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ON THE ZEROS OF POLYNOMIALS
AND SOME RELATED FUNCTIONS

A.W. GOODMAN

ABSTRACT. We consider the zeros of a polynomial P(z)
together with those of F(z) = (z — a)P'(z) — vP(z) where a
and v are arbitrary complex constants, and we extend some
results obtained by Obrechkoff and Weisner on the relations
between these sets of zeros. These results are applied to the
zeros of certain quasi-trigonometric polynomials.

1. Introduction. Let P(z) be a polynomial of n-th degree with
zeros at 21, 22,...,2,. For arbitrary v and a set

(1.1) F(z) = (2 — a)P'(2) — vP(z).

We observe that if v = 0 then F'(z) = (2 — a)P’(2), and if v = n then
F(z) is the negative of the derivative of P(z) with respect to the point
a, see [3; Vol. 2, pp. 61-63]. Since much is known about the zeros of
F(z) in these two special cases, we may assume henceforth that v # 0
and v # n.

Theorem A. In (1.1) set v = n/2. If all the zeros of P(z) lie inside
(on, outside) a circle |z — a| = r, then all the zeros of F(z) lie inside
(on, outside) the same circle.

This Theorem was proved by Obrechkoff [2] and later independently
by Weisner [4]. In fact, both [2] and [4] prove far more general theorems
which contain Theorem A as a special case.

In [1] Theorem A was extended to include arbitrary v to obtain

Theorem B. Let P(z) be an n-th degree polynomial, and let F(z)
be defined by (1.1). If Rev > n/2, let G be the region |z —a| > r. If
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Rev < n/2, let G be the disk |z —a| < r. If P(z) has all its zeros in
G, then F(z) has all its zeros in the same region.

This result is then applied in [1] in a very clever way to obtain
some interesting theorems about rational functions and trigonometric
polynomials. Our purpose is to extend Theorem B to include some
cases which that theorem omits. For example, the case Rev < n/2 and
G a disk |z — a| > r is missing in Theorem B.

All of our theorems have the following form: P(z) is a function from
a given set. If all the zeros of P(z) lie in a closed circular region G, then
all of the zeros z* of F'(z), defined by (1.1), lie in a second closed circular
region G*. For brevity, we omit the excess words and merely list the
conditions on P(z),v,G and G*. Our method of proof is essentially
that used in [1], and our results contain Theorems A and B as special
cases.

2. Polynomials and rational functions. We have

Theorem 1. Let P(z) be a polynomial of degree n. For brevity set
b=Rev.

(I) Ifb>n/2 and G: |z —a| >7, then G* : |z —a| > 7.

() If0<b<n/2 and G: |z —a| >, then G* : |z —a| > —L5r.
(III) Ifb<0and G: |z —a| >r, then G* : |2 —a| > =Lr.

(IV) Ifb<n/2 and G:|z—a| <r, then G*: |z —a| <.

(V) Ifn/2<b<nandG:|z—a| <r, then G*: |z —a| < 2or.
(VI) Ifn<bandG:|z—a|<r, then G* : |z — a| < 7.

In each case the region G* for the zeros z* of F(z) is best possible.

Clearly, (I) and (IV) together give Theorem B. The other parts
complete the set of all possible values for v.

Proof. If 2* is a zero of F(z) and 21, 29, ... , 2, are the zeros of P(z),
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then a modest computation with (1.1) will give

= 1
(21) S = Z ]-_ﬁ = V.
k=1 z*¥—a

We consider the Mobius transformation W = 1/(1 — Q) where
Qr = (2 —a)/(z" — a).
(I). Assume F(z) has a zero z* such that |z* —a| < r. Then
|Qr| > 1 and Re(1/(1 — Qk)) < 1/2. Then Re S < n/2 < Rev. This
contradiction proves that |z* —a| > 7.

(IT). Assume that |[z* —a| < br/(n —b). Then |Qk| = [(zx —
a)/(z* —a)] > (n=0)/b > 1. Now W = 1/(1 — Q) maps this
circular region onto a disk with diameter end points —b/(n — 2b) and
b/n. Then ReS < b = Rev. Hence, (2.1) is impossible. Therefore,
|z* —a| > br/(n—0).

(IIT). If |2* —a| < —=br/(n —b), then |Qx] > 1 —n/b > 1. Now
W =1/(1 — Q) maps this region onto a circular disk with end points
b/n < 0 and b/(2b — n) > 0. Thus, ReS > n(b/n) = b = Rev. Again,
(2.1) is impossible, so |z* — a| > —br/(n — b), a positive number.

(IV). If |z* —a| > r, then |Qx| <1 and Re (1/(1 — Q%)) > 1/2. thus
ReS > n/2 > b=Rev. Hence, |2* —a| <.

(V). If |z —a| > br/(n —b), then |Qx] < (n —b)/b. Now
W =1/(1 — Q) maps this disk onto a disk, with diameter end points
b/n and b/(2b — n). Hence, Re S > n(b/n) = b = Rev. Consequently,
|z* —a|] <br/(n—b).

(VI). If |z2* —a| > br/(b—n), then |Qr] < (b —n)/b. Now
W = 1/(1 — Q) maps this disk onto a disk with diameter end points
b/(2b — n) and b/n. Then b = Rev = ReS < n(b/n) = b, a
contradiction. Hence, |z* —a| < br/(b —n).

The example function P(z) = (z —a +re*®)" shows that each bound
is sharp. For (1) and (IV) the result is trivial. For the others (F(z)
has a zero at z* =a +vre’/(n—v). O

Suppose that P(z) is an n-th degree polynomial and

(2.2) R(z) = 2
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If v is an integer, then R(z) is a rational function or a polynomial.
Otherwise, (z — a)” = exp(vIn(z — a)) and R(z) is defined on the
Riemann surface for In(z — a). Now

(2.3) R(z) = (2 —a)"""!(z — a)P'(2) — vP(2)].

Thus, except for the possible zero of R'(z) at z = a, the zeros of R'(z)
coincide with those of F(z) defined by (1.1). This gives

Theorem 2. Let P(z) be an n-th degree polynomial, and let R(z) be
defined by (2.2). Then the zeros of the derivative R'(z) satisfy the siz
assertions of Theorem 1, and in each case the region G* is best possible.

For our next application we look at functions of the form

R(Z) = ﬁ Z ak(z — a)k
(2.4) o k==n
_ P
- (Z—a)"-i—l” n@-n 7 0.

Now P(z) is a polynomial of degree 2n. We can apply Theorem 2 to
R'(z) by making the changes: n — 2n and v — n + v. After a little
labor we obtain

Theorem 3. Let G contain all the zeros of P(z), a polynomial of
degree 2n where P(a) # 0. Let R(z) be defined by (2.4), and let G* be
a region that contains all the zeros of R'(z). Finally, set b = Rev.

(D). Ifb>0and G: |z —a| >r, then G* : |z —a| > 7.

(). If n <b<0and G: |z—a|l >r, then G* : |z — a
((m+b)/(n—"0))r.

(III). Ifb < —n and G : |z —a|l > 7, then G* : |z —a| >
((fo] =)/ (bl +n))r.

(IV). Ifb<0and G:|z—a| <7, then G*: |z —a| <.

(V). If0 < b <nand G : |z—a|l <r, then G* : |z — a
((n+b)/(n—"0))r.

v

IN
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(VD). Ifn <band G : |z—a| < r, then G* : |z—a] < ((b+n)/(b—n))r.

In each case the region G* for the zeros of R'(z) is best possible.
Genchev [1] proved (I) and (IV) when Rev = b = 0.

3. Quasi-trigonometric polynomials. By a quasi-trigonometric
polynomial of degree n we mean any function of the form

(3.1) T(z) = e ? Z ape™,

k=—n

where a,a_,, # 0 and v is an arbitrary complex number.

We convert Theorem 3 to a theorem on quasi-trigonometric polyno-
mials as follows. First set a = 0 and replace z by w in R(z). Then
the substitution w = e* changes R(w) into 7'(z) as given by (3.1).
Further, R'(w) and T"(z) differ by a trivial nonzero factor. Finally, the
condition |w| < r becomes Imz > —Inr = A. With these changes,
Theorem 3 gives

Theorem 4. Let T'(z) be a quasi-trigonmetric polynomial (3.1) with
ana_n, # 0. Let G be a region that contains all the zeros of T(z) and
G* be a region that contains all the zeros of T'(z).

(I). Ifb>0and G:Imz < A, then G* : Im z < A.

(I). If -n < b < 0and G : Imz < A, then G* : Imz
A—1In((n+0b)/(n—0)).

(III). Ifb< —n and G : Imz < A, then G* : Imz < A — In((|d]
n)/ (bl +n)).

(IV). Ifb<0and G:Imz > A, then G* : Imz > A.

(V). If 0 < b < nand G : Imz > A, then G* : Imz >
A—In((n+0b)/(n—0)).
(VD). Ifn<bandG:Imz > A, then G* : Imz > A—In((b+n)/(b—

In each case the region G* for the zeros of T'(z) is best possible.

IN
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If T(z) = e “"t¥)%(¢* — re )2 then T’(z) has zeros z* for which
(3.2) Imz*=—Inr and Imz*=—Inr—Re lnn_H/.
n—v
With a little labor these zeros will show that the region G* in Theorem
4 is best possible in every case.

Genchev [1] proved (I) and (IV) when Rev = b = 0. As he
observed, this special case v = 0 gives a Gauss—Lucas type theorem
for trigonometric polynomials, namely,

Theorem C. If all the zeros of the trigonometric polynomial T(z)
lie in the strip A < Imz < B, then the zeros of T'(z) lie in the same
strip.

Various combinations of items (I)-(VI) of Theorem 4 will give a
similar type theorem, but the results are not as pretty as Theorem
C. For example, if we combine items (II) and (IV), we obtain

Theorem 5. Let T(z) be a quasi-trigonometric polynomial of the
form (3.1). Suppose that

(3.3) —n<b=Rev <0,

and that all the zeros of T(z) lie in the strip A <Imz < B. Then all
the zeros of T'(z) will lie in the strip

(3.4) A<imz<B-w" 0 gyt
n—>b n — |b|
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