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ON A QUASILINEAR DEGENERATE HYPERBOLIC
SYSTEM OF CONSERVATION LAWS DESCRIBING

NONLINEAR ADVECTION PHENOMENA

LING HSIAO AND PIERO DE MOTTONI

ABSTRACT. We consider a two-dimensional system of
conservation laws which is hyperbolic but degenerate, for
either characteristic field is genuinely nonlinear in one half
of the phase-plane and linearly degenerate in the other half.
We prove the existence and uniqueness of the solution of the
Riemann problem and the existence of a (BV) solution of the
initial-value problem. This system arises in modelling certain
nonlinear advection processes and, as shown by the support
properties we establish in case of special initial data, may
describe pattern differentiation.

0. Introduction. The object of the present paper is to study the
system of conservation laws

(0.1)

[
ut + (u(1 − v))x = 0
vt + (v(1 + u))x = 0

in R × R+.

This system arises if we consider u, v as the space derivatives of non-
negative quantities representing the densities of two populations, the
fugitives (denoted by U(x, t)) and the pursuers (denoted by V (t, x)).
According to a model originally proposed by Murray and Cohen [12],
we may characterize a pursuing-escape interaction with predation along
a straight line course by the equations

(0.2)

[
Ut + (U(1 − Vx))x = −UVxx,

Vt + (V (1 + Ux))x = V Uxx,

where units have been renormalized and it is assumed that, in the
absence of interaction, the two populations run with the same velocity,
−1. The following features are incorporated into this model, where
only the total mass of the two populations

∫
(U + V ) dx is conserved:
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(i) Since 1 − Vx, 1 + Ux represent the advection velocities of the
U ’s, respectively of the V ’s, the fugitives provoke the pursuers into the
pursuing action by moving away, and the pursuers cause the fugitives
to escape by running after them: indeed, the U ’s escape from the V ’s
at a rate proportional to the space gradient of the V ’s and, in turn, the
V ’s try to approach the U ’s at a rate proportional to the space gradient
of the U ’s.

(ii) The terms on the right-hand side account for a switching
predation mechanism governed by the relative space profiles of the
population distributions: the fugitives are eaten by the pursuers’
forerunners which reach them (indeed, at points where the V -slope is
increasing from negative values to zero), but react against any group of
pursuers (decreasing V -slope) by eating the pursuers whenever such a
group tries to overtake them. In turn, the pursuers feed on the fugitives’
rearguard (increasing U -slope), but are eaten by the fugitives as soon
as they attempt to attack a group of them (decreasing U -slope).

It is tempting to consider system (0.1) with different linear advection
velocities (say, with 1 replaced by a constant a �= 1 in either of the
equations in (0.1)); this, however, leads to a mixed-type system of
quite involved nature, which we will not investigate here.

System (0.1) is hyperbolic, but not strictly hyperbolic, since its char-
acteristic speeds coincide at u = v (for general facts about hyperbolic
conservation laws and for the basic properties of the solutions we are go-
ing to work with, see Section 1 below). Moreover, for each i (i = 1, 2),
the i-th characteristic field is genuinely nonlinear in one half of the
phase-plane (u < v for i = 1, u > v for i = 2), and linearly degen-
erate in another half (u > v for i = 1, u < v for i = 2). Because
of these nonstandard features one might wonder whether the known
entropy criteria are sufficient to single out a unique “physically rea-
sonable” (weak) solution of the Riemann problem (within the class of
the bounded variation functions (BV). Indeed, we shall show that, by
naturally extending the Lax entropy condition to cover contact discon-
tinuities, a unique solution for the Riemann problem can be shown to
exist. This will be done in Section 2. Another feature of the system
(0.1) is that shock and rarefaction curves coincide (other, different sys-
tems sharing this property have been considered in the literature, in
connection with various models in applied sciences see, e.g., [1, 5, 6,
7, 11, 13, 14]. This feature in our model simplifies the structure of
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the solutions of the Riemann problem and of the wave interaction and
makes it possible to solve the Cauchy problem for arbitrary data of
bounded variation, as it will be explained in Section 3. In Section 4 a
special Cauchy problem will be solved, showing that an initial condition
in which the U ’s and the V ’s have the same space distribution evolves,
after a finite time, into traveling waves in which the initial symmetry
is broken down, for the two components have markedly different space
structures. This suggests that our equations could be used as a model
in processes describing pattern differentiation.

1. Basic facts about hyperbolic conservation laws and first
properties of the solutions. In the first place, (0.1) being of the
form

(1.1) Ut + (F (U))x = 0 with U = (u, v)T ,

is a system of hyperbolic conservation laws: the i-th eigenvalue of the
Jacobian DF (U) of F (U) evaluated at a solution (u, v) will be referred
to as the i-th characteristic speed of (u, v), i = 1, 2. As usual, we
stipulate

λ1(u, v) ≤ λ2(u, v).

We shall denote by ri the associated (right) eigenvector. An easy
calculation shows that, in our case,
(1.2)

λ1 =
{

1 + u − v when u < v

1 when u > v
, r1 =

{
(1,−1)T when u < v

(u,−v)T when u > v,

whereas
(1.3)

λ2 =
{

1 + u − v when u > v

1 when u < v
, r2 =

{
(1,−1)T when u > v

(u,−v)T when u < v.

An i-th rarefaction wave for (1.1), i = 1, 2, is a (smooth, single-
valued) similarity solution u = u(ξ), v = v(ξ), where ξ = x/t such
that the i-th characteristic speed is increasing in ξ. Denoting by ′
the derivative with respect to ξ, a rarefaction wave (u, v) is, therefore,
characterized by

(ξI − DF (U))U ′ = 0;
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thus ξ has to be a characteristic speed λi, and the solution’s slope
du/dv in the phase-plane is given by the associated (right) eigenvector.
The equation du/dv = ri(u, v) defines the i-th rarefaction curve Ri,
i = 1, 2.

In our case, taking into account the above values of λi, ri, we conclude
that a (single-valued, smooth) function (u(ξ), v(ξ)) is a 1-rarefaction
wave relative to (1.1), if

(1.4)
ξ = 1 + u − v

u + v = const.

on some interval (ξ1, ξ2) ⊂ (−∞, 1). The associated 1-rarefaction curve
R1 should be given by du/dv = −1 as u < v, du/dv = −u/v as u > v,
i.e.,

(1.5) R1 :

⎧⎪⎨
⎪⎩

u + v = const. as u < v, along which λ1 increases
as u increases,

uv = const. as u > v, where λ1 ≡ 1.

Since λ1 is constant on the branch uv = const. of the R1-curve, it is
clear that only the part v > u on R1 provides the 1-rarefaction wave
(which we shall still denote by R1).

Likewise, (u(ξ), v(ξ)) is a 2-rarefaction wave relative to (1.1) if (1.4)
holds on some interval (ξ1, ξ2) ⊂ (1,∞). To obtain the associated
2-rarefaction curve R2, let us integrate du/dv = −1 for u > v, and
du/dv = −u/v for u < v, which yields

(1.6) R2 :

⎧⎪⎨
⎪⎩

u + v = const. as u > v, along which λ2 increases
as u increases,

uv = const. as u < v, where λ2 ≡ 1.

Again, only the part u > v on R2 provides the 2-rarefaction curve,
which we shall still denote by R2.

Let us now turn to discontinuous solutions. They are characterized by
the left-hand, respectively right-hand, values at the discontinuity, and
by the discontinuity’s speed, σ. These quantities are related among
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FIGURE 1.1.1. The R1-curves (1-rarefaction curves only for u < v).
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FIGURE 1.1.2. The R2-curves (2-rarefaction curves only for u > v).
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them by the well-known Rankine-Hugoniot conditions which, in the
present case, take on the form

(1.7)
[

σ[u] − [(1 − v)u] = 0
σ[v] − [(1 + u)v] = 0,

where [w] = wr − w� denotes the jump of the quantity w across
the discontinuity. Note that, eliminating σ from (1.7), we obtain
[uv]([u] + [v]) = 0, which implies that, for fixed values (u0, v0) of the
left-hand values, the right-hand values (u, v) satisfy

(1.8) either uv = u0v0 or u + v = u0 + v0.

Furthermore, on uv = u0v0 we have σ = 1, while on u + v = u0 + v0

we have σ = 1 + u − v0.

To introduce the entropy condition, denote, by λi� = λi(u�, v�),
i = 1, 2, the characteristic speeds evaluated at the left-hand value
(u�, v�) of the discontinuity, and, by λir = λi(ur, vr), the characteristic
speeds at the right-hand value (ur, vr) of the discontinuity.

According to the Lax entropy condition we shall say that a discon-
tinuity with distinct values from the left and from the right (u�, v�),
(ur, vr) is a 1-shock wave or a back shock wave if its speed σ satisfies

(1.9) λ1r < σ < λ1�, σ < λ2r,

whereas it is a 2-shock wave or a front shock wave if its speed σ satisfies

(1.10) λ1� < σ, λ2r < σ < λ2�.

It will be convenient to impose a similar condition even for discontinu-
ities whose speed equals one of the characteristic speeds the so-called
contact discontinuities. Thus, we shall say that a discontinuity is a
T -wave if its speed σ satisfies either

(1.11) λ1r ≤ σ ≤ λ1�, σ ≤ λ2r,

or
λ1� ≤ σ, λ2r ≤ σ ≤ λ2�.
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In the following, we shall consider only discontinuities that are shock
waves or T -waves.

Let us now investigate which kind of discontinuities can arise once the
left-hand state (u0, v0) is specified. To this end, we refer to (1.8) which,
as noted, characterizes the two possible curves on which the right-hand
state (u, v) can lie; more specifically, recalling the expressions (1.2),
(1.3) for λi(u, v), we see that

(1) For any given state (u0, v0) in the (u, v)-plane with u0 > v0,
along the curve u + v = u0 + v0, the quantity σ equals 1 + u − v0 and
decreases from σ > 1 to σ = 1 as u decreases from u0 to v0; moreover,
the entropy condition (1.10) is satisfied: for u < v0, σ is still decreasing
as u decreases, σ < 1, and the entropy condition (1.9) is fulfilled. Thus,
we have a 2-shock wave with (u0, v0) as left state and (u, v) as right
state, whenever (u, v) lies on u + v = u0 + v0 with u0 > u > v0, and
a 1-shock wave if (u, v) lies on the same curve and u < v0 (see Figure
1.2.1 1.2.6).

(2) For any given state (u0, v0) in the (u, v)-plane with u0 < v0, along
the curve u+v = u0+v0, the quantity σ equals 1+u−v0 and decreases
from σ < 1 as u decreases from u0; moreover, the entropy condition
(1.9) is satisfied. Thus we have a 1-shock wave with (u0, v0) as left
state and (u, v) as right state whenever (u, v) lies on u + v = u0 + v0

with u0 > u (see Figure 1.3.1 1.3.3).

(3) For any given state (u0, v0) in the (u, v)-plane, along the curve
uv = u0v0 we have in any case a contact discontinuity; however, T -
waves are not allowed to cross the u = v-line from {u < v} to {u > v}.

2.

2a. Riemann problem: existence and uniqueness. Consider (0.1) with
the following initial data

(2.1) (u, v)|t=0 =
{

(u−, v−) for x < 0,
(u+, v+) for x > 0,

where (u−, v−), (u+, v+) are arbitrary states in the (u, v)-plane. Since
both the system (0.1) and the initial data (2.1) are invariant under
the transformation x → αx, t → αt, we look for similarity solutions
u = u(ξ), v = v(ξ), where ξ = x/t.
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FIGURE 1.2. Shock waves emanating from (u0, v0), u0 > v0.



CONSERVATION LAWS 1335

(u0v0)

S1

u

v

(u0v0)

S1

u

v

(u0v0)
S1

u

v

FIGURE 1.3.1 FIGURE 1.3.2 FIGURE 1.3.3

FIGURE 1.3. Shock waves emanating from (u0, v0), u0 < v0.

Definition 2.1. A single-valued function (u(ξ), v(ξ)) is called an
admissible weak solution of (0.1), (2.1) if

(i) It satisfies the boundary conditions (u, v) → (u±, v±) as ξ →
±∞;

(ii) It is either a rarefaction wave or a constant state wherever it is
smooth;

(iii) Any discontinuity satisfies the Rankine-Hugoniot condition (1.7);
moreover, any shock satisfies either (1.9) or (1.10), and any contact
discontinuity satisfies (1.11).

For given (u−, v−), consider the state (u, v) which can be joined to
(u−, v−) on the right by either a 1-rarefaction wave, or a 1-shock or
a T -wave. All such states form a curve, which will be called the first
wave curve or back wave curve, W1(u−, v−).

First case. Let us first consider the case 0 < v− < u−. The first wave
curve consists of the whole curve uv = u−v− through (u−, v−) and a
part of the curve u + v = u− + v− for u < v− (see Figure 2.1). Take
any point (û, v̂) ∈ W1(u−, v−) and consider all the states that can be
joined to (û, v̂) on the right by either a 2-rarefaction wave or a 2-shock
or a T -wave. These states form another curve, called the second wave
curve or front wave curve, W2(û, v̂). Since each point on the branch
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(u–v–)

u

v

FIGURE 2.1. Candidates for the first wave curve W1.

uv = u−v−, for u < v−, has the same W2(û, v̂) as (û, v̂) = (v−, u−), we
may neglect this branch, and, as first wave curve W1(u−, v−), we shall
take the curve[

u + v = u− + v−, for u ≤ v−
uv = u−v−, for u > v−

(see Figure 2.2).

Now consider the set of all the W2(û, v̂) curves as the point (û, v̂)
varies on W1(u−, v−). The existence and uniqueness for the Riemann
problem (0.1), (2.1) is established if we can show that this set of curves
covers the whole (u, v)-plane univalently. This will be precisely our
program in the present section.

Subcase 1.1. In the first place, let us take any point (û, v̂) on
W1(u−, v−), for 0 ≤ û ≤ v−, and consider the curve W2(û, v̂). There is
just one choice for this curve, given by[

uv = ûv̂, for u ≤
√

ûv̂,

u + v = 2
√

ûv̂, for u >
√

ûv̂
(see Figure 2.3).

(At first sight, one could think of another possible candidate for
W2(û, v̂), namely, the whole curve uv = ûv̂; however, this curve violates
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FIGURE 2.2. The true W1 curve.
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FIGURE 2.3. From (û, v̂) to (u−, v−) : the second wave curve
(admissible: solid, inadmissible: dotted).
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the condition (1.11) insofar as it crosses the u = v line and, therefore,
is not an admissible T -wave).

It is easy to show that, as (û, v̂) varies on W1(u−, v−) from u > 0 to
u ≤ v−, then the set {W2(û, v̂)} covers univalently the domain

{0 < u + v ≤ 2
√

ûv̂, u > 0} ∪ {uv ≤ u−v−, 0 < u < v}
(see Figure 2.4).

Subcase 1.2. Next consider the case (û, v̂) ∈ W1(u−, v−) with
v− < û ≤ √

u−v−. Reasoning as in the previous case, it is easy to
prove that the admissible second wave curve W2(û, v̂) is just one, and
it is defined by {

uv = ûv̂, for u ≤ √
ûv̂,

u + v = 2
√

ûv̂, for u >
√

ûv̂.

Moreover, for any (u+, v+) on the curve u + v = 2√u−v− for
u ≥ √

u−v−, the solution of (0.1), (2.1) consists of a T -wave join-
ing (u−, v−) with (√u−v−,

√
u−v−) and a 2-rarefaction wave joining

(√u−v−,
√

u−v−) with (u+, v+).

Subcase 1.3. Consider now the case (û, v̂) ∈ W1(u−, v−) with û ≥√
u−v−. Again, it turns out that there is just one admissible second

u

v

FIGURE 2.4.
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FIGURE 2.5.

wave curve W2(û, v̂), namely,

u + v = û + v̂ for u > v̂,

and it is clear that {W2(û, v̂)} covers univalently the domain

{u + v ≥ 2
√

u−v−} ∩ {u > v} ∪ {0 < uv < u−v−}

(see Figure 2.5) as (û, v̂) varies on W1(u−, v−) for û ≥ √
u−v−.

Subcase 1.4. If (û, v̂) ∈ W1(u−, v−) with û < 0, W2(û, v̂) is the curve
uv = ûv̂, which covers univalently the domain u < 0, v > 0, as û varies
from 0 to −∞.

Subcase 1.5. Finally, if (û, v̂) ∈ W1(u−, v−) with û = 0, any point
(0, ṽ) can be joined to (û, v̂) by a T -wave. For any ṽ > 0 it is impossible
to find another state which can be joined to (0, ṽ) by a 2-rarefaction
wave or a 2-shock wave; in other words, there is no second wave curve
unless u = 0. However, for any ṽ ≤ 0, there exists a unique admissible
T -wave W2(0, ṽ), namely u+v = ṽ for v < 0. Plainly, {W2(0, ṽ)} covers
univalently the domain

{u + v ≤ 0, v ≤ 0} as ṽ varies from 0 to −∞

(see Figure 2.6).
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FIGURE 2.6.

The above considered subcases 1.1 1.5 exhaust the discussion for the
case when 0 < v− < u−. Summarizing, we have shown that, for any
state (u+, u+) in the (u, v)-plane, there exists a unique state (û, v̂)
on the first wave curve W1(u−, v−) and a unique second wave curve
W2(û, v̂) which connects (u+, v+) to (û, v̂). Here, for any (u+, v+) ∈
{u + v ≤ 0, v ≤ 0, u ≥ 0} the second wave curve is defined by{

u = 0, for u+ + v+ ≤ v ≤ u− + v−
u + v = u+ + v+, for v ≤ u+ + v+.

Likewise, for any (u+, v+) ∈ {u ≤ 0, v ≤ 0}, the second wave curve is
defined by{

u = 0, for u+ + v+ ≤ v ≤ u− + v−
u + v = u+ + v+, for u+ ≤ u ≤ 0.

The discussion for the other cases of location of (u−, v−) is similar.

It is important to realize how the solution is built up in terms of
the elementary wave types Ri, Si, i = 1, 2, and T . This amounts
to studying the wave pattern of any solution of the Riemann problem
and amounts to analyzing the single cases in detail. The results are
displayed in the forthcoming subsection.

2b. Riemann problem: Wave patterns of the solutions.
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III

FIGURE 2.7. The phase plane in Case 1.

Case 1. 0 < v− < u−. Draw the curve uv = u−v−, which intersects
with u = v at (√u−v−,

√
u−v−); then draw the line u + v = 2√u−v−,

v <
√

u−v−. These two curves, together with the coordinate axes,
divide the (u, v)-plane into five domains I V (cf. Figure 2.7). For any
(u+, v+) ∈ I(u−, v−) there exists a unique state (u∗, v∗) on the curve
uv = u−v− (which is the intersection of the curves u + v = u+ + v+

and uv = u−v−) such that (u∗, v∗) can be joined to (u−, v−) on the
right by a T -wave denoted by T , and (u+, v+) can be joined to (u∗, v∗)
on the right by a 2-shock, denoted by S2. In other words, the solution
of the Riemann problem (0.1), (2.1) consists of a contact discontinuity
and of a front shock wave. The wave pattern, T −S2, is represented in
Figure 2.8.1.

For any (u+, v+) ∈ II(u−, v−), there exists a unique state (u∗, v∗)
on the curve uv = u−v− which can be joined to (u−, v−) on the right
by a T -wave denoted by T , and (u+, v+) can be joined to (u∗, v∗) on
the right by a 2-rarefaction wave R2. The wave pattern, T − R2, is
represented in Figure 2.8.2.

For any (u+, v+) ∈ III(u−, v−), there exists a unique state (u∗, v∗)
on the curve u + v = u− + v−, with u < v−, such that (u∗, v∗) can be
joined to (u−, v−) on the right by a 1-shock S1 and (u+, v+) can be
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joined to (u∗, v∗) on the right by a T -wave. The resulting wave pattern
is S1 − T (see Figure 2.8.3).

For any (u+, v+) ∈ IV(u−, v−) with u+ + v+ > 0, there exists a
unique state (ũ, ṽ), ũ = ṽ = (u+ + v+)/2 and a unique state (u∗, v∗)
(which is the intersection of the curves uv = ũṽ and u + v = u− + v−)
such that (u∗, v∗) can be joined to (u−, v−) on the right by a 1-shock
S1, (ũ, ṽ) can be joined to (u∗, v∗) on the right by a T -wave, followed
by a 2-rarefaction wave up to (u+, v+). The resulting wave pattern is
S1 − TR2 (see Figure 2.8.4.1).

For any (u+, v+) ∈ IV(u−, v−), with u+ + v+ ≤ 0, there exists a
unique state (ũ, ṽ), ũ = 0 ṽ = u+ +v+ and a unique state (u∗, v∗), u∗ =
0, v∗ = u−+v− such that (u∗, v∗) can be joined to (u−, v−) on the right
by a 1-shock, (ũ, ṽ) can be joined to (u∗, v∗) on the right by a T -wave,
and (u+, v+) can be joined to (ũ, ṽ) on the right by a 2-rarefaction
wave. The solution’s wave pattern is S1 − T − R2, cf. Figure 2.8.4.2.

For any (u+, v+) ∈ V (u−, v−), there exists a unique state (ũ, ṽ),
ṽ = u+ + v+, ũ = 0 and a unique state (u∗, v∗), u∗ = 0, v∗ = u− + v−
such that (u∗, v∗) can be joined to (u−, v−) on the right by a 1-shock,
(ũ, ṽ) can be joined to (u∗, v∗) on the right by a T -wave, and (u+, v+)
can be joined to (ũ, ṽ) on the right by a 2-shock. This solution has
wave pattern S1 − T − S2, cf. Figure 2.8.5.

Case 2. v− < u− < 0. As in Case 1, we divide the phase-plane into
five domains I V (Figure 2.9). The solution of the Riemann problem
(0.1), (2.1) can be easily shown to have the same wave patterns as
before (Figures 2.8).

Case 3. v− < 0 < u−. The two branches of the hyperbola uv = u−v−
divide the (u, v) plane into three regions, I III (see Figure 2.10).

For any (u+, v+) ∈ I(u−, v−), the intersection point of u+v = u++v+

with uv = u−v−, u > 0, provides (u∗, v∗), which can be joined to
(u−, v−) on the right by a T -wave, while (u+, v+) can be joined to
(u∗, v∗) on the right by a 2-rarefaction wave. Thus, the solution’s wave
pattern is T − R2, cf . Figure 2.11.1.

For any (u+, v+) ∈ II(u−, v−), the intersection point of u + v =
u+ + v+, with uv = u−v−, u > 0, provides (u∗, v∗), which can be
joined to (u−, v−) on the right by a T -wave, while (u+, v+) can be
joined to (u∗, v∗) on the right by a 2-shock wave. Thus, the solution’s
wave pattern is T − S2, cf. Figure 2.11.2.
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For any (u+, v+) ∈ III(u−, v−), the intersection point of u + v =
u−+v−, with uv = u+v+, u < 0, provides (u∗, v∗), which can be joined
to (u−, v−) on the right by a 1-shock, while (u+, v+) can be joined to
(u∗, v∗) on the right by a T wave. The solution’s wave pattern is S1−T ,
cf. Figure 2.11.3.

Case 4. 0 < u− < v−. Draw the curve uv = u−v−, which intersects
with u = v at (√u−v−,

√
u−v−); then draw the line u + v = 2√u−v−,

u >
√

u−v−. After tracing the line u + v = u− + v−, which intersects
with u = v at ((u− + v−)/2, (u− + v−)/2), draw the curve uv =
((u−+v−)/2)2. These curves, together with the coordinate axes divide
the (u, v)-plane into six domains I VI (see Figure 2.12).

For any (u+, v+) ∈ I(u−, v−), there exists a unique state (ũ, ṽ) on
the curve uv = ((u− + v−)/2)2, which is the intersection of the curves
uv = ((u− + v−)/2)2 and u + v = u+ + v+, with u > u+, such that
(u∗, v∗) = ((u− + v−)/2, (u− + v−)/2) can be joined to (u−, v−) on the
right by a 1-rarefaction wave and (ũ, ṽ) can be joined to (u∗, v∗) on the
right by a T -wave. At last, (u+, v+) can be joined to (ũ, ṽ) on the right
by a 2-shock. The resulting solution has wave pattern R1 − T − S2 or
R1T − S2, see Figure 2.13.1.

For any (u+, v+) ∈ II(u−, v−), there exists a unique state (u∗, v∗) such
that (u∗, v∗) can be joined to (u−, v−) on the right by a 1-rarefaction
wave and (u+, v+) can be joined to (u∗, v∗) on the right by a T -wave.
The solution has wave pattern R1 − T , as depicted in Figure 2.13.2.
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FIGURE 2.12. The phase plane in Case 4.

For any (u+, v+) ∈ III(u−, v−), there are two subcases, according to
whether u + v = u+ + v+ intersects first the line u = v or the curve
uv = ((u− + v−)/2)2, u > (u− + v−)/2. Denoting, by (ũ, ṽ), the above
intersection in both the two subcases, in the former case we find that
the intersection point (u∗, v∗) of uv = ũṽ with u + v = u− + v− can be
joined to (u−, v−) on the right by a 1-rarefaction wave, and (ũ, ṽ) can be
joined to (u∗, v∗) on the right by a T -wave followed by a 2-rarefaction
wave up to (u+, v+). The solution’s pattern is, therefore, R1−TR2. In
the latter case, the state (u∗, v∗) = ((u− + v−)/2, (u− + v−)/2) can be
joined to (u−, v−) on the right by a 1-rarefaction wave, accompanied
by a T -wave up to (ũ, ṽ). At last, (u+, v+) can be joined to (ũ, ṽ) on
the right by a 2-rarefaction wave. The solution’s pattern is, therefore,
R1T − R2. The wave patterns in both subcases are depicted in Figure
2.13.3.

For any (u+, v+) ∈ IV(u−, v−), the unique intersection point (u∗, v∗)
of the curves u+v = u−+v− and uv = u+v+ can be joined to (u−, v−)
on the right by a 1-shock wave, and (u+, v+) can be joined to (u∗, v∗)
on the right by a T -wave. The solution’s pattern, S1 − T , is depicted
in Figure 2.13.4.
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For any (u+, v+) ∈ V(u−, v−), there are two subcases according to
whether u + v = u+ + v+ intersects first the line u = v or the line
u = 0. Denoting by (ũ, ṽ) the above intersection point in both the two
subcases, in the former case we find that the intersection point (u∗, v∗)
of uv = ũṽ, with u+v = u−+v−, can be joined to (u−, v−) on the right
by a 1-shock wave and (ũ, ṽ) can be joined to (u∗, v∗) on the right by
a T -wave, followed by a 2-rarefaction wave up to (u+, v+). The wave
pattern is then S1 − TR2. In the latter case, the state (0, v∗), which is
the intersection of u+v = u−+v− with u = 0 can be joined to (u−, v−)
on the right by a 1-shock wave, whereas (ũ, ṽ) = (0, ṽ) can be joined
to (0, v∗) on the right by a T -wave. At last, (u+, v+) can be joined to
(0, ṽ) on the right by a 2-rarefaction wave. The solution’s wave pattern
is, therefore, S1 − T − R2. The wave patterns in both subcases are
depicted in Figure 2.13.5.

For any (u+, v+) ∈ VI(u−, v−), there is a unique intersection point
(u∗, v∗) of the lines u + v = u− + v− and u = 0, and there is a unique
intersection (ũ, ṽ) point of the lines u+v = u+ +v+ and u = 0: (u∗, v∗)
can be joined to (u−, v−) on the right by a 1-shock and can be joined
to (u∗, v∗) on the right by a T -wave. At last, (u+, v+) can be joined
to (ũ, ṽ) on the right by a 2-shock wave. The solution’s pattern is
S1 − T − S2 and is depicted in Figure 2.13.6.

Case 5. u− < v− < 0. As in case 4, we divide the phase plane into
six domains (see Figure 2.14). The solution of the Riemann problem
has the same wave patterns as in Case 4.

Case 6. u− < 0 < v−. Draw the curve uv = u−v− and the line
u + v = u− + v−, which intersects with u = v at ((u− + v−)/2,
(u− + v−)/2); then draw the curve uv = ((u− + v−)/2)2. These
curves, together with the coordinate axes, divide the (u, v)-plane into
five domains I, II, III1, III2, IV (see Figure 2.15).

For any (u+, v+) ∈ I(u−, v−), there is a unique intersection point
(u∗, v∗) of the curves u+ v = u− + v− and uv = u+v+; it can be joined
to (u−, v−) on the right by a 1-shock, whereas (u+, v+) can be joined
to (u∗, v∗) on the right by a T -wave. The solution’s pattern, S1 −T , is
displayed in Figure 2.16.1.

For any (u+, v+) ∈ II(u−, v−), there is a unique intersection point
(u∗, v∗) of the curves u+ v = u− + v− and uv = u+v+; it can be joined
to (u−, v−) on the right by a 1-rarefaction wave, whereas (u+, v+) can
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FIGURES 2.13.4 2.13.6. More wave patterns for Case 4.

be joined to (u∗, v∗) on the right by a T -wave. The solution’s pattern,
denoted by R1 − T , is shown in Figure 2.16.2.

For any (u+, v+) ∈ III1(u−, v−), denote, by (u∗, v∗), the unique
intersection point of the curves u + v = u− + v− and u = v, that is,
u∗ = v∗ = v = (u− + v−)/2. (u∗, v∗) can be joined to (u−, v−) on the
right by a 1-rarefaction wave. Denote by (ũ, ṽ) the unique intersection
point of the curves uv = (u− + v−)2/4 and u + v = u+ + v+: (ũ, ṽ) can
be joined on the right to (u∗, v∗) by a T -wave, whereas (u+, v+) can be
joined to (ũ, ṽ) on the right by a 2-shock wave. The solution has wave
pattern R1T − S2, as shown in Figure 2.16.3.1.
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For any (u+, v+) ∈ III2(u−, v−), the unique intersection point (u∗, 0)
of the lines u + v = u− + v− and v = 0 (that is, u∗ = u− + v−) can be
joined to (u−, v−) on the right by a 1-rarefaction wave. On the other
hand, the unique intersection point (ũ, 0) of the lines u + v = u+ + v+

and v = 0 (that is, ũ = u+ + v+) can be joined to (u∗, v∗) on the right
by a T -wave, while (u+, v+) can be joined to (ũ, 0) on the right by a
2-shock wave. The solution has wave pattern R1 −T −S2, as shown in
Figure 2.16.3.2.

For any (u+, v+) ∈ IV(u−, v−), there are three subcases according to
whether the line u++v+ meets first (i) the curve uv = ((u−+v−)/2)2/4
for u > (u− + v−)/2; (ii) the line u = v; or (iii) the axis v = 0. In the
first subcase, the solution has pattern R1T −R2, in the second subcase,
R1 −TR2, and in the third case it has pattern R1 −T −R2 (see Figure
2.16.4). Indeed, this can be easily checked if one proceeds as above,
upon taking: in case (i), (u∗, v∗) = ((u− + v−)/2, (u− + v−)/2), and
(ũ, ṽ) as the intersection of u + v = u+ + v+ with uv = (u− + v−)2/4;
in case (ii), (ũ, ṽ) as the intersection point of u + v = u+ + v+ with
u = v, and (u∗, v∗) as the intersection point of u + v = u− + v− with
uv = ((u− + v−)/2)2, in case (iii), (u∗, v∗) as the intersection point of
u + v = u− + v−, with v = 0, and (ũ, ṽ) as the intersection point of
u + v = u+ + v+, with v = 0.

The results of the above subsections can be synthesized as follows.

Theorem 2.1. For any given data (u−, v−), (u+, v+) on the (u, v)
plane, there exists a unique admissible solution of the Riemann problem
(0.1), (2.1). This solution consists of at most four states and three
waves. The wave pattern of the solution is one of the following:

T − S2 (or S2) R1 − T (or R1)
T − R2 (or R2) R1 − T − S2 (or R1T − S2)
S1 − T (or S1) R1 − T − R2 (or R1T − R2 or R1 − TR2)
S1 − T − S2

S1 − T − R2 (or S1 − TR2)

If we introduce now the Riemann invariants by

(2.2)
r = u + v,

s = uv.
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This defines a map Φ : (u, v) ∈ R2 −→ (r, s) ∈ {r2 − 4s ≥ 0}. By the
very structure of the solution, one can prove

Theorem 2.2. For any given data (r−, s−), (r+, s+) ∈ {r2 − 4s ≥
0}, the unique admissible solution of (0.1), (2.1) is still contained in
{r2 − 4s ≥ 0}, and it satisfies

min{r±} ≤ r(x, t) ≤ max{r±}
min{0, s±} ≤ s(x, t) ≤ max{s±, (min |r±|)2/4}.(2.3)
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3. General initial value problem. Consider the initial value
problem

(3.1)

⎡
⎢⎢⎢⎣

ut + (u(1 − v))x = 0
in R × R+,

vt + (v(1 + u))x = 0
(u(x, 0), v(x, 0)) = (u0, v0), x ∈ R,

where u0, v0 are bounded measurable functions such that the associated
r and s, (cf. (2.2)), denoted by r0, s0, are of bounded variation. (Of
course, this is true if u0, v0 themselves are of bounded variation.) Define

r : = min{r0(x), x ∈ R}, r̃ := max{r0(x), x ∈ R}
s : = min{s0(x), x ∈ R}

D : = {min{0, s} ≤ s ≤ r2/4; r ≤ r ≤ r̃}.
(3.2)

In the following, we shall say that a solution (u, v) belongs to D if
the associated Riemann invariants r, s belong to D. Using the results
of the previous section, it can be easily shown that the following holds.

Lemma 3.1. Any solution of the Riemann problem (3.1) with data
(u±, v±) belonging to D still belongs to D.

To prove an existence theorem for (3.2), relying on Glimm’s ideas [3],
we shall use Glimm’s algorithm in a slightly modified context. Let us fix
a space mesh size h > 0 and determine the corresponding time mesh size
s by s = Λ−1h, where Λ is a fixed upper bound for the supremum over
D of the absolute values of the characteristic speeds λi(u, v), i = 1, 2,
so that waves emanating simultaneously from points separated by a
distance 2h will not interact on a time interval of length s.

Let us partition the upper half-plane of the (x, t)-plane into strips

Sn := {(x, t);−∞ < x < ∞; ns ≤ t < (n + 1)s},
n = 0, 1, 2, . . . , and focus on the mesh points [kh, ns] with k + n even.
Assuming that the approximate solution (uh(x, t), vh(x, t)) has been
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determined in
n−1⋃
k=0

Sk,

we shall describe how to construct the solution in the strip Sn. For
every m with m + n odd, consider the random mesh point [ym,n, ns],
where ym,n = (m+am,n)h, am,n ∈ U = Πm,n[−1, 1], the measure space
which is the product of copies of the interval [−1, 1] equipped with
the normalized Lebesgue measure, one copy for each rectangle of base
2h and height s, having the point (mh, ns) at the top center of the
rectangle, and then define

um,n = uh(ym,n, ns−), vm,n = vh(ym,n, ns−).

To initiate the algorithm, at n = 0, we set

uh(x, 0−) = u0(x), vh(x, 0−) := v0(x), x ∈ R.

Consider now any mesh point [kh, ns] with k + n even. Let (uh(x, t),
vh(x, t)) denote the restriction to {(x, t) : (k − 1)h ≤ x < (k + 1)h;
ns ≤ t < (n + 1)s} of the solution of the Riemann problem consisting
of the equations (0.1) supplemented with data

(3.3) (uh(x, ns), vh(x, ns)) =
{

(uk−1,n, vk−1,n), x < kh

(uk+1,n, vk+1,n), x > kh.

The solvability of this problem relies upon Theorem 2.1. The above
procedure determines (uh(x, t), vh(x, t)) in the strip Sn. Since, by
virtue of Lemma 3.1, the approximate solution (uh(x, t), vh(x, t)) still
remains in the domain D, this approximate solution can be indeed
defined for all t > 0. According to the classical Glimm method
(cf. [3,2]), in order to show the convergence and the consistency
of the algorithm we should prove the uniform boundedness of the
approximate solution and of its total variation in x. The solution’s
uniform boundedness can be read off from Lemma 3.1. Concerning
the uniform boundedness of the total variation, some difficulties arise,
since, as it will be shown below (Lemmas 3.2, Example 3.5), uniform
boundedness of the total variation can be proved for the quantities r
and s, but in general not for u and v themselves. Thus, the classical
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FIGURE 3.1. Interaction R2 + T .

Glimm method is not applicable to the present situation. However, the
adaptation of the method provided by [14] will enable us to overcome
this difficulty (see Theorem 3.3 below).

Let us define as strength of a wave the associated change in r for
any T -wave and the change in s for either shock or rarefaction waves.
We shall denote such strength by |T |, respectively, |S|, |R|. To prove
the uniform boundedness of the total variation of r and s, we need to
investigate all possible wave interactions and to show that the overall
wave strength after the interaction does not exceed that before the
interaction.

I. Interaction of a 2-rarefaction wave with a T -wave. R2 + T (see
Figure (3.1)). Denote the states joined by R2 by (1) and (2), those
joined by T by (2) and (3). Now let us solve the Riemann problem
determined by (1) as left state and (3) as right state; new waves will
arise (which we shall denote by primed letters) which determine the
wave pattern of the solution resulting from the interaction (outgoing
wave pattern). Indeed, various possibilities arise, depending on the
relative location of the states (1), (2) and (3).

Case 1. Let (1) and (2) belong to the same domain {v > 0, u > v}
(or {u < 0, u > v}). According to the location of (3), we have three
cases:

1(a) For any state (3) located above the state A, which is the
intersection of the curves uv = u2v2 and u + v = 2

√
u1v1, the outgoing

wave pattern is T ′ −R′
2, the intermediate state (4) being characterized

as the intersection of uv = u1v1 with u+v = u3 +v3 (see Figure 3.2.a).

1(b) For any state (3) located below the state B, which is the
intersection of the curves uv = u2v2 and u = v, the wave pattern
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is S′
1 − T ′, the intermediate state (4) being characterized by u = v2,

v = u2 (see Figure 3.2.b).

1(c) For any state (3) located between the states A and B defined
above, the outgoing wave pattern is S′

1 −T ′R′
2, the intermediate states

(4), (5) being characterized as follows: (5) as the intersection of u = v
with u + v = u3 + v3, (4) as the intersection of uv = u5v5 with
u + v = u1 + v1 (see Figure 3.2.c).

Plainly, |R′
2| = |R2|, |T ′| = |T | in case 1(a), |S′

1| = |R2|, |T ′| = |T |
in case 1(b), |S′

1| + |R′
2| = |R2|, |T ′| = |T | in case 1(c). Case 2. Let

(1) belong to {v > 0, u > v} and (2) belong to {u > 0, v < 0} (or (1)
∈ {u < 0, u > v} and (2) ∈ {u > 0, v < 0}).
Here two kinds of wave patterns arise, corresponding to different
locations of the state (3):

2(a) For any state (3) located above A, A being defined as in 1(a)
above, the outgoing wave pattern is T ′ − R′

2. Here the intermediate
state (4) is as in 1(a) above (see Figure 3.3.a).

2(b) For any state (3) located between A and B, where B is the
intersection of the curves uv = u2v2 and u + v = 0, and A is as above,
the outgoing wave pattern is S′ − T ′ − R′

2; the intermediate states (4)
and (5) are as in 1(c) above (cf. Figure (3.3.b)). The same outgoing
wave pattern arises if (3) is located below the state (B) defined as in
1(b). In this case, the intermediate states (4), (5) are characterized by
u0 = 0, v = u1 + v1, and u5 = 0, v5 = u3 + v3 (see Figures 3.3.b, 3.3.c).

It is easy to show that |R′
2| = |R2| and |T ′| = |T | in Case 2.a, and

|S′
1| + |R′

2| = |R2| and |T ′| = |T |, both cases in 2(b).

Case 3. Both states (1) and (2) belong to {u > 0, v < 0}. Here
there is just one kind of outgoing wave pattern, namely T ′ − R′

2.
The intermediate state (4) is the intersection of u + v = u3 + v3 and
uv = u1v1. Plainly, |T ′| = |T | and |R′

2| = |R2| (see Figure 3.4).

II. Interaction of a 2-shock with a T -wave. (See Figure 3.5.) Deriving
the outgoing wave pattern amounts to solving the Riemann problem
for the states (1) and (3). To do this, we have to understand in which
relative locations the states do occur. Since (1) is joined to (2) on the
right by a 2-shock S2, this can only happen if u1 > v1 and if (2) is
located on the line u + v = u1 + v1 with v1 < u2 < u1. It turns out
that, no matter where the states (2) and (3) are located, the outgoing
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FIGURE 3.4. Outgoing waves for the R2 + T interaction: third case.

wave pattern is the same, namely T ′ − S′
2, and |T ′| = |T |, |S′

2| = |S2|
(see Figure 3.6).

III. Interaction of a 2-rarefaction wave with a 2-shock wave. (See
Figure 3.7.) Of course, the relative locations of states (1) and (2) are
the same as those discussed sub item I, so we may refer again to Figures
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FIGURE 3.5. Interaction S2 + T .
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FIGURE 3.6. Outgoing waves for the S2 + T interaction.
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3.2, 3.3, 3.4. Various cases occur, as indicated below.

Case 1. Both (1) and (2) lie in the domain {v > 0, u > v} (or
{u < 0, u > v}). There are three kinds of outgoing wave patterns
corresponding to the relative location of states (1), (2) and (3), the
latter state lying on the line u + v = u2 + v2 with v2 < v3 < vB = u2

because (3) is joined to (2) on the right by a 2-shock (cf. Figure (3.8));
indeed, (1) can be joined to (3) by a single wave, namely either R′

2,
or S′

2, or else S′
1. In fact, R′

2 occurs whenever (3) is located between
(1) and (2), and |R′

2| < |R2| holds; S′
2 occurs if (3) lies between (1)

and A ≡ (v1, u1) (in this case |S′
2| < |S2| holds); while S′

1 occurs if (3)
lies between A and B ≡ (v2, u2), in which case |S′

1| < |R2| holds (see
Figures 3.9.a c).

Case 2. (1) ∈ {v > 0, u > v} and (2) ∈ {u > 0, v < 0} (or (1)

1

u

v

2

A

B

FIGURE 3.8. Location of states (1) and (2).
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FIGURE 3.9. Outgoing waves for the R2 + S2 interaction.

∈ {u < 0, u > v} and (2) ∈ {u > 0, v < 0}). This case is similar
to Case 1 above: there are three kinds of outgoing waves, R′

2, S
′
2, S

′
1,

satisfying, respectively, |R′
2| < |R2|, |S′

2| < |S2|, |S′
1| < |R2|.

Case 3. Both (1) and (2) lie in {u > 0, v < 0}. This case as well
gives rise to the same outgoing waves as in Case 1 above.

IV. Interaction of a 2-shock with a 2-rarefaction wave: S2 + R2. (See
Figure 3.10.)

For this interaction, from the fact that as in item II above (1) is
joined to (2) on the right by a 2-shock S2, we infer that u1 > v1 and
(2) is located on the line u + v = u1 + v1 with v1 < u2 < u1. On
the other hand, since (2) is joined to (3) on the right by a 2-rarefaction
wave, a further restriction holds, namely u2 > v2. As a consequence, we
easily deduce that the outgoing wave pattern consists of a single wave,
namely either S′

2 or R′
2, with |S′

2| < |S2|, |R′
2| < |R2|, respectively (see

Figure 3.11).

1 3

t

x

R2
S2

2

FIGURE 3.10. The interaction S2 + R2.
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t

x

S2

1 3

t

x

R2

FIGURE 3.11. Outgoing waves for the S2 + R2 interaction.

V. Interaction of a 2-rarefaction wave with a 1-shock: R2 + S1. (See
Figure 3.12.)

VI. Interaction of a 2-shock with a 1-rarefaction wave. S2 +R1. (See
Figure 3.14.)

By considering the relative location of states (1), (2), (3), it follows
that there is just one outgoing wave pattern, consisting of a single
wave S′

1, with |S′
1| = |R2| + |S1|. In fact, (3) must be located on

u + v = u1 + v1 = u2 + v2 with v3 > vB = u2, as shown in Figure 3.13
since (3), as right-hand state, is joined to (2) by a 1-shock.

As in items II and IV above, (1) is joined to (2) on the right by a 2-
shock S2, so u1 > v1 and (2) is located on the line u+ v = u1 + v1 with
v1 < u2 < u1. On the other hand, (2) is joined to (3) on the right by a

1

3

t

x R2

S1

2

FIGURE 3.12. The interaction R2 + S1.
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x
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FIGURE 3.13. States’ location and outgoing wave for R2 + S1.

1-rarefaction wave; thus (2) is restricted by u2 < v2 and (3) is located
on u + v = u1 + v1 = u2 + v2, with u3 > u2, u3 < v3. Therefore, there
is only one kind of outgoing wave pattern, consisting of a single wave,
S′

2, with |S′
2| = |S2| + |R1|.

The remaining wave interactions can be treated similarly. Summing
up the results of the previous analysis, and recalling Lemma 3.1, we
conclude

Lemma 3.2. In any possible interaction, if the incoming waves are
contained in the domain D, then the outgoing waves do the same, and
the summation of the wave strength of the outgoing waves does not
exceed that of the incoming waves.

In view of the structure of the algorithm outlined above, it is obvious

1 32

S2

R1

FIGURE 3.14. The interaction S2 + R1.
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that Lemma 3.2 provides the uniform boundedness of the total variation
(in x) of the approximate solution in terms of the variables r, s. As
a consequence, the modification of Glimm’s compactness argument
provided by [14] permits one to conclude

Theorem 3.3. Let a ∈ U and (u0(x), v0(x)) be any initial datum of
bounded variation in r, s. Then, for any sequence {h} of mesh lengths
which approaches zero, there is a subsequence {hn} and a function (u, v)
such that, for any T > 0, (uhna(·, t), vhna(·, t)) converges in L1

loc to
(u(·, t), v(·, t)) uniformly, for 0 ≤ t ≤ T .

Following [14] again, one can prove that (u, v) is indeed a weak
solution for (3.1), so that we obtain

Theorem 3.4. The Cauchy problem (3.1) has a global weak solution
for arbitrary initial data of bounded variation in the r, s variables.

Remark . Since, being of bounded variation in u, v implies being
of bounded variation in r, s, one may replace in the assumption of
Theorem 3.4 the stronger requirement that initial data should be of
bounded variation in u, v. It is important to point out that boundedness
of variation in the r, s variables is the appropriate assumption. Indeed,
it is this property which is preserved in the course of wave interactions,
while the variation in the u, v variables may become unbounded, as a
consequence of the lack of strict hyperbolicity on the line u = v. This
is illustrated by the example following.

Example 3.5. Assume the initial data are linearly increasing,
strictly positive functions of bounded variation on R. On the strip
S0 := {(x, t) : −∞ < x < ∞} the solution of each Riemann problem
consists of a T -wave and a 2-shock wave. It can be shown that the
variation (in x) of the approximate solution in u, v, for any fixed t,
0 < t < s, is unbounded as O(h−1/2) as the mesh length h approaches
zero (see Figure 3.15).

4. A particular Cauchy problem and pattern differentiation.
In this section we shall consider a special initial value problem for (0.1),
motivated by the equations (0.2) introduced in Section 1. Indeed, we
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u

v

u0(– ∞)

u0(+ ∞)
v0(+ ∞)

v0(– ∞)

u

v

FIGURE 3.15. Unbounded variation in the (u, v)-variables.

shall consider (3.1) with the initial data

(4.1)

u0(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x < −a

u−, −a ≤ x < 0

u+, 0 ≤ x < a

0, x > a,

v0(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x < −a

v−, −a ≤ x < 0

v+, 0 ≤ x < a

0, x > a,

where a is a given positive constant, u±, v± are given constants such
that u− ≤ v−, u+ ≤ v+ (see Figure 4.1). If we choose v−, u− positive
and v+, u+ negative, these data correspond to “peaks” in the U0, V0

quantities representing the (initial) densities of the populations U, V
governed by system (0.2), see Figure 4.2.

In order to deal with the problem (0.1), (4.1), we solve the corre-
sponding Riemann problems at t = 0 for x = −a, x = 0, x = a first
and then deal with the interaction of the associated waves. By the re-
sults of Section 2, it turns out that the solution of the Riemann problem
(0.1) with initial datum (u, v) = (0, 0) for x < −a, (u, v) = (u−, v−)
for x > −a consists of a T -wave and a 2-shock emanating from the
point (−a, 0), denoted by S2(−a, 0). Likewise, the solution of the Rie-
mann problem (0.1) with initial datum (u, v) = (u−, v−) for x < 0,
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u0

x

u–

u+

– a a

v

x

v–

v+

– a

a

FIGURE 4.1. Special initial data for (0.1).

(u, v) = (u+, v+) for x > 0, consists of a 1-shock emanating from the
point (0, 0), denoted by S1(0, 0) a T -wave and a 2-shock denoted by
S2(0, 0). Finally, the solution of the Riemann problem (0.2) with ini-
tial datum (u, v) = (u+, v+) for x < a, (u, v) = (0, 0) for x > a, consists
of a 1-shock emanating from the point (0, 0), denoted by S1(a, 0) and
a T -wave (see Figures 4.2 and 4.3). Clearly, the shocks S2(−a, 0) and
S1(0, 0) will interact with each other, and so do the shocks S2(0, 0)
and S1(a, 0). Denote, by (xA, tA), the coordinates in the (x, t)-plane of
the point where the shocks S2(−a, 0) and S1(0, 0) meet. Then consider
the Riemann problem consisting of system (0.1) supplemented, at time
t = tA, with data (u, v) = (u−+v−, 0) for x < xA, (u, v) = (0, u−+v−)

U0

x– a a

V0

x– a a

FIGURE 4.2. Corresponding initial data for system (0.2).
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u

v

(u–v–)

(u+v+)

u = 0
v = u+ + v+

u = 0
v = u– + v–

~

*

t

x

v = 0
u = u– + v–

*

v = 0
u = u+ + v+

~

v = 0
u = 0

v = 0
u = 0

v+

u+
v–

u–

FIGURE 4.3. Solving Riemann problems at x = −a, x = 0, x = a.

for x > xA. Plainly, the solution consists of a T -wave joining the states
(u = u− + v−, v = 0) and (u = 0, v = u− + v−). Next denote, by
(xB, tB), the coordinates where the shocks S2(0, 0) and S1(0, a) meet
and consider the Riemann problem consisting of system (0.1) supple-
mented, at time t = tB , with data (u, v) = (0, u+ + v+) for x < xB,
(u, v) = (u+ + v+, 0) for x > xB. Again, the solution consists of a T -
wave joining the states (u = 0, v = u+ + v+) and (u = u+ + v+, v = 0).
As a result of this analysis, it turns out that the solution of (0.1),
(4.1) consists, for t ≥ max{tA, tB}, of five T -waves, all traveling with
the speed σ = 1 (see Figure 4.4). Let us compute the values of
tA, tB, xA, xB. Toward this end, observe that the speed of S2(−a, 0)
is σ2 = 1 + u− and that of S1(0, 0) is σ1 = 1 − v−. Therefore,

tA = a/(u− + v−),
xA = a(1 − v−)/(u− + v−).

Likewise, since the speed of S2(0, 0) is σ2 = 1−v+ and that of S1(a, 0)
is σ1 = 1 + u+, we obtain

tB = −a/(u+ + v+),
xA = −a(1 − v+)/(u+ + v+).
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u 
= 

0
v =

 u + 
+ 

v +

t

x

v = 0
u = u– + v–

* v = 0
u = u++v+~

v = 0
u = 0

v = 0
u = 0

v+

u+
v–

u–

v =
 u – 

+ v –

u =
 0

A B

FIGURE 4.4. Resulting wave patterns.

It is clear that, for t ≥ max{tA, tB}, v is defined as

v(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < xA + (t − tA),
u− + v−, xA + (t − tA) ≤ x < t,
u+ + v+, t ≤ x < xB + (t − tB),
0, x ≥ xB + (t − tB),

so that v(x, y) experiences three jumps, each of which propagates with
speed σ = 1. Observe that the strength of jumps is larger than that of
the initial jump; however, the solution’s support becomes narrower, for
[xB +(t− tB)]− [xA +(t− tA)] = a[v+/(u+ +v+)+v−/(u− +v−)] < a.
Similarly, for t ≥ max{tA, tB}, u is defined as

u(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x < t − a,
u− + v−, t − a ≤ x < xA + t − tA,
0, xA + (t − tA) ≤ x < xB + (t − tB),
u+ + v+, xB + (t − tB) ≤ x < a + t,
0, x ≥ a + t.

This shows that, after a finite time, the initial jump is split into
two “square waves” of opposite sign, each propagating with the same
speed (see Figure 4.5). From the above expressions for u, v we easily
derive those for U(x, t), V (x, t), i.e., if we agree to define the latter
quantities as the primitives (with respect to x) of u(x, t), v(x, t) which
take, for large x’s, the constant values U0(a), V0(a), respectively. Thus,
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xA + (t – tA) t

u– + v–

u+ + v+

v(t, · )

xA + (t – tA)

t – a

u– + v–

u+ + v+

u(t, · )

xB + (t – tB)

a + t

FIGURE 4.5. Wave profiles for u, v for t ≥ max{tA, tB}.

the initial data U0, V0 develop, after a finite time, into traveling wave
solutions with speed = 1: in the moving coordinate frame ξ = x − t,
U has a flatter profile than at time zero, while V has a steeper one
(see Figure 4.6). The calculations are particularly simple in the special
case u+ = v+ = −δ, u− = v− = δ (where δ > 0), which means that
the initial profiles of both components are the same: the results are
illustrated in Figure 4.7, which displays the wave profiles for (u, v),
(U, V ) initially and, after a time, t∗ = a(1 − δ)/2δ. The same initial
distribution of U, V gives rise, after a finite time, to traveling waves
exhibiting a “sharp” profile for V and a “flat” profile for U . Therefore,
the initial value problem considered in the present section may serve as
a model for pattern formation, since the initial configuration in which

V

U0

U

V0

FIGURE 4.6. Profiles of U(t, ·), V (t, ·) for t ≥ max{tA, tB} (in the moving
coordinate x − t) compared with those of U0(·), V0(·).
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U0 = V0

UV

FIGURE 4.7. Wave profiles in the symmetric case:

thin line: U0(x) = V0(x)

thick lines: U(t,x−t) for t > t∗ (dotted)

V (t,x−t) for t > t∗ (solid).

U and V are mutually undifferentiated evolves into a permanent wave
in which U and V have markedly different profiles.
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