−ikN−1 ,
i = 1, . . . , jN−1, satisfying the relations (3.2), (3.4). . . and (3.5),
respectively, exp(tX), t ∈ R may be written as a product of one-
parameter subgroups exp(θA) and exp(τB) where A is defined as in
the beginning of the section and B belongs to the orbit of exp(t ad A)
that passes through [αk]. That is, if we consider the set

(3.6)
{βk} ∪ {βn−ik, i = 1, . . . , j0} ∪ {βk−ik1 , i = 1, . . . , j1}

∪ {βk1−ik2 , i = 1, . . . , j2} ∪ · · · ∪ {β1}

whose elements are clearly identified with those diagonals in Diagram
3.1 which are obtained by successive use of Lie brackets of the elements
in [αk] then, to each element βi in (3.6) a number Ni (the number of
generation of exp(tβi) by exp(tA) and exp(tB)) is associated. Clearly,

(3.7)
Nk ≤ Nn−ik < Nk1 < Nk−jk1 < Nk2 < Nk1−sk2 < Nk3 < · · · ,
∀i = 1, 2, . . . , j0 − 1, j = 1, . . . , j1 − 1, s = 1, . . . , j2 − 1, . . . .

The set (3.6) is totally ordered by means of a relation � defined as
follows: βi � βj if and only if βi = βj or βi is situated below βj in
Diagram 3.1. From comments made during the proof of Lemma 3.4 it
is easily seen that
(3.8)
β1 ≺, . . . ,≺ βk2 ≺ βk1−sk2 ≺ βk1 ≺ βk−jk1 ≺ βk ≺ βn−ik ≺ βn−k,

∀i = 2, . . . , j0 − 1, j = 1, . . . , j1 − 1, s = 1, . . . , j2 − 1.
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FIGURE 3.1.

Now, if SO(m), 3 ≤ m ≤ n, is decomposed as in (∗) Section 2 with
p = m − 1, q = 1, the result is a decomposition of SO(n) by one-
parameter subgroups Ai, i = 1, . . . , n−2 and Kn−2 that can be chosen
to be generated by n−1 canonical basis elements Aiji

, i = 1, . . . , n−1.
As a consequence of (3.7) and (3.8) it is clear that, if these elements
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Aiji
are selected by

(3.9)

{Ai,i+k, i = 1, . . . , n− k} ⊂ βk,

{Ai,i+k1 , i = n− k + 1, . . . , n− k1} ⊂ βk1 ,

{Ai,i+k2 , i = n− k1 + 1, . . . , n− k2} ⊂ βk2 , . . . ,

{Ai,i+1, i = n− kN−1 + 1, . . . , n− 2} ⊂ βkN
= β1,

{An−1,n} ⊂ β1,

we obtain far better results (in the sense that the number of generation
of SO(n) by exp(tA) and exp(tB) is as small as possible) than if they
belong to any other diagonal of the set (3.6). Figure 3.1 shows the
position of the elements (3.9) in Diagram 3.1. Hence, in order to
improve the final result, a decomposition of SO(n) (isomorphic to the
one above) should be chosen in such a way that the greater the word
length in terms of exp(tA) and exp(tB) a subgroup of SO(n) is, the
fewer times it appears in the decomposition of SO(n).

Many things would then have to be taken into consideration and
the final answer does not appear to be very easy. However, all the
difficulties in trying to solve this problem are overcome as a consequence
of the next result.

It will be proved that if [αk] generates so(n) there exists a decompo-
sition of SO(n) such that the corresponding generating set of so(n) is
[αk] itself. This has been seen to be true when k = 1 (see the proof of
Theorem 3.1).

Theorem 3.3. For n > 3, let A ∈ so(n) satisfy exp(A) = PΠ, PΠ

the permutation matrix defined by PΠei = eΠ(i), i = 1, . . . , n − 1,
PΠen = (−1)n+1eΠ(n), Π the cyclic permutation on n letters and
B ∈ {exp(t ad A) · X, X ∈ [αk], t ∈ R} ⊂ so(n), n and k coprime
numbers. Then SO(n) is uniformly generated by exp(tA) and exp(tB)
with number of generation 2n−1 + 5 and {A,B}L.A. = so(n). If B also
belongs to [αk], then the number of generation is 2n−1 + 3.

Proof. Let

Π1 =
(

1 2 . . . n− k n− k + 1 . . . n
k + 1 k2 . . . n 1 . . . k

)
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be a permutation on n letters. Π1 = Πk where Π is defined above.
A standard result is that, since n and k are coprime, Πk is conjugate
to Π, that is, there exists a permutation ΠC s.t. ΠCΠΠ−1

C = Πk.ΠC

is defined by ΠC(i) = (i − 1)k + 1 if (i − 1)k + 1 ≤ n, ΠC(i) = j
if (i − 1)k + 1 ≡ jmodn. Clearly, if PΠC

is a permutation matrix
satisfying PΠC

ei = αieΠC(i),
∏n

i=1 αi = 1 (respectively, −1), if n
is odd (respectively, even), the automorphism of so(n) defined by
X → PΠC

XP−1
ΠC

also defines a one-to-one map from [α1] into a subset
S of ±[αk] where S is such that, if Aij ∈ S, then Aji /∈ S. Now,
instead of the decomposition of SO(n) as in the proof of Theorem 3.1,
one takes

A1 = R(PΠC
A1nP

−1
ΠC

) + R(PΠC
A23P

−1
ΠC

),

Ai = R(PΠC
Ai,i+1P

−1
ΠC

), i = 3, . . . , n,

Tn−2 = R(PΠC
An−1,nP

−1
ΠC

),

T2 = so(2) = R(PΠC
A12P

−1
ΠC

),

and so SO(n) becomes written as a product of 2n−2 +2 one-parameter
subgroups generated by the elements of [αk]. The result follows in a
similar way to the proof of Theorem 3.1.

Example 3.1. g = so(5), k = 2.

[α2] = {A13, A24, A35} ∪ {A14, A25} generates so(5).

ΠC =
(

1 2 3 4 5

1 3 5 2 4

)
,

so(5) = so(3) ⊕ so(2)︸ ︷︷ ︸
T1

⊕P1, [α2]

P1 = span{A12, A14, A15, A23, A34, A35},

A12 A13 A14 A15

A23 A24 A25

A34 A35

A45

A1 = RA14 + RA35,

T1 = span{A13, A24, A25, A45}, so(2) = RA13,
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so(3) = span{A24, A25, A45} = T3 ⊕ P3, P3 = span{A24, A45},

T3 = RA25,A3 = RA24,

SO(5) = K3A3K3SO(2)A1SO(2)K3A3K3, K3 = exp(T3),

A3 = exp(A3), A1 = exp(A1), SO(2) = exp(tA13), i.e.,

SO(5) = exp(t1A25) exp(t2A24) exp(t3A25) exp(t4A13) exp(t5A14)

exp(t6A35) exp(t7A13) exp(t8A25) exp(t9A24) exp(t10A25).

If A,B are defined as in Theorem 3.3, SO(5) becomes generated by
exp(tA) and exp(tB) with order of generation 21 (19 if B ∈ [αk]).

The present work has been devoted to reducing the upper bound on
the order of generation of SO(n,R) (by one-parameter subgroups) to
its minimum.

The following example shows that for SO(7) the upper bound given
by the Theorem 3.3 is not the minimum achievable.

Example. Let G = SO(7), {A,B} a pair of generators of so(7)
defined by exp(A) = P , P a permutation matrix satisfying Pei =
ei+1, i = 1, . . . , 6, Pe7 = e1 and B = A34. Since B ∈ [α1],
X ∈ {exp(t adA) · B, t ∈ R}, ∀X ∈ [α1]. Only two decompositions
of SO(7) as in (∗), Section 2 having corresponding generating sets
contained in [α1] and giving different numbers of generation exist. By
choosing the decomposition that gives the least number of generation
and taking into account that ∀X ∈ [α1] and ∀t ∈ R, exp(tX) =
exp(θA) exp(tB) exp(−θA), for some θ depending on X, it follows from
Theorem 3.1 and Theorem 4.2 that {A,B} is uniformly completely
controllable in at most 26 + 2 = 66 switches. (See the Appendix for
terminology.) However, if SO(7) is decomposed as a product of one-
parameter subgroups as in Lemma 2.2, although the corresponding
generating set is not contained in [α1], its elements can be obtained
by brackets of elements in [α1]. Using Lemma 3.2 one can reduce the
number of switches found previously. The diagram below illustrates the
decomposition of so(7) corresponding to the chosen symmetric space
decomposition of SO(7) and also shows which canonical basis elements
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have been selected as a generating set. ndbrace.tex

uA12 A13 A14 A15 A16 uA17

uA23 uA24 A25 A26 A27

A34 uA35 A36 A37

uA45 uA46 A47

A56 uA57

uA67

For the Lie group, one has SO(7) = K1A1K1, K1 = SO(4) × SO(3)
(= K1

1 ×K2
1 ) is the Lie group of

T1 = span{A12, A13, A23} ∪ span{Aij ; i < j; i, j = 4, 5, 6, 7},
A1 = exp(A1), A1 = span{A24, A35, A17}.

K1
1 = SO(4) = K2A2K2, K2 = SO(2) × SO(2) is the Lie group of

T2 = span{A45, A67}, A2 = exp(A2),
A2 = span{A46, A57} ·K2

1 = SO(3) = K3A3K3,

K3 = SO(2) = exp(τA12), A3 = exp(tA23).

So, in the decomposition

SO(7) = K2A2K2K3A3K3A1K3A3K3K2A2K2,

since K2,K3, A1, A2 and A3 are all abelian subgroups, SO(7) may be
decomposed as a product of one-parameter subgroups generated by the
elements selected from the diagram above. Hence, exp(tX) appears
once, twice or four times in the decomposition depending on whether
X belongs to {A24, A35, A17}, {A46, A57} or {A12, A23, A45, A67}, re-
spectively. Now, [A34, A23] = −A24 and [A34, A45] = A35, so
∀t ∈ R, exp(tA24) and exp(tA35) may be written as a product
of five elements from exp(τA) and exp(θB) ({A,B} as above) and
[A45, A56] = A46, [A56, A67] = A57. So, seven elements from exp(τA)
and exp(θB) are required for exp(tA46) and exp(tA57). All the other
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one-parameter subgroups in the decomposition may be written as
exp(tA) exp(θB) exp(−tA), and the final result after composition of
terms with the same generator is that SO(7) is uniformly finitely gen-
erated by exp(tA) and exp(τB) with number of generations 65. So
{A,B} is uniformly controllable with at most 64 switches.

To determine the order of generation of SO(n) with respect to a set
of one-parameter subgroups that generate SO(n), one has to find out
how generators and decompositions relate to each other.

The first task to solve the uniform finite generation problem of G is
to characterize all the generators of the Lie algebra L(G) of a given
Lie Group G. Although several important results have already been
obtained (see Jurdjevic and Kupka [4], Jurdjevic and Sussmann [5],
Kuranishi [10] and also Theorem 3.2, Chapter I in Silva Leite [17]), a
complete characterization is far from being accomplished even when G
is a semisimple Lie group of matrices and the generators are restricted
to pairs {A,B}, which are known to exist. When G is noncompact and
its Lie algebra is generated by a set of compact elements (X ∈ L(G)
is called compact if the one-parameter subgroup it generates, exp(tX),
t ∈ R is compact), the order of generation of G corresponding to these
generators is infinite.

Decompositions of G based on symmetric spaces may be used to
determine the order of generation of G by one-parameter subgroups
generated by elements of L(G). For the classical matrix Lie groups,
involutive automorphisms always exist and such decompositions are
always possible. When G is connected and compact, the exponential
map is onto and a prior knowledge of a set of generators of the Lie
algebra L(G) is not necessary since the decomposition itself provides a
corresponding generating set {exp(tXi), i = 1, . . . , k, t ∈ R} of G and
consequently a set {Xi, i = 1, . . . , k} of generators of L(G).

For the noncompact case decompositions other than the Cartan
decomposition may be used with success. For instance, the Iwasawa
and the Bruhat decompositions can both be considered for noncompact
Lie groups.

The SO(n) case appears to be the easiest one among all the classical
groups of matrices due to the compactness of SO(n), the very simple
structure of the canonical basis of so(n) and the existence of permu-
tation matrices in SO(n), which have been an important tool in the
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present work. As a consequence, a complete solution for SO(n) may
yield solutions to the same problem for other groups such as SO0(p, q)
or SL(n,R) (note that SO(p) × SO(q) and SO(n) are the maximal
compact subgroups of SO0(p, q) and SL(n,R), respectively). This and
the important role that generators of so(n) play in constructing uni-
formly completely controllable vector fields on any paracompact and
connected Ck-manifold (see Levitt and Sussmann [11]) are, in the au-
thor’s opinion, good reasons for looking primarily to the order of gen-
eration problem of the special orthogonal group.

Appendix
On the Uniform Generation of SO(3, R)

In 1971, F. Lowenthal [13] proved that the order of generation of
SO(3) by two one-parameter rotations is a function of the angle ψ
between the axes of the two rotations, being three if ψ = π/2 and k+2
if ψ ∈ [π/(k + 1), π/k). The proof of this result is rather long. Instead
of working with SO(3), Lowenthal works with the induced subgroup
of the Möbius group, and Tchebychev polynomials play an important
role in the proof.

When ψ ∈ [π/2k, π/(2k − 1)), k ≥ 2, a much shorter proof was
found to determine the order of generation of SO(3). Although, when
ψ ∈ [π/(2k − 1), π/(2k − 2)), our result is not as good as Lowenthal’s,
the complete proof, in both cases, is included here. Unlike the previous
methods for SO(n), we do not use decompositions of SO(3) based on
symmetric spaces.

Theorem 4.1. SO(3) is uniformly finitely generated by any two
one-parameter subgroups exp(tA1) and exp(tA2) unless [A1, A2] = 0.

Proof. Since so(3) (the set of all 3× 3 skew symmetric real matrices)
is isomorphic to R3 with the Lie bracket corresponding to the vector
product, it is clear that, if A1 and A2 are any two elements of so(3)
that do not commute, then {A1, A2, [A1, A2]} is a basis of so(3) and
{A1, A2}L.A. = so(3). Every rotation of SO(3) is a plane rotation and,
as a consequence, exp(tA1) and exp(tA2) are compact. Now, Theorem
1.1 applies since SO(3) is connected and compact and the result follows.
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The Main Theorem. The order of generation of SO(3) by the two
one-parameter rotations exp(tA1) and exp(tA2) is three if ψ = π/2 and
if ψ ∈ [π/2(k−1), π/2(k−2)), k ≥ 3, the order of generation is 2k−1.
(ψ is the angle between the axes of the two rotations).

The term “order of generation” is not correctly used here when
ψ ∈ [π/(2k−1), π/(2k−2)); instead, “the number of generation” should
be used. However, for the sake of simplicity, the former is preferred to
the latter.

Several lemmas are needed to prove this theorem.

For every vector x = (x1, x2, x3) ∈ R3, a skew symmetric matrix

X =

⎛
⎝ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎞
⎠ ,

formed with the components of x, is defined. It is easy to prove that
exp(tX)x = x, ∀t ∈ R, that is, x is the axis of the rotation exp(tX).
In fact, exp(tX)x = x + tXx + (t2/2!)X2x + · · · , and since Xx = 0,
the result follows. The one-parameter subgroup exp(tX) is called the
isotropy group at x.

Lemma 4.1. ∀R ∈ SO(3) and ∀x, y ∈ R3 with ||x|| = ||y||, Rx = y
if and only if R exp(tX)R−1 = exp(tY ).

Proof. Without loss of generality, we can assume ||x|| = ||y|| = 1.
SO(3) acting on S2 sets up an equivalence relation on S2. The
equivalence class containing a point x is the range of the function
Φx : SO(3) → S2 defined by Φx(R) = Rx, and we call it the orbit
of x. Since Rx = y, x and y are equivalent. Now, the result is a
consequence of the fact that isotropy groups at equivalent points of S2

are conjugate subgroups.

Lemma 4.2. Every rotation R ∈ SO(3) is representable as a product
R = exp(t1X) exp(t2Y ) exp(t3Z), ti ∈ R, i = 1, 2, 3 if and only if y is
perpendicular to x and z.
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FIGURE 4.1.

The proof of this lemma can be found in Davenport [2]. It is assumed
that x and z may be equal. If that is the case, then Lemma 4.2 states
the same thing as the first part of the main theorem. If not only x and
z are equal but also x and y are two orthogonal unit vectors in R3,
the representation of R in Lemma 4.2 is the Euler representation of a
rotation by three angular parameters, the Euler angles.

Now, let a1 and a2 be two linearly independent vectors of R3 and
ψ = �(a1, a2) the angle between them. a1 and a2 generate a plane Π.
Without loss of generality, a1 and a2 can be assumed to be unit vectors.
Let {a1, a2, a3, . . . } be a sequence of vectors on Π, where ∀i ≥ 3,
ai = exp(πAi−1)ai−2. (Aj is the skew symmetric matrix corresponding
to aj , ∀j.) �(ai, ai+1) = ψ, ∀i ≥ 1, and �(a1, ai) = (i − 1)ψ, ∀i ≥ 1.
Let ak be the first element in the sequence satisfying �(a1, ak) ≥ π/2,
i.e., (k − 1)ψ ≥ π/2 or ψ ≥ π/2(k − 1). (See Figure 4.1.) Clearly,
there exists a vector x ∈ Π1 (Π1 is the plane perpendicular to a1) such
that x = exp(tAk−1)ak−2 for some t ∈ (0, 2π]. Since a1 and x are
perpendicular, Lemma 4.2 can be applied and ∀R ∈ SO(3),

(4.1) R = exp(t1A1) exp(t2X) exp(t3A1), ti ∈ R.

At this stage the aim is to write exp(t2X) as a product of elements
from the one-parameter subgroups exp(tA1) and exp(tA2).
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Since ai = exp(πAi−1)ai−2, i ≥ 3, and x = exp(tAk−1)ak−2, for some
t, using Lemma 4.1 it follows that, ∀i ≥ 3 and θ ∈ R,

(4.2) exp(θAi) = exp(πAi−1) exp(θAi−2) exp(−πAi−1),

and

(4.3) exp(θX) = exp(tAk−1) exp(θAk−2) exp(−tAk−1).

Notation. In the next two lemmas, etX stands for exp(tX).

Lemma 4.3. Let Ai, i = 1, 2, . . . , be defined as before. Then,
∀θ ∈ R,

(4.4) eθAi = eπA2eπA1 · · · eπA2eπA1︸ ︷︷ ︸
i−2

eθA2 e−πA1e−πA2 · · · e−πA1e−πA2︸ ︷︷ ︸
i−2

,

if i = 2n, and

(4.5) eθAi = eπA2eπA1 · · · eπA2eπA1eπA2︸ ︷︷ ︸
i−2

eθA1 e−πA2e−πA1 · · · e−πA2︸ ︷︷ ︸
i−2

,

if i = 2n+ 1.

Proof (by induction). It will be proved first that the lemma is true
for i = 2 and i = 3. Then, assuming that it is true for i = 2m− 2 and
i = 2m− 1 it will be proved to be true also for i = 2m and i = 2m+ 1,
m ∈ N.

The relation (4.4) is trivial when i = 2. When i = 3, both (4.5) and
(4.2) are the same relation, so (4.5) is true when i = 3.

Now, from (4.2) with i = 2m,

eθA2m = eπA2m−1eθA2m−2e−πA2m−1 ,
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and since (4.4) and (4.5) are assumed to be satisfied when i = 2m− 2
and i = 2m− 1, respectively, it follows that

eθA2m = eπA2eπA1 · · · eπA2︸ ︷︷ ︸
2m−3

eπA1 e−πA2 · · · e−πA1e−πA2︸ ︷︷ ︸
2m−3

eπA2 · · · eπA1︸ ︷︷ ︸
2m−4

eθA2

e−πA1e−πA2 · · · e−πA2︸ ︷︷ ︸
2m−4

eπA2eπA1 · · · eπA2︸ ︷︷ ︸
2m−3

e−πA1

e−πA2 · · · e−πA1e−πA2︸ ︷︷ ︸
2m−3

= eπA2eπA1 · · · eπA2︸ ︷︷ ︸
2m−3

eπA1e−πA2eθA2eπA2e−πA1

e−πA2 . . . e−πA1e−πA2︸ ︷︷ ︸
2m−3

= eπA2eπA1 · · · eπA2eπA1︸ ︷︷ ︸
2m−2

eθA2 e−πA1e−πA2 · · · e−πA1e−πA2︸ ︷︷ ︸
2m−2

.

Similarly, from (4.2) with i = 2m+ 1

eθA2m+1 = eπA2m eθA2m−1e−πA2m ,

and since (4.4) and (4.5) are assumed to be satisfied when i = 2m and
i = 2m− 1, respectively, it follows that

eθA2m+1 = eπA2eπA1 · · · eπA2eπA1︸ ︷︷ ︸
2m−2

eπA2 e−πA1e−πA2 · · · e−πA1e−πA2︸ ︷︷ ︸
2m−2

eπA2eπA1 · · · eπA2︸ ︷︷ ︸
2m−3

eθA1 e−πA2 · · · e−πA1e−πA2︸ ︷︷ ︸
2m−3

eπA2eπA1 · · · eπA2eπA1︸ ︷︷ ︸
2m−2

e−πA2 e−πA1e−πA2 · · · e−πA1e−πA2︸ ︷︷ ︸
2m−2

= eπA2eπA1 · · · eθA2eπA1︸ ︷︷ ︸
2m−2

eπA2e−πA1eθA1eπA1

e−πA2e−πA1 · · · e−πA1e−πA2︸ ︷︷ ︸
2m−2

= eπA2eπA1 · · · eπA2︸ ︷︷ ︸
2m−1

eθA1 e−πA2 · · · e−πA1e−πA2︸ ︷︷ ︸
2m−1

,

and the lemma is proved.
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Lemma 4.4. If the angle ψ = �(a1, a2) ∈ [π/2(k − 1), π/2(k − 2)),
k ≥ 3, then, for some t ∈ (0, 2π] and θ ∈ R,

(4.6) eθX = eπA2eπA1 · · · eπA2︸ ︷︷ ︸
k−3

etA1eθA2e−tA1 e−πA2 · · · e−πA1e−πA2︸ ︷︷ ︸
k−3

,

if k is even, and

(4.7) eθX = eπA2eπA1 · · · eπA1︸ ︷︷ ︸
k−3

etA2eθA1e−tA2 e−πA1 · · · e−πA1e−πA2︸ ︷︷ ︸
k−3

,

if k is odd.

Proof. etAk−1 and eθAk−2 can be written as a product of elements
from eτA1 and eτA2 (t ∈ R) by using (4.4) and (4.5), respectively, if k
is even, or (4.5) and (4.4), respectively, if k is odd. Now, using (4.3) and
taking into account the composition of terms with the same generator,
the relations (4.6) and (4.7) follow.

Proof of the Main Theorem. When ψ = π/2, the result is an
immediate consequence of Lemma 4.2 with x = z = a1 and y = a2;
the order of generation is then equal to three. When ψ ∈ [π/2(k −
1), π/2(k − 2)) it was seen that ∃ x ∈ R3, x perpendicular to a1,
such that R = exp(t1A1) exp(t2X) exp(t3A1), for every R ∈ SO(3) and
ti ∈ R. But exp(t2X) can be written as a product of 2(k − 3) + 3
elements from the one-parameter subgroups exp(τ1A1) and exp(τ2A2)
(Lemma 4.4) and so, the order of generation of SO(3) is, in this case,
2(k − 3) + 3 + 2 = 2k − 1, ∀k ≥ 3, which completes the proof.

Remark . Since there exists an automorphism of SO(3) that inter-
changes the two one-parameter subgroups exp(tA1) and exp(τA2), ev-
ery element of SO(3) can also be written as a product of 2k−1 elements
from those subgroups whose first and last elements belong to exp(tA2).

We now apply the results on the uniform finite generation of SO(3)
to the study of the controllability properties of systems which are
described by an equation in SO(3), of the form

(4.8) ẋ(t) = (u(t)A+ v(t)B)x(t)
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where {A,B}L.A. = so(3) and u(t) and v(t) are piecewise continuous
control functions. A system (4.8) is said to be uniformly controllable if
there exists a positive integer N such that every pair of points in G can
be joined by a trajectory of {u(t)A + v(t)B} which involves, at most,
N switches.

Theorem 4.2. If k is the order of generation of SO(3) by exp(tA)
and exp(tB), then the system (4.8) is uniformly controllable by a
trajectory of {A,B} in, at most, N = k − 1 switches.

Proof. Since the one-parameter subgroups of SO(3) are compact,

∀θ > 0, ∃ ζ > 0 : ∀X ∈ so(3), exp(−θX) = exp(ζX).

Then, in the decomposition of SO(3) as a product of one-parameter
subgroups, we can always make the parameters positive. Using the
definition of uniform controllability we can conclude that every point
in SO(3) can be reached from the identity of the group by a trajectory
of {A,B} involving at most k − 1 switches. Now, the result follows
since SO(3) is a group.

The easy way of calculating the order of generation of SO(3), by
any two one-parameter subgroups and the complete characterization
of generators {A,B} of so(3), have as a consequence that not just
symmetric systems on SO(3) (as (4.8)) but also systems of the form

(4.9) ẋ(t) = (A+ v(t)B)x(t), x ∈ SO(3)

(v(t) a piecewise continuous control function) are uniformly control-
lable.

Lemma 4.5. If [A,B] �= 0, the systems (4.8) and (4.9) are uniformly
controllable, and there exist controls such that every pair of points in
SO(3) can be joined by a trajectory of the system only with two switches.

Proof. a and b denote the axes of the rotations exp(tA) and exp(τB),
respectively. Let ψ = �(a, b) ∈ [π/(k + 1), π/k), k ≥ 2. For every
pair of vectors (a, b) in R3, there exist constants u1 and v1 such
that (u1a + v1b) ⊥ a. So ∀g ∈ SO(3), ∃ t1, t2, t3 ∈ R such that
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g = exp(t1A) exp((u1A + v1B)t2) exp(At3) (Lemma 4.2). Clearly, the
t’s can be taken nonnegative. Now choose

u(t) =

{
u1, t ∈ (t3, t2 + t3]

1, t ∈ [0, t3] ∪ (t2 + t3, t2 + t3 + t1]

v(t) =
{
v1, t ∈ (t3, t2 + t3]

0, otherwise.

Then, every pair of points of SO(3) can be joined by a trajectory of the
system (4.8) (trajectory of A and u1A + v1B) involving two switches.
For the system (4.9) just make u1 = 1 and the result follows.

Applications of the uniform finite generation problem of SO(n) and
other Lie groups to control theory will be considered in a forthcoming
article.
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