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DENSITY AND THE CIRCULAR PROJECTION

JOHN MARAFINO

0. Introduction. One aspect of complex analysis deals with
classifying the points a € 0D, D a simply connected domain, by
determining whether a certain geometric condition exists or fails to
exist in a neighborhood of a. See [1, 3, 4]. These geometric conditions
sometimes indicate how some part of the boundary of D, say E C 0D,
geometrically behaves near a. See [2]. When some sort of an inner
normal at a € 0D exists, one can define a set S on the normal that
is the image of F under a circular projection. If the set S happens to
have certain density properties, does E have them also? We answer
this question in a certain setting.

In Section I we discuss the basic definitions and properties of density
on the real number line and on a rectifiable Jordan arc. We then
consider the curve I : y = f(x), 0 < 2 < m, where f(z) satisfies a
Lipschitz condition and show that (zg, f(zo)) is a point of density of a
measurable set B of I' if and only if zq is a point of density of P(B),
where P is the projection map P : I' — [0,m]. Section 2 considers
a point ag € I' where the inner normal exists, defines the circular
projections Cg, C', from I into the inner normal at ay, and shows that
with a Lipschitz constant less than one a similar result holds for Cr and
Cp. Finally, Section 3 shows that if the Lipschitz constant is greater
than one, then the theorem is true in one direction for C'r, C, but not
in the other.

1. Density and projections. We begin our discussion of density
on the real number line which we denote by R. Let m denote Lebesgue
measure and m* the outer measure with respect to m. We shall say
that a sequence {I;} of intervals in R converges to x € R and write
I — x, x € R, if x € I}, for each k and limy_, ., diam I, = 0.

Let A be any subset of R. For any measurable set E in R we define
ca(E)=m"(ANE).
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We shall say that the derivative of 04 at = exists if there exists a
number o', (z) such that for any sequence {I;} of intervals converging
to z,

A (Ik)

=o'y ().

Since o4 is a completely additive set function for measurable sets,
we are assured [5, 168-179] that o/,(z) exists almost everywhere.
Since ¢/4(x) is in some way a “measure” of the denseness of A in a
neighborhood of z, ¢/, (x) is called the outer density of A at x. If A is
measurable, o'y (z) is called the density of A at x. If o/y(z) =1, z is
called a point of density of A and if o/,(x) = 0, z is called a point of
dispersion of A.

If A is any measurable set and if C'A denotes its complement with
respect to R, then it immediately follows from the additive properties
of m that for measurable A, x is a point of density of A if and only if
x is a point of dispersion of C'A; that is,

(1) oy(z) =1 ifand only if op4(z)=0.

Making use of the subadditive properties of m* we have for any set A
that if x is a point of dispersion of C'A, then z is a point of density of
A; that is,

(2) oca(z) =0 implies o/y(z) = 1.

A direct consequence of the Density Theorem [5] shows that the
converse is not true. The theorem also describes how dense A is at
any of its points.

We move from the setting of R to that of a rectifiable Jordan arc J.
The measure we use on J is naturally arc length which we denote by L.
Let L* denote the outer measure with respect to L. Since the measure
induced by L is a Lebesgue measure on J, similar definitions for outer
density, density, point of density, point of dispersion exist and results
similar to (1) and (2) and the Density Theorem hold. We denote these
respectively by (1'), (2), Density Theorem on J.

Throughout this paper y = f(z) will be a function defined on the
closed interval [0, m], with f(0) = f(m) = 0 and satisfying the Lipschitz
condition

(3) |f(z') — f(z')| < M|z" —2"| for all 2’,2" € [0, m].
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Set I' = {(z, f(z)) : € [0,m]}. From (3) we have that I' is a rectifiable
Jordan arc. Let L denote the arc length measure on I' and let L* denote
the outer measure corresponding to L. Let P : I' — R be defined by
P(z,y) = x. Denote the closed subarc of T’ from a = (z, f(z)) to
b= (y, f(y)) where z < y, by [a,b]. The open subarc of I from a to b
will be denoted by (a,b). Using (3) we have

(4) |z —y| < L((a,b)) < V14 M?|z —y|
and this can easily be extended to include arbitrary sets. Hence, for
any B CT,

(5) m*(P(B)) < I"(B) < /11 M?m* (P(B)).

As a consequence of (5), we have

Lemma 1. ag = (2o, f(x0)) s a point of dispersion of B C T if and
only if zo is a point of dispersion of P(B).

Using this lemma, (1) and (1'), we obtain

Theorem 1. If B C T is L-measurable, then ag = (xo, f(z0)) is a
point of density of B if and only if xg is a point of density of P(B).

We close this section by stating a weaker result that immediately
follows from the Density Theorems above and from (5): For almost
every ag = (g, f(z0)) € B, ag is a point of density of B and zg is a
point of density of P(B).

2. Density and circular projection. We shall be working with
the setting described in Section 1 with the additional assumption that
M < 1 and we identify (z,y) and x +iy. From the Lipschitz condition,
it follows [6, p. 244-246] that f'(z) exists almost everywhere on [0, m]
and is a measurable function. Hence, at almost every point of ', the
tangent exists. Letting ag = (o, f(z0)) 0 < zo < m be a point at
which the tangent exists and a = (z, f(z)), we set

vt(ag) = Jim arg(a — ag) = Arctan (f'(z0))
T>x0

and
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v (ag) = Jim arg(a — ag) = Arctan (f'(z¢)) + .

z<To

Let N(ap) = v~ (ao) + 7/2 and note that 7 < N(ag) < 2m. We set

L(ao) = {ag + pe'N®) : p > 0},
L.(ap) = {ao + peiN(aO) :0< p<r},
I'r = P ([zo,m]), 'y = P7([0,20]) and
Tr(h) = P *([xo,z0 + h]),  Tr(h) =P ([zo — h,z0))

1
where h < (5) min(zg, m — xg).

Define the right circular projection Cg : ' — L(ap) by Cgr(a) =
ao + |a — aple?™N(®0) and the left circular projection Cr, : I'y, — L(ay)
by Cr(a) = ag + |a — agle’¥(®). Using arc length measure on '
and T', and Lebesgue measure on L(ap), we shall derive measure
and density results similar to those in Section 1, only this time under
circular projection.

We first establish some mapping properties of C'g. Our first property
follows from the fact that the Lipschitz constant M is less than one.

Property 1. Cpg is one-to-one. The property is equivalent to: If
0 < 1 < o, |ly1] < z1, |y2| < z2, |y2 — y1| < z2 — x1, then
x?2 + y? # 22 + y3. (See Figure 1.) The conditions above imply

zh — o} = (z2 — x1) (T2 + 1) > |y2 — w1l (vl + 1)) > |v3 — vil,

from which the result follows.
As an immediate consequence, we have

Property 2. Let ai, az € I'g, a1 = (z1, f(21)), a2 = (22, f(x2)). If
x1 < T, then |a; — ag| < |az — agl.

Property 3. The circular projection of an arc in I'p is an interval
on L(ap) and the circular projection of disjoint arcs in I'g are disjoint
intervals on L(ag). If (ai,a2) is an open subarc of ' with a; =
(z1, f(21)) and a2 = (2, f(22)), £1 < x2, then m(Cr((a1,az2))) =
|a2 - a0| — |(l1 — a0|.

The first two comments follow by using Property 1 and that Cg is

continuous. If we let ¢ = maxye(q,,q4,) [@ —ao| and d = minge(q,,a,) @ —

az)
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FIGURE 1.

ag|, then m(Cr((a1,a2))) = ¢ — d and from Property 2, ¢ = |az — ag|
and d = |a; — ay|.
Although the corresponding properties for P were obvious and we

used them readily, they needed to be verified for C'r. From Property
3, we have

(1) m(Cr((a1,a2))) < L((a1,a2)).

We shall establish a result similar to (5) in Section 1. We must first
show that there exists a number K > 0 such that for all ai, as € 'y
where a1 = (z1, f(z1)) and a2 = (z2, f(z2)), 1 < x2, the following
holds

(2) laz — a1] < K(|az — ag| — a1 — ag|) for all a1, aq,elg.
Let C; and Cy be concentric circles with center ag whose radii are

|ay — ap| and |as — ag|, respectively. Let [ be the line passing through
a1 and ag and let a be the angle of intersection of [ and the line segment
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FIGURE 2.

connecting a; and as. Because M < 1, it follows that a < 7/2. The
orthogonal projection of this line segment onto [ will be denoted by S.
(See Figure 2.)

It follows that
m(S) < lag — ag| — |a1 —ag] and a =|arg(a; —ag) — arg(az — a1)|.

Since both |arg(az — ag)| and |arg(a1 — ag)| are strictly less than
Arctan M, where 0 < M < 1 is the Lipschitz constant for f(z), we
have that o < 2Arctan M < 7/2. Setting K = (cos(2Arctan M))~1, it
follows that cosa > K 1. We conclude that

K1 < cosa — _8) _ Jaz = aof — |ar — ao

|az — a1 |az — a1

from which (2) follows. As a consequence, L((a1,a2)) < Km(Cg(a1,a2))
and combining this with (1) will show that for any B C I'g,

(3) m*(Cr(B)) < L*(B) < Km*(Cr(B))-

By using the one-to-one and continuous properties of Cr and P, (1)
and (1’) of Section 1, and (3) above, the following theorem concerning
density under circular projections is readily established.
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Theorem 2. Let B C ' be L-measurable, then Cr(B) is Lebesgue
measurable and

. L(BNTg() | .. .. m(Cr(B)NL.(ag))
Ty - W lm ;

=1

We close this section by noting that similar results hold for Cr, on
I'r.

3. Concluding remarks. We now examine the results of Section
2 under the assumption that M > 1. Clearly, Properties 1, 2 and 3 no
longer are true. However, (1) of Section 2 can still be shown to hold
using a different argument. First note that if C'g is constant on [aj, as],
then (1) of Section 2 holds trivially. We therefore assume that Ck is
nonconstant on [aj,az]. Since it is continuous on the closed subarc
[a1, as] it assumes maximum and minimum values at the points ans
and a,,, respectively. We have that

m(Cr((a1,az)) = Cr(an) — Cr(am) = |an — ao| — |am — ao
< L((a1,a2)),

from which one obtains, for any B C I'g,

(1) m*(Cr(B)) < L*(B).

In Section 2 we used the fact that M was less than one to ar-
gue that o was less than m/2 and that cosa > K !, where K =
(cos(2Arctan M)) 1. Such results no longer hold if M is greater than
one and thus the argument for (2) of Section 2 fails. However, we prove
a slightly weaker result

(2)
For any a; € I'g, ay = (z1, f(z1)), L((ap,a1)) < V14 M?2|a;—ag|-

From (4) of Section 1 we have
L((ao,al)) S V 1+ M2|$1 — LL‘0|.

Letting [ be the horizontal line through ay and as = (1, f(x0)), and 8
the measure of the angle, £ajapasz, one has that

|z1 — zo| = cos Bla; — ao|
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and since 0 < 8 < /2, (2) follows.
We now show that for any L-measurable B C I'g,

m(Cr(B) N Ly(ao))

A T () =1

=1 implies lim
r—0

Assuming the first limit is one and using the measurability of B and
(1") of Section 1, we have

@ 1 LCBNLR(h)

T LT

For each r sufficiently small we consider I'r N C" where C" is the circle
of radius r centered at ag. There is a unique point of the intersection,
say a,, having the property that the arc (ao,a,) is contained in the
interior of C”. Letting a, = (z,, f(x,)) and h, = x,, — o, we have

(5) (ag,ar) =Tr(hr),  Cr(Lr(hs)) =Lr(ag),  lar —aol=r

Using (1), (2) and (5) above, we have

m(C(Cr(B)) N Lr(ao)) _L(CBNTx(h,))
©) r S 711 (%) B

Now, as r — 0, h, — 0, it follows from (4), (6) and (1) of Section 1
that
lim m(CR(B) N Lr(ao))

r—0 T

=1.

Again, similar results hold for C, and T'f.
We now show that the converse of (3) is false.

Start with the segment [0, 1] of R and consider the sequence {1/n}22 ;
of [0,1]. For each n,n =1,2,..., let S, be the arc of a circle of radius
1/n, centered at the origin such that the angle at the origin subtended
by S, has radian measure 1/n and such that S, lies in the upper half
plane as shown in Figure 3. The initial and terminal points of S, are
(1/n,0) and ((1/n) cos(1/n), (1/n)sin(1/n)), respectively.

Let L,, be the segment connecting ((1/n) cos(1/n),(1/n)sin(1/n)) to
(1/(n + 1),0). The curve formed by considering U(S,, U L,,) has the
following properties
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FIGURE 3.

(i) limp—o(L(UL,NCg(h))/L(Cr(h))) # 1 and lim, _,o(m(Cr(ULy)
NL,(ag))/r) = 1.

(ii) The slope of L,,, denoted m,,, is such that 1 < m,, < 30 and m,,
decreases to 1 as n — oco.

To get a Lipschitz constant for this curve, we rotate it counterclockwise
by n radians, n sufficiently small so that if m/, denotes the slope of L/,
the rotated L,, S/, the rotated S, then

, ™y +tanny d l+tan77< , 30 4+ tann

= 100
" 1—my,tann an 1 —tann Min 1—30tann

m
T, n =123, ..., in absolute value is
less than (1/tann). We thus have a curve with a Lipschitz constant
M > 1 such that (i) holds.

and the slope at any point of S’
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