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SPECTRAL ALGEBRAS

THEODORE W. PALMER

ABSTRACT. Spectral algebras are a class of abstract com-
plex algebras which share many of the good properties of Ba-
nach algebras. In the commutative case they are precisely the
class of abstract algebras having a full Gelfand theory. Any ir-
reducible representation of a spectral algebra is strictly dense.
Spectral algebras are defined and characterized in terms of
spectral pseudo-norms and spectral subalgebras. Spectral al-
gebras, spectral subalgebras and spectral pseudo-norms are
shown to occur frequently in analysis.

It is also shown that when the spectral radius is finite
valued, if it is either subadditive or submultiplicative, then it
has both properties and that this occurs exactly for algebras
which are spectral algebras and commutative modulo their
Jacobson radicals.

The paper is written in an expository style.

1. Introduction. The spectrum is undoubtedly the most important
concept in the theory of (linear, associative) algebras. This article is
an exploration of those abstract (i.e., not necessarily normed) complex
algebras in which the spectrum behaves as it does in Banach alge-
bras. Examples which outline the boundaries of this theory are also
given. The article is written in an expository fashion with minimal
prerequisites. Proofs are complete and self contained except for some
well-known arguments for which specific references are given.

We shall use C,R,R and N to denote the complex numbers, real
numbers, nonnegative real numbers and natural numbers, respectively.
In this article the word algebra will mean a ring, 2, which is also a
complex linear space under the same addition and satisfies (Aa)b =
A(ab) = a(Ab) for all a,b € A and A € C. In the introduction, for
ease of exposition, we will also assume that 2 contains a multiplicative
identity, 1, (in this case 2 is said to be unital), but this assumption will
not be made later. For any element, a € 2, we define its spectrum and
spectral radius by

Sp(a) = {X € C: A1 — a has no inverse in A},
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and
p(a) = sup{|\| : X € Sp(a)},

respectively. If the spectrum is empty or unbounded, then the spectral
radius will have the value —oo or co, respectively. When no element has
empty or unbounded spectrum, the spectral radius is a nonnegative real
valued function on the algebra—a beginning for analysis and geometry.

Here are some elementary examples: (1) If 2 = M,, is the algebra of
all n X n-matrices (for some positive integer n), then

Sp(a) = {eigenvalues of a},

and
p(a) = max{|A| : X is an eigenvalue of a}.

(2) If A = C(Q) is the algebra under pointwise operations of all
continuous complex valued functions on some compact Hausdorff space
Q (such as [0,1]), then each function f in C(2) satisfies

Sp(f) = {f(#) : t € Q} = (range of f) = f(?)

and

p(f) = max{|f ()] : t € Q} = [|f]|oo,

where the last symbol is defined by the previous expression and is called
the supremum or uniform norm of f.

An algebra pseudo-norm, o, is a submultiplicative pseudo-norm, i.e.,
a function o : A — R satisfying

o(a+0b) < o(a) + a(b) (subadditive)
o(Aa) = |Ao(a) (absolutely homogeneous)
o(ab) < o(a)o(b) (submultiplicative)
for all a,b € A and all A € C. If, in addition, o(a) = 0 implies a = 0,
then we would call o an algebra norm. A spectral pseudo-norm is an

algebra pseudo-norm, o, satisfying

(1) p(a) < o(a) Va € .
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In Theorem 3.1 and elsewhere we will show that this condition is
equivalent to many others of which we mention two here:

(2) p(a) = lim o(a™)™  Vaeq,

n—roo

and

(3)  the set of invertible elements in 2l is open with respect to o.

Algebra norms with property (3) were first studied by I. Kaplansky
[9], who called algebras provided with such a norm, Q-algebras. (He
actually considered rings which were not necessarily algebras.) E.A.
Michael [14] and B. Yood [28] first noted the equivalence of these
properties. Many examples of spectral pseudo-norms are known:

(i) Any complete algebra norm [6]. (An algebra together with a
complete algebra norm is called a Banach algebra. The algebra, C(Q2),
of example (2) above together with its uniform norm, ||f||~, is an
example of a Banach algebra.)

(ii) Any algebra norm (not necessarily complete) on a completely
regular semisimple commutative Banach algebra [21].

(iii) Any algebra norm (not necessarily complete) on a B*-algebra
[21], cf. [3].

(iv) Any algebra norm (not necessarily complete) on any two-sided
ideal in B(X) or on any closed subalgebra of B(X) which includes all
finite rank operators, where B(X) is the algebra of all bounded linear
operators on a Banach space X [28].

(v) Any algebra norm (not necessarily complete) on a modular
annihilator algebra [1].

(vi) The operator norm on a full Hilbert algebra [24].

(vii) The Gelfand—Naimark pseudo-norm on a hermitian Banach
*-algebra ([16], cf. [19 and 18]).

(viii) Any algebra pseudo-norm on a Jacobson radical algebra.

Kaplansky [10] showed that an algebra pseudo-norm was spectral on
2 if and only if for some (and hence for all) ideals J, both its restriction
to J and its quotient pseudo-norm on 2/J were spectral (cf. Theorem

3.4(v)).
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A spectral algebra is an algebra on which some spectral pseudo-norm
can be defined. We emphasize that it is not an algebra with a particular
choice of spectral pseudo-norm, but merely an algebra on which it is
possible to define at least one spectral pseudo-norm. Most spectral
algebras have many spectral pseudo-norms, and no one spectral pseudo-
norm is preferred above the others (cf. Example 3.6 and Proposition
3.7). The theorems in the body of the article will justify this definition.
We will mention only a few of the simplest results in this introduction.
Note that any Banach algebra is a spectral algebra.

A commutative algebra is spectral if and only if it satisfies all of the
usual results of the Gelfand theory for commutative Banach algebras
(Theorem 4.1). More explicitly, if all the elements of an algebra have
nonempty bounded spectrum and satisfy

Sp(a + b) C Sp(a) + Sp(b)
Sp(ab) C Sp(a)Sp(b),

then the algebra is commutative modulo its Jacobson radical (defined
below), and the spectral radius itself is a spectral pseudo-norm, so that
the algebra is a spectral algebra. Conversely, if an algebra which is
commutative modulo its Jacobson radical is also spectral, then these
results hold. Furthermore, these conditions on a unital algebra, 2, are
equivalent to the existence of a naturally defined, nonempty, compact
space 'y and a homomorphism * from 2 into the algebra C'(T'y) of all
continuous complex valued functions on I'y satisfying

Sp(a) = a™(Ty) Va € .

We will show by example (2.8) that the spectral radius need not be
subadditive nor submultiplicative even when it is finite valued on a
commutative algebra. However, if either of these conditions do hold
on any algebra, then they both do, so the spectral radius is a spectral
pseudo-norm and all the foregoing results also follow (Theorems 2.10
and 4.1).

For the purpose of this introduction, we may define the Jacobson radical,
2y of an algebra, 2, as the largest ideal of 2 on which the spectral radius
vanishes. (This agrees with any of the standard definitions, several of which
have the virtue of applying to general rings, cf. 6.1, 6.5). Thus, it plays a
distinguished role in the present theory. An algebra is said to be a Jacobson
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radical algebra if it is equal to its own Jacobson radical. Such an algebra
is spectral since the identically zero function is a spectral pseudo-norm.
(Caution: this is the only place in this introduction in which we speak
of nonunital algebras; no radical algebra is unital.) Since the Jacobson
radical is closed in any spectral pseudo-norm, any spectral pseudo-norm
on a Jacobson semisimple algebra is actually a norm (Proposition 6.2 and
Corollary 6.3).

The quotient of any spectral algebra by any ideal is spectral (Theorem
3.4). Stated another way, any homomorphic image of a spectral algebra
is spectral. Thus, the quotient of a Banach algebra by a not necessarily
closed ideal is a spectral algebra. In order to go further with categorical
properties of spectral algebras, it is necessary to introduce the notion of
spectral subalgebras.

A spectral subalgebra of an algebra is a subalgebra in which each element
has the same nonzero numbers in its spectrum whether calculated relative
to the subalgebra or the full algebra (cf. Section 5). A subalgebra is called
a unital subalgebra if it contains the multiplicative identity element of the
larger algebra. Bourbaki [2] calls unital subalgebras full (pleine) if they are
spectral subalgebras, but many interesting cases of spectral subalgebras are
not unital subalgebras as the following list of spectral subalgebras shows.

(i) Any one- or two-sided ideal.

(ii) The commutant of any subset. Hence, the center of an algebra and
any maximal commutative subalgebra.

(iii) For any idempotent e € 2, the “corner” subalgebra, e2le.

(iv) Any modular annihilator or finite dimensional subalgebra of a
normed algebra (Corollary 5.7).

(v) Any closed subalgebra of a Banach algebra in which each element
of the subalgebra has nowhere dense spectrum relative to the subalgebra
(Corollary 5.6).

(vi) Any closed *-subalgebra of a Banach *-algebra (Corollary 5.8).

(vii) The range of the left or right regular or extended regular represen-
tation.

(viii) Any intersection of spectral subalgebras or any spectral subalgebra
of a spectral subalgebra.
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As one would expect, a spectral subalgebra of a spectral algebra is again
a spectral algebra in its own right. (However, a spectral subalgebra of
a nonspectral algebra need not be a spectral algebra. Despite this
difficulty, we believe the name “spectral subalgebra” is appropriate
since spectral subalgebras are the appropriate kind of subobject in the
category of spectral algebras. (The morphisms in this category are just
algebra homomorphisms.)) This gives a long list of spectral algebras.
For instance, any (not necessarily closed) ideal in a Banach algebra is
spectral. In fact, one characterization of spectral algebras is that they
are exactly those algebras, 2, such that A/, can be embedded as a
spectral subalgebra of some Banach algebra (Theorem 6.10, cf. 6.11).
This characterization remains valid even if the subalgebra is required
to be dense and the Banach algebra is required to be semisimple.

In [20], C.E. Rickart extended Jacobson’s result on strict density
to all complex Banach algebras. This result also holds for spectral
algebras (Theorem 6.7). Similarly, the theory of topological divisors of
zero extends to spectral pseudo-norms, and hence its consequences are
available for spectral algebras (Section 5).

Although most of the results proved in this paper are new, most of the
proofs are really not. The paper is an investigation of the appropriate
choice of definitions to extend many known proofs to abstract algebras.
We believe the results already stated, and those contained in the body
of the article, show that these definitions provide the natural setting
for these results. The theory of Banach algebras and complete norms
will, of course, continue to dominate applications since it is so easy
to complete an algebra with respect to an algebra norm, but the
spectral properties investigated here lie behind the success of that
theory. Because the paper is intended to be expository, an attempt
is made to give elegant proofs for most results. Specific references are
supplied for some extremely well-known statements.

Most of the results given here were found in 1972 but have remained
unpublished (cf. remark (2) in Palmer [16]). The appearance of
Wilansky’s question [27] convinced the author to extract them from his
unpublished book manuscript. The author thanks R.B. Burckel whose
careful reading of a preliminary version of the manuscript allowed him
to correct several errors. (See Note added in proof at the end.)
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2. Preliminary results and examples. We begin with some
simple results and counterexamples on the concept of spectrum in
(complex) algebras.

If A is not unital, let A! be its unitization. As a linear space, ! is
C & 2 and its multiplication is given by

APa)(pdb) =Au® (Ab+ pa + ab) VA, u € C;Va,b e 2.

We regard C and 2l as subalgebras of 2! under the injections A — &0
and a — 0 @ a, respectively. Henceforth, we replace the direct sum
signs by ordinary plus signs. If 2 is already unital, it is convenient to
let A' denote 2 itself and regard C as a subalgebra under the injection
A +— Al. Then we may define the spectrum of an element a in an
arbitrary (not necessarily unital) algebra 2 by

Spy(a) = {A € C: X\ — a has no inverse in 2A'}

and define the spectral radius by py(a) = sup{|\| : X € Sp(a)} (with
the usual convention if Spgy(a) is empty or unbounded). When the
algebra is clearly understood, we will drop the subscript on both of
these notations.

Zero plays a special role in the spectrum and must be treated sep-
arately in the statement of many theorems. The problem is that this
common notion of spectrum does not behave well with respect to homo-
morphisms or subalgebras unless they are unital. (A homomorphism
o : A — B is unital if A and B are unital and (1) is the identity
element in *B; a subalgebra B of 2 is unital if B contains the identity
element of 2 so that the embedding homomorphism is unital.) For
this reason, and in order to define the spectrum without mentioning
Al it is better to consider quasi-invertibility rather than (ordinary)
invertibility. We define the quasi-product of two elements by

aob=a+b—ab

(so that 1 — (a0 b) = (1 —a)(1 — b) holds in A'), and define a € A to
be quasi-invertible if there is an element a? (called its quasi-inverse)
satisfying a 0o a? = a% o a = 0. Clearly, the quasi-inverse is unique if
it exists and the set ;g of quasi-invertible elements is a group under
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the quasi-product with zero as group identity. Now we can give an
equivalent definition of the spectrum:

a nonzero A € C belongs to the spectrum of a € 2 if and
only if A™! is not quasi-invertible in 2, and zero belongs

to the spectrum if and only if @ is not invertible in 2.

This definition is often easier to apply than the more intuitive one given
previously despite its awkward appearance.

Since any homomorphism ¢ : A — B satisfies p(A4q) C By we
see that Spg(¢(a)) CSpy(a) U {0} holds for all @ € A. Similarly,
if B is any subalgebra of 2, the inclusion B,z C2A;¢ N B implies
Spa () CSpgs (b) U {0} for all b € B. Simple examples show that the
“U{0}” cannot be omitted from the right side of these inclusions.

We begin our serious discussion of the spectrum with the following
general form of the spectral mapping theorem. This theorem includes
the following kinds of results: Sp(a?) = Sp(a)?; Sp(a~!) = Sp(a)?!
for invertible a € A; and Sp(a?) = {A\/(A—1) : A € Sp(a)} for quasi-
invertible a € 2. Since the rational functions described in this theorem
act in any algebra, this appears to be the natural form of the universal
spectral mapping theorem, and it is surprising that it is not the form
usually stated.

Proposition 2.1. If a is any element in any algebra A and f is any
rational function with no poles in Sp(a), then f(a) is defined in AL.
Unless Sp(a) is empty and f is constant, f(a) satisfies

Sp(f(a)) = {f(A) : A € Sp(a)} = f(Sp(a)).

Furthermore, any a,b € A satisfy

Sp(ab) U {0} = Sp(ba) U {0}.

Proof. If Sp(a) is nonempty and f is a constant, Ay, then they satisfy
f(a) = Ao and Sp(f(a)) = {Ao} = f(Sp(a)).

Henceforth, we assume that f is not a constant and work in 2A'. Let
p and ¢ be relatively prime polynomials satisfying f = p/q. In order to
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determine the invertibility of Ay — f(a) in A we factor ¢ and \gq — p:

qg(A) = a(Ad = A) (A2 = A) -+ (A = A)
A0q(A) —=p(A) = B(u1 = A)(p2 = A) -+ (fm — A)

where « and 8 are not zero (the latter since f = p/q is not a constant).
No p; appears among the A;s since p and g were relatively prime. So

Mo —fla) =B —a)(pz—a)--- (pm —a)/a(l —a) (A2 —a)--- (An —a)

is invertible unless some y; is in the spectrum of a, but the p;s are just
the roots of A\og(r) — p(1r) = 0. Another way to say the same thing
is that Ao is in the spectrum of f(a) if and only if an element of the
spectrum a is a root of A\pg(u) — p(p). But this is what we wished to
show.

The final remark follows from noting that A='b(c — 1)a is a quasi-
inverse for A\~ 1ba if ¢ is a quasi-inverse for A~ 1ab. a

Example 2.2. Algebras may contain many elements with empty
spectrum. Consider the function field C(z) in one variable consisting
of all rational functions in z. Any nonconstant function has empty
spectrum.

This situation cannot occur if any nontrivial algebra pseudo-norm
can be defined on 2. In this article an algebra pseudo-norm is called
nontrivial unless it is identically zero and the algebra is unital. (Thus
the identically zero function is a nontrivial algebra pseudo-norm on a
nonunital algebra. The point is that we only need to insist that the
extension of the algebra pseudo-norm o to o' on 2! is not identically
zero, where o is defined by o' (A + a) = || + o(a) if 2 is not unital.)

Theorem 2.3. Let o be a nontrivial algebra pseudo-norm on an
algebra, A. Then each element a € A satisfies

lim o(a™)™ < p(a).

n— oo

In particular, if such a pseudo-norm can be defined on an algebra, then
no element of the algebra has empty spectrum.
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An instructive proof of this result can be derived from simple analytic
function theory applied to the resolvent function A — (A — a)~!.
Instead, we refer the reader to C.E. Rickart’s elementary proof [21,22]
which can be readily adapted to the present case.

Corollary 2.4 (Gelfand-Mazur Theorem). Any division algebra on
which a nontrivial algebra pseudo-norm can be defined is isomorphic to
the complex field. The isomorphism is implemented by a — X\, where A
is the unique element in Sp(a).

Proof. By the theorem there is some A € C in Sp(a). Since A1 — a is
not invertible in the division algebra 2 = 2, it is zero. u]

Example 2.5. Many normed algebras contain elements with un-
bounded spectrum. For instance, consider the unital, commuta-
tive, normed algebra C[z] of all polynomials with the norm |[p|| =
sup{|p(A)| : A € C,|A| < 1}. In this algebra, every element has closed
spectrum since

C if p is not constant,
SPP) =\ ) irp=a

Example 2.6. There exist unital, normed (even commutative) alge-
bras in which some elements have unbounded and nonclosed spectrum.
Consider R = {rational functions with poles off {\ € C : || < 1}}.
We may give this the norm ||f|| = sup{|f(N)| : |A] < 1/2}. The spec-
trum of each rational function f € R is just {f(A) : |A| < 1}.

If each element of an algebra has bounded spectrum, then each
element has closed spectrum. Although this simple result must be
widely known, we include a proof since we know of no appropriate
reference.

Proposition 2.7. If every element in an algebra has bounded
spectrum, then every element has closed (hence, compact) spectrum.
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Proof. Suppose the algebra 2 satisfies this hypothesis but a € 2 has
nonclosed spectrum. Choose X in the closure of Sp(a) but not in Sp(a).
Then Sp((A —a)™') = {(A\ — u)~" : u € Sp(a)} is unbounded. o

If every element in an algebra has nonempty, bounded spectrum, then
the spectral radius is a nonnegative real valued function on the algebra.
In a commutative Banach algebra the spectral radius is also subadditive
and submultiplicative and hence is an algebra norm.

Example 2.8. There are unital commutative algebras in which the
spectrum of every element is nonempty and bounded (hence compact)
so that the spectral radius is a nonnegative real valued function, but on
which the spectral radius is neither subadditive nor submultiplicative.
In C @ C(z) the spectrum of an arbitrary element is given by

{A\} if f is not constant,

200 ={ (y it

so we have

p(0,1)=1>0+0=p(0,2)+ p(0,1 — 2)
p(0,1) =1>0-0=p(0,2)p(0,277).

I am indebted to H.G. Dales for supplying the reference to Ptak and
Zemanek [18] on which the next theorem is based. We will also need
the following result of Claude Le Page [12]. Because of its elegance, we
will give the proof of this result based on Marvin Rosenbloom [25].

Lemma 2.9. A unital normed algebra, 2, is commutative if and
only if there is a constant, C, satisfying

||abl] < C|bal| Va,b € 2.

Proof. If 2 is commutative, we may choose C' = 1. To prove the
converse, first note that we may replace 2 by its completion and thus
assume that 2 is complete. Define e*® by e*® = 3"°7 (Aa)™/n! so that
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e*® has inverse e~ *?. Let a,b € 2 be arbitrary but fixed for the rest
of this argument. For any fixed w € 2A* (where 2* is the Banach space
dual of 2) define f : C — C by

F(A) = w(eMbe9).

For suitable ¢, € A, f(A) = > .2 w(cy,)A" is an entire function
satisfying
[FO] < Hlwll (e (e )]

< Cljwl] |[be™A@er|]

= Cllwll[[o]]-
Hence, by Liouville’s theorem, f is a constant function. Thus, the
derivative, f', of f is identically zero. However, f'(\) = w(ae**be ¢ +
erb(—a)e **) implies f'(0) = w(ab — ba). Since w € A* was arbitrary,
we conclude ab = ba by the Hahn-Banach theorem. ]

Theorem 2.10. The following are equivalent for any algebra, A, in
which the spectral radius is finite valued:

(i) There is a constant C' satisfying
pla+b) < C(p(a) +p(b))  Va,be;

(ii) There is a constant C satisfying

p(ab) < Cp(a)p(b)  Va,b € A;

(i) A is commutative modulo its Jacobson radical and the spectral
radius is an algebra pseudo-norm.

Proof. (i) = (ii). Notice that the constants, C, necessarily satisfy
c>1. For a,b € 2, let Ay € C satisfy |\o| > 9C?p(a)p(b). Then we
may write A\g = pv with |u| > 3Cp(a) and |v| > 3Cp(b). Hence, we get

p((n—a)~"a) = sup{|A/(u = N)| : X € Sp(a)}
< sup{[A/(p — N : A < pla)} < (20)7

and similarly p((v — b)~'b) < (2C)~'. Thus,

Mo —ab= (u—a)1+(p—a)"ta+ (v—>0)""b)(v—0b)
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is invertible since

p((n—a)™la+ (v =b)7"b) < Clp((n—a)~'a) + p((v = 0)7'b)) <1

implies that the middle factor is invertible. We conclude that p(ab) <
9C?p(a)p(b).

(ii) = (i). For a,b € A, let A\ € C satisfy [Ag| > p(a) + Cp(b). We
must consider the unital and nonunital cases separately. If 2 is unital,

Ao = (a+b) = (Ao —a)(1— (Ao —a)~"b)
is invertible since
p((Ao —a)™1b) < Cp((Ao — a)H)p(b) < C(Cp(b))~'p(b) = 1.

If 2 is nonunital, (Ao — a)~! has the decomposition \,' + ¢ in AL,
Hence, in !,

)\0 — ((L + b) = ()\0 — a)(l — ()\0 — a)_lb)
= (Ao —a)(1 —Xg'b—cb)
= (Ao —a)(1—cb(1 = A7'B) ") (1 — A7)

is invertible since
pleb(1 = A718)71) < Cp(e)p(b(1 — A7H) ™) < 1
follows from
p(e) = p((ho—a)™ = Ag") = plarg ' (Mo —a) ") < [Agp(a)(Cp(b) "
and
p(b(1 = A7'0)™H) = alp(b(Ao — b) 1) < [Xolp(b)p(a) .
We conclude

pla+b) < p(a) + Cp(b) < C(p(a) + p(b)).

(ii) = (iii). By the last argument, we may assume p(a + b) <
p(a) + Cp(b) for all a,b € 2. Define

p(a) = C*sup{p(a+b) —p(b):bc A}  Vac
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Then p satisfies

p(atc) = C?sup{(p(a+c+b) — p(c+b)) + (p(c+b) — p(b)) : b€ A}
< p(a) + p(c) Va,c e 2,
C?p(a) < pa) < C3p(a) Va € 2,
p(ab) < C?p(ab) < C*p(a)p(b) < p(a)p(b)  Va,b € 2,

and thus is a spectral pseudo-norm (cf. Theorem 3.1 and Definition 3.2
below) which also satisfies

p(a)? < C%(a)? = C%p(a®) < C*p(a®)  Vaeq

Hence, the ideal on which p vanishes is the Jacobson Radical. Thus,
p induces a norm, || - ||, on 2A/2; defined by ||a + ;|| = p(a) for all
a € A which also satisfies the above inequality. However, this implies

[[(a +2As)(b+As)|| = ||ab+ As]| = p(ab) < C*p(ab) = C*p(ba)
< Cp(ba) = C[ba + Ayl = C[|(b+As)(a+2Ay)||

so that 2/2; is commutative by Lemma 2.9. However, since 2/
is a commutative spectral algebra, p is subadditive so that p = p by
the definition of p. (The reader may check the proof of (i) = (vi) in
Theorem 4.1 to see that this argument is not circular.)

(iii) = (i) and (ii). Since p is an algebra pseudo-norm, we may choose
C=1 o

3. Spectral pseudo-norms. In this section we collect the most
important results on spectral pseudo-norms. The reader should also
consult Theorem 5.3, Propositions 5.10 and 6.2, and [13] for additional
characterizations which depend on ideas not yet introduced. We begin
by showing the equivalence of a large number of conditions for an
algebra pseudo-norm.

Theorem 3.1. The following are equivalent for an algebra pseudo-
norm o on an algebra 2A:

(i) The set of quasi-regular elements of A is open with respect to o.

(il) The set of quasi-reqular elements of A has nonempty interior
with respect to o.
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(iii) Fora €2, o(a) <1 implies that a is quasi-invertible in .
(iv) Each a € 2 satisfies p(a) < o(a).
(v) Each a € A satisfies
p(a) = lim o(a™)

n—oo

1/n‘

(vi) There is a constant C € Ry such that each a € U satisfies
p(a) < Co(a).

Proof. (i) = (vi). Since zero is quasi-regular, there is some ¢ > 0 such
that o(a) < ¢ implies a € A,. Hence, o(a) < £ implies A ta € Ayq
for all A € C with |A\| > 1, which in turn implies p(a) < 1. Choose C
to be L.

(vi) = (v). By Proposition 2.1 the spectrum of a™ is just {\" : A €
Sp(a)}. Hence, p(a™) = p(a)™ holds for all @ € A and n € N. Thus
(vi) implies p(a) = p(a™)¥/™ < CY"g(a™)*/™. Combining this with
Theorem 2.3 gives the desired result.

(v) = (iv). Immediate since lim o(a")'/" < o(a).

(iv) = (iii). Immediate since p(a) < 1 implies 1 ¢ Sp(a).

(iii) = (ii). Zero is in the interior of Ayq.

(ii) = (i). Let ¢ € A,g be arbitrary and let d € A,¢ be an interior
point of 4. It is enough to show that c is an interior point. Define
amap L : A — A by L(a) = doc?oa. Clearly, L is continuous and

maps both ¢ onto d and 2, onto A,i. Hence, Ay = L H(Aye) is a
neighborhood of c. i

Definition 3.2. An algebra pseudo-norm satisfying one (and hence
all) of the conditions in the theorem above is called a spectral pseudo-
norm.

A spectral pseudo-norm which is actually a norm will, of course, be
called a spectral norm. In the introduction we provided a list of spectral
pseudo-norms and norms. Spectral pseudo-norms are always nontrivial
since 1 is never quasi-invertible.

When dealing with algebra norms rather than pseudo-norms, Fuster
and Marquina [5] noted the following equivalence. The result could be
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stated informally as follows: An algebra norm is spectral if and only if
all the geometric series which should converge have limits.

Proposition 3.3. The following conditions are equivalent for an
algebra norm, o, on an algebra A:
(i) o is spectral.
(i) The geometric series Y .-, a"™ has a sum in A if it satisfies
Pone10(am) < oo.

(iii) The geometric series Y ., a™ has a sum in A if o(a) < 1.

Proof. (i) = (ii). For a spectral norm o,limo(a™) = 0 implies that
ao(— 25:1 a™) = (- ZnN:1 a")oa = a1l is quasi-invertible in 2l for
large enough N. Hence a is quasi-invertible in 2. We will show that
—a? is the sum of the series ) a™. This follows from the estimate:

<aq+z >—U<1—aq)(1—a <aq+z >>

< o'(l-a%)o(a? — aa? +a—a"*?)
= (1+co(a?))o(a¥ ).

(if) = (iii). Immediate.

(iii) = (i). If the series converges, then

ao <—ia"> :a—ia”—l—ia”“zo
n=1 n=1

n=1

S0 a is quasi-invertible, verifying (iii) of the previous theorem. o

Notice that the proof of the implication (i) = (ii) remains correct
when ¢ is merely a pseudo-norm. However, the proof of the opposite
implication establishes only o(a o (—) .7, a™)) = 0. Since the set
of elements on which any spectral pseudo-norm vanishes is included
in the Jacobson radical (Corollary 5.3 below), this implies that a o
(=X, ,a™) is quasi-invertible when o is a spectral pseudo-norm.
Hence, the second condition of Proposition 2.13 could be included in
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Theorem 2.11 by restating it as follows: “For a € 2, o(a) = 0 implies
a € Uqe (or alternatively, a € ;) and o(a) < 1 implies that there is a
sum in A for Y7 | a",” but this was omitted because of its inelegance.

Next we mention the stability properties of spectral pseudo-norms
and some related results. Properties (iv) and (v) are due to Kaplansky
[10]. Spectral subalgebras are defined in the Introduction and Defini-
tion 5.1. The quotient pseudo-norm induced by o on /7 is defined
by

o(a+73) =inf{o(a+b):bec T} VYa e AU

Theorem 3.4. The following are equivalent for an algebra pseudo-
norm o on an algebra 2.
(i) o is spectral.
(ii) The restriction of o to each spectral subalgebra is spectral.

(iii) The restriction of o to each mazimal commutative subalgebra is
spectral.

(iv) The quotient pseudo-norm induced by o on A/T is spectral for
each ideal J of A.

(v) There is some ideal J for which both o and its quotient pseudo-
norm are spectral on J and /T, respectively. (When this condition
holds for some ideal, of course, it holds for all ideals.)

(vi) The quotient norm induced by o on A/ is spectral where Ay
is the Jacobson radical (defined below).

Proof. (i) = (ii). Since the nonzero spectrum of an element in a
spectral subalgebra is the same whether calculated in the subalgebra
or the full algebra, this is immediate from Theorem 3.1 (iv).

(i) = (iii). Maximal commutative subalgebras are spectral subalge-
bras.

(iii) = (i). Each element in the algebra belongs to some maximal
commutative subalgebra, so this also follows from Theorem 3.1(iv).
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(i) = (iv). The inequality ps/3(a + J) < pa(a) for all a € A and
Theorem 3.1 (iv) give this.

(iv) = (vi) = (v). Immediate since 2 is always spectral.

(v) = (i). It is enough to show o(a) < 1/3 implies that a is quasi-
invertible in 2. This implies o(a + J) < 1/3 and, hence, that the
quasi-inverse, b+ J, of a + J satisfies o(b+7J) < (1/3)/(1 —1/3) = 1/2.
Hence, b can be chosen in A to satisfy o(b) < 1/2 so that o(aob) <
o(a) + o(b) + o(ab) < 1; then a o b is quasi-invertible in J (where o is
spectral) and hence a o b and a are quasi-invertible in 2. O

Example 3.5. Spectral pseudo-norms are not unique in any sense
even in unital, semisimple commutative Banach algebras. Consider
¢*(Z) with convolution multiplication. Both p and || - ||; are spectral
norms. Nevertheless, Proposition 1.3 of Palacios [15] can be restated
as follows.

Proposition 3.6. If a sequence converges in two different spectral
norms on an algebra, the two limits differ by an element of the Jacobson
radical. Hence, in a semisimple algebra the two limits are equal.

Of course, the above result has Johnson’s uniqueness of norm theorem
for semisimple Banach algebras as an immediate corollary.

Finally, we formally define spectral algebras.

Definition 3.7. An algebra is called spectral if some spectral pseudo-
norm can be defined on it.

We wish to emphasize again that a spectral algebra is not an algebra
together with some particular spectral pseudo-norm but is rather an
abstract algebra on which some spectral pseudo-norm can be defined.

As Rickart points out in his book [23, 1.4.1], the limit, lim o(a™)'/™,
has many desirable properties. Theorem 3.1(v) immediately shows that
in any spectral algebra the spectral radius has all these properties. We
have already shown by example that subadditivity and submultiplica-
tivity on commuting elements is not a property of the spectral radius
(even when it is finite valued) in arbitrary commutative algebras.



SPECTRAL ALGEBRAS 311

We can express this definition in a more geometric way.

Proposition 3.8. An algebra is spectral if and only if there is some
balanced, convex, absorbing semigroup included in the set of quasi-
reqular elements.

Proof. The open unit ball of a spectral pseudo-norm would be such
a set, and conversely given such a set, its Minkowski functional would
be a spectral pseudo-norm. ]

We will need a simple technical result.

Proposition 3.9. An algebra is spectral if and only if its unitization
is spectral.

Proof. If 2 is nonunital and ¢ is a spectral pseudo-norm on 2, then
ol A1 — R defined by o'(\ + a) = |A| + o(a) is also spectral since
p(A+a) < || + p(a) is obvious. If ¢ is a spectral pseudo-norm on 2A*,
then its restriction to 2 is spectral. u]

Example 3.10. Here is a typical example of a nonspectral alge-
bra norm. Let 2 be the disc algebra: the algebra under pointwise
operations of functions continuous on the closed unit disc in C and
holomorphic on its interior, D. Let S be any subset of D with a limit
point in D. Then || - ||s defined by ||f||ls = sup{|f(N)] : X € S} is
a norm on 2. It is not spectral unless the closure of S includes the
boundary of the disc.

Question 3.11. Recall that an algebra pseudo-norm is spectral if
its restriction to each maximal commutative subalgebra is spectral. Is
an algebra spectral if each of its maximal commutative subalgebras is?

Question 3.12. There is some evidence (and several plausible but
fallacious “proofs” based on the isomorphism between (J; +3J2)/J; and
J2/(31 N J3) and Theorem 3.4(v)) that in any algebra, or at least in
any commutative algebra, the sum of two ideals is a spectral algebra
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if each of the ideals are spectral algebras in their own right. A similar
variant relates to a pseudo-normed algebra (2,0) and asks whether
o is spectral on the sum of two ideals when it is spectral on each
ideal separately. This last result would imply that each pseudo-normed
algebra has a largest ideal on which the algebra pseudo norm is spectral.
The commutative result implies this largest spectral ideal exists in any
commutative algebra. Are any of these results true?

4. Commutative spectral algebras. In this short section we show
that a commutative algebra is spectral if and only if it has a complete
Gelfand theory. We discuss the well-known Gelfand construction only
enough to fix our notation. In fact, we require only commutativity
modulo the Jacobson radical. Finally, we note that every commutative
algebra has a largest ideal which satisfies the Gelfand theory.

Let 2 be an arbitrary algebra and let I'yqy be the set of all nonzero
(hence surjective) algebra homomorphisms from 2 into C. (Until we
provide criteria for this set to be nonempty we tacitly assume that it
is nonempty for each algebra 2 under discussion.) For each a € 2 we
define @ : 'y — C by a(y) = 7y(a) for all v € Ty. It is easy to see
that the map a — a is an algebra homomorphism of 2 into the algebra
of all complex-valued functions on I'y. We will call the kernel of this
homomorphism the Gelfand radical of 2. In a commutative algebra it
equals the Jacobson radical of 2.

Consider the set 'y of maps from 2 into C as a subset of the Cartesian
product [],cq C. When I'y is provided with the relativized product
topology, we call it the Gelfand space of 2. This topology is precisely
the weakest topology such that a : I'qy — C is continuous for each
a € . The continuous function G : I'qy — C is called the Gelfand
transform of a, and the homomorphism a +— @ is called the Gelfand
homomorphism.

It is easy to see that the range of the Gelfand transform, a, of a € 2
is included in the spectrum of a. (If b is an inverse for y(a) — a in 2!,
then 1 = y(1) = v(b(v(a) — a)) = v(b)(v(a) — v(a)) = 0, where 7 is
extended (if necessary) to 2! by y(A+a) = A+v(a).) If each element of
2 has bounded spectrum, then Iy is included in the compact product
[loco Cpa)s Where Cpqy = {A € C : [A| < p(a)}. If A is unital,
[y is closed in this product and, hence, compact. If 2 is nonunital,
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Iy U {0} (where O represents the identically zero homomorphism) is
closed. Hence, 'y U {0} is the one-point compactification of Ty,
which must, therefore, be locally compact even when 2| is nonunital.
Furthermore, G vanishes at infinity on I'y.

So far, we have provided no conditions to force the Gelfand space
to be nonempty. Clearly, the Gelfand transform of any commutator is
zero, so that we cannot expect the Gelfand space to be large enough to
be useful unless 2l is almost commutative. In this case that turns out
to mean that 2l is commutative modulo the Jacobson radical. Also, 'y
would be empty if any element of 2 had empty spectrum. In fact, we
only get a useful theory when there are enough elements in the Gelfand
space so that the obvious inclusions

a(l'at) S Spe(ry) (@) S Spa(a) U {0}

can be reversed. (As usual, zero plays a special role in the spectrum
here, so that it must be omitted from the reversed inclusions.) It is
only at this stage of the construction that we need to introduce the
spectral condition as a substitute for completeness.

Theorem 4.1. The following are equivalent for an algebra, 2.

(i) A is a spectral algebra which is commutative modulo its Jacobson
radical.

(ii) The spectral radius on A is an algebra pseudo-norm.

(iii) The spectral radius is finite valued and there is a constant C
satisfying p(a + b) < C(p(a) + p(b)), a,b € A.

(iv) The spectral radius is finite valued and there is a constant C

satisfying p(ab) < Cp(a)p(b), a,b € A.

(v) Every element of A has nonempty bounded spectrum and any
two elements satisfy:

Sp(a+b) € Sp(a) + Sp(b)
Sp(ab) C Sp(a)Sp(b)

(vi) Fither 2 is radical or the Gelfand space T'q, of A, is nonempty
and locally compact in the Gelfand topology, and each element a € A



314 T.W. PALMER

satisfies

ae Co(]._‘gl)
a(l'a) € Sp(a) Ca(l'y) U {0}

If A is unital, Ty is compact and each a € A satisfies

a(Ty) = Sp(a).

Proof. Theorem 2.10 shows that conditions (iii) and (iv) are equiv-
alent to each other and to (i) and (ii) combined. Hence, (ii) is also
equivalent to (iii) and (iv) and they imply (i). Since the implications
(vi) = (v) = (ii) are clear, it only remains to prove (i) = (vi). (In the
nonunital case it appears at first that (vi) would imply the two inclu-
sions of (v) only with “U{0}” added to the right side, but this addition
is not needed since the spectrum of any element in a nonunital algebra
contains zero.)

(i) = (vi). If A is not a radical algebra, (i.e., 2 is not equal to its
Jacobson radical), there is some element b € 2 which has a nonzero
number A in its spectrum. We will show that, for any such nonzero A
in the spectrum of any element b € 2, there is some ~ in 'y satisfying
A = 4(b). Since the discussion given before the statement of this
theorem established the topological properties of 'y and of @ and the
inclusion a(Ty) C Sp(a), this will conclude the proof. (If 2 is unital and
a is not invertible, so that its spectrum contains zero, to establish the
last sentence we must also show that some v € Iy satisfies v(a) = 0,
but the argument is entirely analogous to the one we are about to give.)

The set A(A — b) is a proper modular left ideal with right relative
identity A~'b. By Zorn’s lemma it is included in a maximal modular
left ideal, M, which does not contain A~'h. However, since any
maximal modular left ideal such as 91 includes the Jacobson radical
Ay of A, and since A/A; is commutative, M is in fact a two-sided
ideal. Choose a spectral pseudo-norm ¢ on 2. If any ¢ € I satisfies
oAb —¢) < 1, then A7b — ¢ has a quasi-inverse, a. However, this
implies A6 = —(a—aX"!b)+c—ac € M, contrary to the construction
of M. Thus, the o-closure of 9 is a proper ideal and, hence, equals
M by maximality. Therefore, 9 is closed with respect to o which thus
induces a norm on the division algebra 2/9t. By the Gelfand-Mazur
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theorem, there is an isomorphism of 2/9 onto C. Define v to be the
composition of this isomorphism with the natural map of 2 onto /9.
The equality v(b) = X is now obvious. O



316 T.W. PALMER

5. Spectral subalgebras and topological quasi-divisors of
zero. In the introduction we listed a number of sufficient conditions
for a subalgebra to be a spectral subalgebra. Of these, conditions (i),
(ii), (iii), (vii) and (viii) have easy algebraic proofs which we omit. The
other three all depend on the theory of topological quasi-divisors of
zero, introduced by Kaplansky [11] following Silov [26]. Topological
quasi-divisors of zero cannot be defined in a spectral algebra, since the
algebra has no particular spectral pseudo-norm. However, the most
useful consequences of this concept are independent of the particular
choice of norm, so that they are available in the theory of spectral
algebras. We will sketch these results very briefly, since they do not
differ appreciably from the Banach algebra case. We begin with a
formal definition of the concept informally defined in the introduction.

Definition 5.1. A subalgebra B of an algebra 2 is said to be a
spectral subalgebra if it satisfies

%qg =BN qu(;.

It is immediate that this is equivalent to the condition
Spas (b) U {0} = Spy(b) U {0} Vb € ‘B.

Since Spy(b) CSpgy(b) U {0} holds for any element in an arbitrary
subalgebra, we may write

Sps(b) CSpa(b) U {0} Vb e B,

for the equivalent condition. (At the end of this section we will discuss
when the stronger inclusion

S (b) CSpa(b) Vb e B,

holds.) A unital subalgebra is spectral if and only if it is full (pleine)
in the sense of Bourbaki [2].

Definition 5.2. An element, a, in an algebra, 2, with an algebra
pseudo-norm, o, is called a left topological quasi-divisor of zero if there
exists a sequence {b, },en C 2 satisfying both

o(b,) =1, VneN, and o(b, —ab,) — 0.
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Right topological quasi-divisors of zero are defined similarly, and an
element which is both a right and a left topological quasi-divisor of
zero is called a two-sided topological quasi-divisor of zero.

The utility of this concept arises from the obvious fact that even a
one-sided topological quasi-divisor of zero cannot have a quasi-inverse
in any larger pseudo-normed algebra (i.e., 1 = o(b,) = o(a%0aocb,) <
o(b, — ab,) + o(a?)o (b, — ab,) — 0) and the following theorem. The
sufficiency of this condition was first noted by V. Mascioni in [13].

Theorem 5.3. Let U be an algebra, and let o be an algebra pseudo-
norm on A. Then o is a spectral pseudo-norm if and only if every
element in the boundary of U,q is a two-sided topological quasi-divisor
of zero.

Proof. To establish the necessity of the condition adapt [23, 1.5.9].
For the sufficiency, simply note that if o is not spectral, then some
elements of the boundary of 2,s belong to 2,e, contradicting the
remark preceding this theorem. o

Corollary 5.4. Let o be an algebra pseudo-norm on an algebra 2.
If B is a subalgebra on which o is a spectral pseudo-norm, then every
element of B satisfies

9Spys (b) € Spa(b) U {0} € Spes (b) U {0}

Proof. The second inclusion holds for any subalgebra and the first
follows from the theorem and preceding remarks. ]

Corollary 5.5. Let 2 be a spectral algebra. Then the following are
equivalent for any subalgebra B:

(i) pu(b) = px(b), Vb € B.
(il) B is a spectral algebra satisfying

OSpgs (b) COSpy(b) U {0} CSpg(b) U {0} CSpy(b) U {0} Vb € ‘B.
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(iii) The restriction to B of some spectral pseudo-norm on A is a
spectral pseudo-norm on ‘B.

(iv) The restriction to B of every spectral pseudo-norm on 2 is a
spectral pseudo-norm on B.

Proof. (i) = (iv). Use Theorem 3.1(v).
(iv) = (iii). Obvious, since 2 is spectral.

(iii) = (ii). This follows from the previous corollary and the fact that
the spectrum is closed in a spectral algebra.

(ii) = (i). Obvious. o

Corollary 5.6. A closed subalgebra of a Banach algebra is a spectral
subalgebra if every element in the subalgebra has a nowhere dense
spectrum in the subalgebra.

Proof. A closed subalgebra of a Banach algebra obviously satisfies
Corollary 5.5(iii). If Spyg(b) is nowhere dense, then it is equal to its
own boundary, so Corollary 5.5(ii) shows that B is a spectral subalgebra
when every element of 9B has this property. u]

Corollary 5.7. Any finite dimensional or modular annihilator
subalgebra of a normed algebra is a spectral subalgebra.

Proof. The restriction of the norm on 2 to the subalgebra B is
a spectral norm by completeness and [1], respectively, in these two
cases. In both cases, every element of the subalgebra has nowhere
dense spectrum. Apply Corollary 5.4. O

Corollary 5.8. Any closed *-subalgebra of a Hermitian Banach *-
algebra is a spectral subalgebra.

Proof. If b has no quasi-inverse in B, then either b o b* or b* o b
has none either. Since these elements are hermitian, their spectra are
purely real. Hence, Corollary 5.5 gives

Spas(bob™) = OSpy(bo b*) CISpy(bob*)U{0} = Spy(bod*)U{0}
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which shows that bob* (or b*ob, as the case may be) has no quasi-inverse
in 2. The same follows for b. o

The next result is a corollary of Theorem 3.4 which provides innu-
merable examples of spectral algebras which are not Banach algebras.

Corollary 5.9. Any spectral subalgebra and any quotient of a spectral
algebra is a spectral algebra.

The following criterion will be used in the next section.

Proposition 5.10. Let ||-|| be an algebra norm on an algebra A, and
let A~ be the completion of A with respect to || - ||. Then the following
are equivalent:

(i) ||| is a spectral norm on A,
(i) py(a) = pala), Va € 2;
(iii) A 4s a spectral subalgebra of 2.

Proof. (i) = (iii). Suppose a € 2 has a quasi-inverse b € 2. Choose
a sequence {b,}nen in 2 converging to b. This sequence satisfies
aob, »aob=0and b,oa — boa=0. Hence, aob,, and b, o a are
eventually quasi-invertible in 2. This implies that a is quasi-invertible
in 2.

(iii) = (ii) and (ii) = (i). Immediate. ]

In the list of spectral pseudo-norms given in the introduction, (ii),
(ii), (iv), (v) and (viii) assert that all algebra norms on certain algebras
are spectral. In [28] Yood called algebras with this property permanent
Q-algebras and noted some of the following equivalent conditions.

Proposition 5.11. The following are equivalent for an algebra :
(i) Every algebra norm on 2 is spectral.

(il) If B is a Banach algebra and ¢ : A — B is an injective
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homomorphism, then
ps(p(a)) = pa(a) Ya € 2.

(i) If B is a Banach algebra and ¢ : A — B is an injective
homomorphism with dense range, then ¢(2) is a spectral subalgebra

of 8.

Proof. (i) = (iii). Proposition 5.10.
(iii) = (ii). Any a € 2 satisfies py(a) = pm(ga(a)) = lim ||(a)™||*/"

pss(¢(a)), where ||-|| is the complete norm of B and p(2) is the closure
of p(2A) in B.

(ii) = (i). If || -]| is an algebra norm on 2, let B be the completion of
A, and let p : A — B be the natural embedding. Each a € 2 satisfies
pa(a) = px(a) < |lall, 5o || - || is spectral. D

Question 5.12. Do simple unital Banach algebras satisfy these con-
ditions? More generally, do (not necessarily commutative) completely
regular Banach algebras satisfy them?

We have noted that a subalgebra B of an algebra 2l is a spectral
subalgebra if and only if it satisfies

Spas (b) C Spy (b) U {0} Vb € B.
In most examples the stronger inclusion
Spes (b) C Spy (b), Vb € B,

actually holds. This simply requires that, whenever an element of B
is invertible in 2, then it is invertible in B. In fact, we have not
succeeded in finding any example where this does not hold. Perhaps
this is because the stronger inclusion holds in at least the following
cases: ‘B is a unital subalgebra of 2, 2 is nonunital, B is a one- or
two-sided ideal; 9B is the commutant of any subset; 26 is a corner
subalgebra e2le for some idempotent e € 2; 9B is a finite dimensional
subalgebra of 2. (In this case suppose b € B is invertible in 2. By
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finite dimensionality, ZZ=1 Ab* = 0 holds for some positive integer
n and )\, € C. Multiplying by suitable powers of b~ we conclude
1 = bp(b) and b~! = p(b) both belong to B, where p is a polynomial.)
Here is a general, but not very useful result.

Proposition 5.13. The following are equivalent for any subalgebra,
B, of any algebra, A:

(i) Spg(b) CSpy(d), Vb € B;

(ii) B is a spectral subalgebra of A satisfying either:
(a)
(b)

B is a unital subalgebra of A, or

no element of B has an inverse in 2.

Proof. (i) = (ii). Clearly, B is a spectral subalgebra of 2 since it
satisfies Spg (b) ~ {0} CSpy(b) ~ {0} for all b € B. Suppose b € B
has an inverse, b=', in 2. Then 0 ¢ Spy (b) implies 0 ¢ Spy (b) by (i)
so that B is a unital algebra. Then we have

log = loglg = 1osbb L =bb ! = 1g,

so B is a unital subalgebra of 2.

(ii) = (i). If B is a unital subalgebra as well as a spectral subalgebra
of 2, then (i) is obvious. Suppose B is a spectral subalgebra satisfying
(b). Since it is a spectral subalgebra we need only check that 0 € Spey (b)
implies 0 € Spy(b) for all b € B. But (b) implies 0 € Spy(b) for all
beB. o

Question 5.14. Find an example of a spectral subalgebra which
does not satisfy the last proposition.

6. The Jacobson radical, strict density and some charac-
terizations of spectral algebras. The Jacobson radical plays the
same role in the theory of spectral algebras that it does in Banach al-
gebra theory. In the introduction we defined the Jacobson radical as
the largest ideal on which the spectral radius vanished. That defini-
tion was convenient for the early sections of this paper, but here we
will derive it from more common definitions and derive the properties
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of the Jacobson radical in a spectral algebra. Jacobson’s result [8] on
strict density, which was extended to Banach algebras by Rickart [20],
also extends to spectral algebras. At the end of this section, the proof
of Theorem 6.10 uses virtually all of the results already proved to give
several characterizations of spectral algebras.

Definition 6.1. An algebra is said to be primitive if it has a
faithful (algebraically) irreducible representation. An ideal is said to
be primitive if it is the kernel of some irreducible representation. The
Jacobson radical, Ay, of an algebra 2 is the intersection of all the
primitive ideals of 2. (Hence, if there are no primitive ideals, 2 ; equals
2A.) The algebra 2 is called Jacobson radical or semisimple if it satisfies
A =2y or Ay = {0}, respectively.

We need to review some standard material to establish notation. If
T : A — £(X) is an irreducible representation (where X is a linear space
and £(X) is the algebra of all linear maps of X into X), and z € X is an
arbitrary nonzero element, then there is some e € 2 satisfying T,z = z.
Hence, the ideal

L={aeU:T,z=0}

is a maximal (by the irreducibility of T'), modular left ideal with right
relative unit e. Define the quotient of £ by

L:UA={aeU:aAC L}

It is easy to see that Ker(T') = £ : 2. Conversely, if £ is any maximal
modular left ideal, then the left regular representation of 2 on /£
is irreducible with kernel £ : 2. Hence, the primitive ideals are
characterized as the quotients of maximal modular left ideals.

Proposition 6.2. An algebra pseudo-norm is spectral if and only
if every maximal modular one-sided ideal is closed. Hence, primitive
ideals and the Jacobson radical are closed in any spectral pseudo-norm.

Proof. Let o be a spectral pseudo-norm on 2 and let £ be a maximal
modular left ideal with right relative unit e. The closure £ of £ relative
to o is certainly a modular left ideal with e as a right relative unit. Since
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o(e—b) < 1 implies that e — b is quasi-invertible, which in turn implies
the contradiction e = b+ (e — b)9(e — 1) — (e — b)9b € £, e does not
belong to £ which is therefore proper. By maximality, £ equals £ and
is therefore closed. The argument for right ideals is entirely similar.

Conversely, suppose o is an algebra pseudo-norm on 2 which is not
spectral. Theorem 3.1(iii) implies that there is some nonquasi-invertible
a € 2 with o(a) < 1. By symmetry, we may assume a is not left
invertible so that 2(1 — a) is a proper ideal. By Zorn’s lemma, there
is a maximal modular left ideal £ which includes (1 — a). However,
a—a" = (> _, a*)(1 — a) shows that a belongs to the o-closure of £.

Since this implies £ = 2, £ is not closed.

The definitions of £ : 2 and 2; show that they are closed when £
is. (Alternatively, £ : A = NE’, where the intersection extends over all
maximal modular left ideals £’ satisfying £ : 2 = £ : 2, and hence
A; = N{L : £ is a maximal modular left ideal of A}, so £ : A and A,
are closed.) mi

Corollary 6.3. If o is a spectral pseudo-norm on an algebra A, then
the set of elements on which o vanishes is included in the Jacobson
radical of A. Hence, any spectral pseudo-norm on a semistmple algebra
1§ a norm.

Theorem 6.4. An element in an algebra is quasi-invertible if and
only if it is quasi-invertible modulo each primitive ideal of 2.

Proof. See Rickart [23, 2.2.9(v)]. u]

Corollary 6.5. The Jacobson radical is the largest ideal T in
an algebra A satisfying any (hence all) of the following equivalent
conditions:

(i) Spo/s(a+3) CSpy(a) CSpys(a+3)U{0}, Va €
(i) Spg(b) = {0}, Vb € J;
(iii) pa(b) =0, Vb € 3.

We generalize a result of Kaplansky [11] for Banach algebras.
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Proposition 6.6. A spectral pseudo-normed algebra A which con-
tains no topological quasi-divisors of zero (except possibly 1) is either a
Jacobson radical algebra or isomorphic to C. The former case occurs
if and only if A is nonunital and the latter if and only if some element
of A has nonzero spectrum.

Proof. Suppose some element a € 2 has spectrum not equal to
{0}. Then 9Sp(a) must contain a nonzero complex number since
the spectrum is bounded and nonempty (by Theorem 2.3). Theorem
5.3 shows that A\~ 'a is a topological quasi-divisor of zero and hence
equals 1. Now let b € 2 be arbitrary and choose t > o(b), so
that o(t — b) contains a nonzero element, u, in its boundary. The
argument just given for A~!a implies p~!(t — b) = 1. Hence, the map
b= (t—u)l = t— pis an isomorphism of 2 onto C.

If every element of 2 has spectrum {0}, then 2 is a Jacobson radical
algebra and thus has no identity element. O

Theorem 6.7. Let 2 be a spectral algebra. Then any irreducible
representation of U is strictly dense. The representation space may be
given a norm relative to which each representing operator is bounded. If
a spectral pseudo-norm is chosen on A, the norm on X may be chosen
so that the representation is a contraction.

Proof. Choose a spectral pseudo-norm o on 2. Let T : A — £(X) be
an irreducible representation of 2. Let z € X be any nonzero element.
Choose e € A satisfying T,z = z and define £ by £ = {a € A : T,z = 0}.
Then £ is a maximal modular left ideal of 2 with e as right relative
unit and hence is closed in . Thus, we may define a norm on X by

|lz|]| = inf{o(a) : Tyz = x}.

This is just the quotient norm on /£ transferred to X. It is easy to
see that the operator norm on T, for any a € 2 satisfies ||T,|| < o(a).
By Schur’s lemma [23, 2.4.4], the commutant T3 is a division algebra.
Suppose S belongs to this commutant and z = T,z is an arbitrary
element of X. Then we find ||Sz|| = ||T.Sz|| < ||Tu|| [|Sz]] < o(a)||Sz|].
By taking the infimum over all a € 2 satisfying ¢ = T,z we get
[|Sz|| <||Sz|||lx||. Hence, Ty is included in the set of bounded linear
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operators from X into X, so T} is normed. Thus T} is isomorphic to
C by the Gelfand—Mazur theorem. Now Jacobson’s original argument
[8] shows that Ty is strictly dense. O

Corollary 6.8. A primitive algebra is spectral if and only if it can
be faithfully represented as a strictly dense, spectral normed algebra of
bounded linear operators on a normed linear space.

Question 6.9. Is the operator norm, which was defined in the
theorem, a spectral norm? Is the algebra of representing operators
a spectral subalgebra of £(X)? The answer is often affirmative. When
does Ty act topologically irreducibly on the completion X of X? (This
happens unless X has a T invariant subspace which has intersection
{0} with X.)

We will now give a theorem which characterizes spectral algebras in
a number of ways. First, we define ample, normed, subdirect products
of normed algebras. Let 20 and A% be algebras for each « in some
index set A. Then the Cartesian product [],. 4 A is an algebra under
pointwise operations. Any homomorphism ¢ : % — [],c 4 A* induces
homomorphisms ¢ : A — A~ for all a € A by ¢*(a) = p(a) (the
component of p(a) in A*). A homomorphism ¢ : A — [[,c, A~ is
called a subdirect product decomposition if (1) the kernel of ¢ is zero, and
(2) ™ : A — A* is surjective for each a € A. This subdirect product
decomposition is said to be ample if a € 2 is quasi-invertible if and only
if p*(a) is quasi-invertible in A~ for each o € A. If each (A, || - ||o) is
a normed algebra, then the subdirect product decomposition is said to
be normed if

lalleo = sup{|l¢a(a)lla : v € A}

is finite for each a € 2. In this case || - || is an algebra norm on 2.

Theorem 6.10. The following are equivalent for an algebra, 2:
(i) It is spectral;
(ii) There is some Banach algebra, B, and some homomorphism

¢ : A — B with the Jacobson radical as kernel satisfying

pss(p(a)) = pa(a) Va € U;
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(iii) The algebra modulo its Jacobson radical can be embedded as a
dense spectral subalgebra of a semisimple Banach algebra;

(iv) The algebra modulo its Jacobson radical is isomorphic to an
ample, normed, subdirect product of spectral normed algebras. The
factors in this subdirect product may be chosen as strictly dense, spectral
normed algebras of bounded operators on normed linear spaces.

Proof. (i) = (iii). Let ¢’ be an arbitrary spectral pseudo-norm on
2. Corollary 6.3 shows that ¢’ induces a spectral norm ||| - ||| on
2A/As. Let (2A,]]|-|||) be the completion of /2 ; in this norm. The
Jacobson radical, 7, of 2 has intersection {0} with 2/2; C 2l since
the intersection would be an ideal in which each element has spectral
radius zero. (Note that the quotient spectral norm ||-|| on 2/2l;, when
restricted to /2, induces a pseudo-norm o on 2 which is spectral,
since we have

pa(a) = paya,(a+As) = py(a+As)
= paya, (@ +2,) +2As) <|/(a+2As) +As]| = o(a),
where we have used Corollary 6.5(i) and Proposition 5.10.) Therefore,

/2 is the completion of (2/2y, ||-||) and /2 is a dense subalgebra.
Proposition 5.11 shows that 20/2(; is a spectral subalgebra of /2 ;.

(iii) = (iv). Let J] be the set of primitive ideals of A. Then there is
a natural injective homomorphism of /2 into [ [y A/% built from
the natural maps g : A/A; — A/P for each P € []. Clearly, this is
a subdirect product representation. Condition (iii) and Corollary 5.9

show that we may choose a spectral norm, ||-||, on 2/ ;. Provide each
quotient /P with the quotient spectral norm, || - ||3. Then this is a
normed subdirect product. (Clearly the norm || - || on the subdirect

product induces a spectral pseudo-norm on 2.) Finally, the subdirect
product is ample by Theorem 6.4. (Note that {B/2; : P € [[} is
precisely the set of primitive ideals of /2l ;. This is obvious from the
definition of primitive ideals given here.) The factors 2/ can be given
the asserted form by Corollary 6.8.

(iv) = (ii). Complete /A, with respect to the norm || ||, induced
by the semidirect product. This is a spectral norm since the semidirect
product is ample and its factors are spectral normed. Hence, the
completion A satisfies po(a) = poa, (a +Ay) = lim||(a +A,)"|[V/™ =
pala+2As).
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(ii) = (i). Corollary 5.5 shows this. O

Remark 6.11. Since any radical algebra is spectral, the example of
H.G. Dales [4] shows that not every spectral algebra can be embedded
in a Banach algebra.

Note added in proof: A lot has happened since this article was
submitted in 1986. The book manuscript from which the article was
taken has been prepared for publication and will soon appear as a two-
volume work, Banach algebras and the general theory of *-algebras, in
the Cambridge University Encyclopedia of Mathematics series. That
work extends some of the results in the present article. The author has
used T.J. Ransford’s beautiful arguments in [A short proof of Johnson’s
uniqueness of the norm theorem, Bull. London Math. Soc. 21 (1989),
487-488, MR 90g 46069] to give a simple direct proof of Proposition
3.6 above.

The ideas of the present article help to clarify the concepts of local
Banach algebras (i.e., not necessarily complete normed algebras in
which each element has a full analytic functional calculus) and of
local Banach subalgebras, which have become more popular recently,
particularly in K-theory applied to C'*-algebras and Banach algebras.
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