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ON CONNECTED GROUPS AND RELATED TOPICS

R.W. BAGLEY, T.S. WU, AND J.S. YANG

ABSTRACT. The study of pro-Lie groups and residual Lie
groups [2, 3] led to the present work on connected groups and
related topics. During the course of our study, we found that
some theorems (Theorem 8, for example) of V.M. Gluskov
as appeared in [5] may not have been accurately stated. In
a related context we show that if G is a connected, locally
connected, locally compact group with its center metrizable,
then there exists a neighborhood of the identity element each
of whose points lies in a one parameter subgroup. In terms of
the characteristic index of a connected locally compact group
defined by K. Iwasawa [8], we have introduced the concept of
total index for a closed normal subgroup of a connected locally
compact group. A counterexample to a conjecture made in [6]
is given at the end of the paper.

1. Introduction. This paper constitutes part of our recent efforts in
studying the structure of locally compact groups. Our study of pro-Lie
groups and residual Lie groups [2, 3] led to the present work.

In Section 2 we study some properties of connected locally compact
groups and the question of lifting one-parameter subgroups. We show
that the arc component of the identity element of a connected locally
compact group is generated by all one parameter subgroups. During
this course of our study, we found that some theorems (Theorem
8, for example) of V.M. Gluskov as appeared in [5] may not have
been accurately stated. In a related context we show that if G is a
connected, locally connected, locally compact group with its center
metrizable, then there exists a neighborhood of the identity element
each of whose points lies in a one-parameter subgroup. We also study
local connectedness of homogeneous spaces at the end of the section.

If G is a connected locally compact group, then there exists a maximal
compact connected subgroup K such that G = KFE, where the space
E is homeomorphic to y-dimensional Euclidean space. The integer
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is called the characteristic index of the connected group G, [8, p. 549].
We introduce the concept of total index for a closed normal subgroup
of a connected locally compact group in Section 3. We show that if
N is a closed normal subgroup of a connected locally compact group
G, then G/N is compact if and only if the total index of N equals the
characteristic index of G.

In Section 4 we consider various locally compact groups involving
connectedness. Results obtained in this section are closely related to
some of those in [6]. A counterexample to a conjecture made in [6] is
given at the end of this section.

Throughout this paper, we shall use G* to denote the arc component
of the identity element of the locally compact group G with Gy stands
for the identity component of G. The group of automorphisms of G
will be denoted by Aut (G). Aut(G) is assumed to have the Birkhoff
topology [7] when appropriate. For a subgroup S of G, the centralizer
of S in G is denoted by Cg(S), or simply C(S). We use the notation
G = H to denote that the topological groups G and H are isomorphic
topologically and use the notation G ~ H to denote that G and H are
homeomorphic.

2. Connected groups and Gluskov’s Theorems. In this section
we discuss arcwise connected and connected, locally compact groups.
In the course of our study, we find that some theorems of Gluskov’s in
[6] may not have been accurately stated.

For a connected, locally compact group G, we shall say that every
finite-dimensional factor is a Lie group if for every compact normal
subgroup K of G, G/K is a Lie group whenever G/K is finite-
dimensional.

Proposition 2.1. Let G be a connected, locally compact group.
Suppose that

(1) The mazimal compact normal subgroup has only finitely many
components, and

(2) If A is the mazimal compact connected central subgroup of G,
then every finite-dimensional factor of A is a torus.

Then every finite-dimensional factor of G is a Lie group.
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Proof. Let K be a compact normal subgroup of G such that G/K is
finite-dimensional. Let B be the maximal compact connected normal
subgroup of G, and let B’ be the maximal compact normal subgroup.
Then G/B’ is a Lie group. Hence, G/B is also a Lie group. Note that
B'/B is finite. Consequently, we may assume that K C B. Since G/B
is Lie and K C B, B/K is finite-dimensional. Now B = AS, where A
is a compact connected abelian group and S is a product of compact
simple Lie groups, i.e., S = w5}, each S is a compact simple Lie group.
We claim that G/K is Lie if and only if A/AN K is Lie. Suppose that
G/K is a Lie group. Then certainly B/K is a Lie group. Since B = AS,
AK/K is a Lie group, hence A/AN K is a Lie group. Conversely, if
A/ANK is a Lie group, then AK/K is Lie. Since AS/AK = S/AKNS
is Lie, AS/K is a Lie group. This proves the claim. The proposition
now follows from hypothesis (2). o

If G is a connected locally compact metrizable group, and if K
is a normal subgroup of G such that G/K is finite-dimensional and
G = G*K, where G* denotes the arc component of the identity in G,
then it is clear that G/K is arcwise connected. Since G/K is finite-
dimensional, this implies that G/K is locally connected and, hence, is
a Lie group.

We also note that if G is not metrizable and if G/H is locally
connected, G # G*H in general, for a subgroup H.

Proposition 2.2. Let G be a connected locally compact metrizable
group, and let K be a compact normal subgroup such that G/ K 1is locally
connected. If A is the maximal compact connected central subgroup of
K and if every arc in G/A can be lifted to G, then G*K = G.

Proof. Since the mapping G/Ky — G/K has compact and totally
disconnected fibers every arc in G/K can be lifted to G/K (cf. [10, p.
236]).

Let Ky = A(wS)), where A is a compact connected abelian group
and each S) is a compact simple Lie group. The natural mappings
G — G/Ky and G — G/A induce a homomorphism ¢ : G/A — G/K,
with kernel ¢ = 7S,. Write G; = G/A and G2 = G/K,. Then
G2 = G1/wS,. Since each S, is a compact simple Lie group, we
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may assume G = @G A, where the kernel of the homomorphism
fr+1 : Gay1 — Gy is a compact simple Lie group. Hence, we can
lift arcs from G to Ga41. After taking the inverse limit, we see that
every arc in G can be lifted to G;. Consequently, if G/K is locally
connected, then every arc can be lifted to G/A. This implies that
(G/A)*(K/A) = G/A. Hence, if every arc in G/A can be lifted to G,
then we may reach the conclusion that G*K = G. i

Remark 2.1. If G is a connected locally compact metrizable group, if
K is a compact normal subgroup such that G/K is locally connected,
and if A is a maximal compact connected central subgroup of K which
has a totally disconnected subgroup D such that A/D is a torus (which
may be infinite-dimensional), it follows from the above considerations
that G°K = G.

Using the concept of Lie algebra in the sense of Lashof [9], we in fact
can improve Proposition 2.2 to

Proposition 2.3. Let G be a connected locally compact metrizable
group, and let H be a closed normal subgroup such that G/H is locally
connected. Then G*H = G.

Proof. For a locally compact group X, let L(X) be the Lie algebra
of X in the sense of Lashof. Consider the following diagram:

L(G) —%— L(G/H)

epr Jexp

G————G/H

Since G is metrizable, G/H is arcwise connected, hence exp L(G/H) =
G/H. Using the commutativity of the diagram in the proof of [7,
Lemma 3.4] and the fact that d¢ is onto and exp L(G)CG?*, we see
that ¢(G*) = G/H. Hence, G*H = G. O

Theorem 2.4. Let G be a connected locally compact group, and let
G“ be the arc component of G at the identity. Then G% is generated
by all one-parameter subgroups of G. Furthermore, given any local
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decomposition of a neighborhood V' of e, V. = K X L, where K is a
compact normal subgroup and L a local Lie group, K% x L generates
G* and each x € K% X L is in a one-parameter group.

Proof. Let V' be a neighborhood of e, and let V= K x L be a local
decomposition of V, where K is a compact normal subgroup and L a
local Lie group. If z € G*N(K x L), there exists an arc connecting x and
e, this arc must pass through Ko x L. We consider (Ko x L)* = K§ x L.
Let Ky = AS, where A is a compact connected abelian group and S
a product of compact simple Lie groups. Then K§ = A“S, and hence
(Ko x L)* = A*SL. Now (A*SL)" = (A*S)L"™, hence A*SL C G*,
where L = U2, L™,

An arc connecting e and a € G is covered by a chain of translates
of V. Hence, there is a; # e such that a1V NV # @ and there exists
b1 € K§L such that a; € by K§L. Likewise, we choose a; and by such
that b € a; K§L and ay € b K§L. Continuing in this way, we see that
G* C U2 (A*SL™) Cc A*SL. Hence, G* = A*SL. Note that for any
other choice of neighborhood V' and local decomposition V' = K’ x L/,
K§* x L' again generates the arc components G*. In fact, K* x L'
generates the same set of one-parameter subgroups.

The second assertion is now clear. |

Theorem 2.5. Let G and H be locally compact groups and let
¢ : G — H be an onto homomorphism with compact kernel. If G
is metrizable, every one-parameter subgroup in H can be lifted to G.

Proof. Let K be the compact kernel of ¢, and let {a(t) | t € R}
be a one parameter subgroup in H. Let A = {a(t) |t € R}, let
F = ¢ 1(A), and let M = (Zp(K))o, the identity component of the
centralizer of K in F. Since F/K is connected, FF = MK. Thus,
M/MNK 2% MK/K =2 F/K = A. We consider the following two

cases:

Case 1. A~ R or A is a torus. In this case, since M N K is central
in M, there exists a one parameter group 5(t) in M which covers af(t).

Case 2. A is compact but is not a torus. Then M/MNK = A implies
that M is compact, connected and nilpotent since M N K is central in
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M and M /M N K is abelian. Since every compact connected nilpotent
group is an abelian group, M is abelian. Hence, if @ = M N K, we
have the exact sequence

1 —Q— M-S A—1.

Now M“ and A®, respectively, are the union of one-parameter groups in
M and A, [1, Theorem 8.19, p. 110]. Hence, m(M*) = A* D {a(t) | t €
R}. Note that, if M' = M/Qp and Q' = Q/Qo, M'/Q’" = A. Hence,
the kernel of the natural map ' : M’ — A is totally disconnected
and there exists a unique 4'(t) in M’ that covers «(t). Hence, we may
assume that @) is connected in the exact sequence above.

Since G is metrizable, @) is metrizable and, hence, there exists a
sequence of closed normal subgroups N; such that @ = £iLnQ/Ni =
limT;, where each T; is a finite-dimensional torus and that M =
MM/N, For each i let M; = M/N;, then the homomorphism f; 1 :
M; 1 — M; has fiber T; which is a finite-dimensional torus. Now we
lift «([0,1]) to M; as (;([0,1]) such that the mapping B;1+1([0,1]) —
B:([0,1]) forms a local one parameter group. Finally, taking @ﬂi to
be 8 on [0, 1], we may lift a(t) to G. o

In [5], V.M. Gluskov has stated the following theorem: In every
locally connected locally compact group, there exists a neighborhood
of the identity U every element of which lies in a real one-parameter
subgroup. This means that any two elements in U can be joined by a
path (in G), hence any two elements in U™, for any m, can be joined by
a path (in G). Hence, in particular, if G is connected, G is generated by
U, which would imply that G is arcwise connected. However, J. Dixmier
[4] has an example showing that connectedness and local connectedness
do not imply arcwise connectedness. Therefore, it does seem that the
above Gluskov’s theorem is not accurately stated; we shall focus on this
problem in the next several results.

Proposition 2.6. Let G be a connected, locally connected, locally
compact group. Then the maximal compact connected normal subgroup
and the mazximal compact normal subgroup of G are locally connected.
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Proof. Let B be the maximal compact connected normal subgroup of
G. We shall prove that B is locally connected. As we noted in the proof
of Proposition 2.1, B has finite index in the maximal compact normal
subgroup. Let V be a connected neighborhood of e. By Theorem
11, [12], we can choose V = K X L, where K is a compact normal
group and L a local Lie group. Since V is connected, K is connected.
Consequently, BK is connected. Since BK is compact and normal, we
have BK C B. This implies that B is locally connected. u]

The following is a version of Gluskov’s theorem stated above.

Theorem 2.7. (Gluskov). If G is a connected, locally connected,
locally compact group with its center metrizable, then there exists a
netghborhood V' of e, every point of which is in a one-parameter group.

Proof. Let B be the maximal compact connected normal subgroup
of G. As in the proof of Proposition 2.6 we may choose a connected
neighborhood V of e, with V' = K x L, where K is a compact normal
subgroup and L a local lie group. Then BK C B. Let B = AS, where
A is a compact connected abelian group and S is a product of compact
simple Lie groups. Now B is metrizable, hence B is arcwise connected.
By Corollary 1, p. 223, of [11], every point z € B is in a one parameter
subgroup. Since K C B and V & K x L, it follows that every element
of V is in a one-parameter group as desired. a

We carry the result of Theorem 2.7 further. Consider the decompo-
sition V' = K X L in the proof of that theorem. We let K = AS, where
A is a compact connected metrizable abelian group and S is a direct
product of compact simple Lie groups. Then A = T, a torus with n
possibly infinite [1, p. 113]. We now show that £ = UL¥, the subgroup
generated by L is a normal subgroup of G. Let g € G and choose a
neighborhood Vi C V of e such that gV3g~! C V. Now V; contains a
local Lie group L; (open in L) and gL1g~! C L. Since L is connected,
ULk = L. Tt follows that gLg~! = g(UL¥)g™! = UL¥ = L as desired.

We can provide £ with a unique Lie group topology by taking L
to be an open subset and let the resulting Lie group be denoted by
L*. Then the canonical mapping 0’ of £* onto L is a continuous
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isomorphism, and we have the mapping 6 : K x L* — G defined by
0(k,z*) = k&' (z*) = kx for (k,2*) € K x L*. Consequently, we have

Theorem 2.8. [5, Theorem 7). Under the hypotheses of Theorem
2.7, there exists a homomorphism of R™ xSy x L* onto G whose kernel
is a totally disconnected central subgroup, where n is possibly infinite
and each Sy is a compact simple Lie group.

For the rest of this section we consider local connectedness of coset
spaces.

Following [12] we say a closed subgroup H of a locally compact group
G contains all small subgroups of G if there exists a neighborhood U
of the identity of the group G such that all subgroups of G' contained
in U are also contained in H. If G is a locally compact group and H
is a closed subgroup of G, then H contains all small subgroups of G if
and only if G/H is a manifold [2, Theorem 4].

Lemma 2.9. Let G be a connected locally compact group, H a closed
subgroup of G such that G/H is locally connected. If C is the mazimal
compact normal subgroup of G and if F = CNH, then for every compact
normal subgroup K of C such that C/K is finite-dimensional, KF
contains all small subgroups of C.

Proof. Since G is connected, CCs(C) = G. Hence, every compact
normal subgroup K of C is also normal in G. Now let K be a compact
normal subgroup of C' such that C'/K is finite-dimensional. Clearly,
G/K is finite-dimensional. Thus, G/K H is locally connected and finite-
dimensional, consequently a manifold. Hence, K H contains all small
subgroups of G [12, Theorem 4]. In particular, K'H contains all small
subgroups of CH. Hence, CH/KH is a manifold also [12, Theorem
4]. Now the homomorphism C — CH/KH is onto, and the canonical
map C/CNKH — CH/KH is a homeomorphism. It follows that
C/C N KH is a manifold. Since K ¢ C, CNKH =K(CNH)=KF
and C/KF is a manifold. Thus, KF contains all small subgroups of
C. O
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Corollary. Under the hypotheses of Lemma 2.9, if C' is the mazimal
compact normal subgroup of G, if F = C N H, and if K is a compact
normal subgroup C such that C'/K is finite-dimensional, then KoF has
finite index in KF.

Proof. Since C/K is finite-dimensional, so is C/Ky. Hence, KoF
contains all small subgroups by Lemma 2.9, and hence K = KD,
where D is totally disconnected. Therefore, KoF' has finite index in
KF. |

Proposition 2.10. Let G be a connected locally compact group, H a
closed subgroup such that G/ H is locally connected. If C' is the mazimal
compact normal subgroup of G, then C/C N H is locally connected.

Proof. Let F = C N H and V be a neighborhood of e in C. Then
there exists a compact connected normal subgroup K C V of C such
that C'/KF is locally connected. Let V' be a neighborhood of e in C
such that V'K C V. We can choose a neighborhood V" of e in C such
that KV C V'K. Now C/KF is locally connected and V'KF/F is
a neighborhood of the identity in C/KF. There exists a connected
neighborhood W C V'KF/F. If we let ¢ : C/F — C/KF denote
the natural map, ¢ (W) ¢ KV"KF/F C V'KF/F C n(V), where
m: C — C/F is the natural map. Now ¢~!(W) is connected since
the inverse image of each w € W has connected fiber wK F/F and is
contained in 7(V'). Hence, C/C N H is locally connected. o

Theorem 2.11. Let G be a connected locally compact group, and
let C' be a mazimal compact normal subgroup of G. If H is a closed
subgroup of G such that G/CH is a manifold, then G/H is locally
connected if and only if CH/H is locally connected.

Proof. Tt is clear that if CH/H is locally connected, then G/H is
locally connected.

Now assume that G/H is locally connected. Since G/CH is finite-
dimensional, the fibration of G/H over G/CH is locally trivial [12,
Theorem 13']. This implies that, locally, it is the direct product of
base space and fiber. Now, since G/CH is a manifold and G/H is
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locally connected, the fiber has to be locally connected. Hence, CH/H
is locally connected. ]

3. Total index of a closed normal subgroup. Let G be a
connected locally compact group. Then there exists a maximal compact
connected subgroup K of GG such that G = KE, where the space of £
is homeomorphic to r-dimensional Euclidean space. The integer r is
called the characteristic index of G [8, p. 549], abbreviated as ci(G). In
this section we shall define the total index of a closed normal subgroup
of a connected, locally compact group and discrete index, denoted by
ti(G) and di(G), respectively.

The following remark is clear.

Remark 3.1. (1) A connected locally compact group G is compact if
and only if ci(G) = 0.

(2) If G is a connected locally compact group and if NV is a connected
closed subgroup of G, then G/N is compact if and only if ci(V) = ci(G).

Now let G be a connected locally compact group and let IV be a closed
normal subgroup of G. If G’ = G/Ny and N' = N/Ny, then N’ is a
totally disconnected normal subgroup of the connected group G’ and
hence is central. Because N’ is compactly generated, N’ & Z% x F,
where F' is a compact group and a is an integer. We shall call the
integer a the discrete index of N/Ny and define the total index of N by

ti(N) = a + ci(Np).

Note that if N is connected, ti(N) = ci(NV), and that, if N/Ng is
compact, ti(IN) = ci(Np).

Theorem 3.1. Let G be a connected locally compact group and N
a closed normal subgroup of G. Then G/N is a compact group if and
only if the total index of N equals the characteristic index of G.

Proof. Suppose first that ti(N) = ci(G). Since ci(G) = ci(Ny) +
ci(G/Ny), we see that ti(N) = ci(Ng) +ci(G/Ny) = ci(No) +di(N/Np).
Hence, ci(G/Ny) = di(N/Ny), and, therefore, G’ = G/Ny D N/Ny =
Z%x@Q, where @ is a compact group and a is the discrete index of V. Let
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K be a maximal compact connected subgroup of G’. Then G' = KFE
with dim F' = a. Since Z“ is central in G', and Z°K/K = Z*, G' /N’
is compact, where N’ = N/N,. Consequently, G/N is compact.

Conversely, assume that G/N is compact. Then G'/N’ is com-
pact. Now let N/ = Z% x @, where Q is a compact group. Then
(G'/Q)/((Z*xQ)/Q) is compact which implies that ci(G’) = a. Hence,
ti(N) = ci(G). O

Theorem 3.2. Let G be a connected locally compact group. Let F
and H be normal subgroups of G with F D H and G/H a Lie group.
Then F/H is compact if and only if F and H have the same total index.

Proof. Note first that, since G/H is a Lie group, F//H is a Lie group
and, hence, FoH is open in F' [4, Theorem 1.3].

Assume now that F/H is compact. Then FyH/H is compact, hence
Fy/Fy N H is compact since FoH is open. Thus, ti(Fy N H) = ci(Fp).
Let Hl = FoﬁH Since F/F() D) HF()/FO and F/Fo/HFo/FO = F/HFO
is compact, we have di(F/Fy) = di(HFy/Fp). Hence,

H(F) = ci(Fo) + di(F/Fy)
= ci(Fo) + di(HFy/Fy)
(Hy) + di(HFo/Fo)

i(Hy) + di(H/H N Fy)
ci((H1)o) + di(H1/(Hi)o)
+di(H/H,y)
= ci(Hp) + di(H1/(H1)o)

+ di(H/Hy)
= ci(Hy) + di(H/Hy)
= ti(H).

1

t
t

Conversely, we now assume that ti(H) = ti(F’). Since
ti(F) = ci(Fo) + di(F/Fy)

= ci(Fy/Hy) + ci(Ho) + di(F/Fy)
= CI(H(]) + Cl(Fo/Ho) + dl(F/Fo),
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and ti(H) = ci(Hy) + di(H/Hy), then ci(Fy/Hp) + di(F/Fy) =
di(H/Hy). Therefore,

ti(F/Ho) = ci((F/Hy)o) + di(F/Ho/(F/Hy)o)
= ci(Fy/Ho) + di(F/F)

di(
= di(H N Fy/Hy) + di(H Fy/ Fp).

Since Fo/H() > HnN Fo/Ho, CI(F()/H()) > dl(H N Fo/H()) If
Cl(Fo/Ho) > dl(HﬂFg/H@), then dl(F/Fo) < dl(HFo/Fo) = dl(H/Hﬂ
Fp). This contradiction implies that ci(Fo/Hy) = di(H N Fy/Hp).

Hence, F/H is compact. o

4. Related results. We consider various locally compact groups
involving connectedness in this section. The results are closely related
to those in [6]. The reader is referred to [6] for definitions of classes
of locally compact groups not defined here. A counter-example to a
conjecture made in [6] is given at the end of this section.

Let G be a locally compact group and let B be a group of automor-
phisms of G, where B D In(G), the group of inner automorphisms of G.
Suppose K is a compact normal subgroup of G which is B-invariant.
Then we have the exact sequence

K — G — H=G/K.

If H is connected, we have G = (Cg(K))oK. It is easy to see that
(Ce(K))o is B-invariant. Hence, K N (Cg(K))o is B-invariant, and we
have the sequence

Ky — (Cg(K))o — H,
where

K, =Kn(Cg(K))o.

Theorem 4.1. Let G be a locally compact group and K be a compact
normal subgroup of G. Let B be a group of automorphisms of G such
that
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(1) B> In(G)
(2) B is relatively compact in the Birkhoff topology, and
(3) K is B-invariant.

Suppose that G/K s connected and pointwise fized by the induced
group of automorphisms B on G/K. Then G = KL, where

L={xz€G:0(z)==z for 6 € B}.

Proof. Note first that B also satisfies (1), (2), and (3); hence, we
may, in fact, assume that B is compact. Now G € [SIN]p. Since G/K is
connected and B acts trivially on G/ K, we claim that G = K(Cq(K))o.
To see this, let p : G — Aut(K) be the canonical map. Then
p(K) = In(K). Since Aut (K)/In(K) is totally disconnected and G/K
is connected, we see that p(G) C p(K) = In(K). Hence, G = KCg(K).
Now G is o-compact since G/K is connected; hence, C(K) is o-
compact, and the canonical map Cg(K)/Ce(K)NK — G/K is a
homeomorphism. Since Cg(K) N K C (Ce(K) N K)(Cg(K))o C
Ce(K), Ce(K)/(Ca(K)N K)(Ca(K))o is totally disconnected, and
G/K is connected, we have (Cq(K) N K)(Cg(K))o = Cg(K), ie.,
G = K(Cg(K))o as claimed.

Since K is B-invariant, C'(K) is B-invariant, and so is C'(K)o. Hence,
we may assume from now on that G = C(K)p, K is central in G, and
G/K is connected and abelian.

Since G € [SIN]z, let M be any small B-invariant compact normal
subgroup of G such that G/M = G’ is a Lie group. If K’ = MK/M,
we have the exact sequence

(K)o — K' — G — G'/K".
For each 0 € B, df acts on the Lie algebra L(G’) of G', hence B acts
on L(G') by the differentials df, # € B. Since B is compact there is
a nondegenerate positive definite quadratic form 8 on L(G’) which is
B-invariant. Let S be the orthogonal complement of L(K') in L(G’).

If 7: G — G'/K' denotes the natural map, dr : L(G') — L(G'/K')
induces dr : S — L(G'/K') which is one-to-one and onto.

Since B acts on L(G'/K’) trivially, dr acts on S trivially. If S =
exp S, then K'S is open in G', and, since G'/K’ is connected, K'S =
G'.
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This shows that for each small B-invariant compact normal subgroup
M of G such that G/M is a Lie group there is a normal subgroup
Su of G = G/M such that G, = K);Su, where K); = MK/M.
Now G = @Gh = £iLnK§V[SM, K = @KJ’\/I: and G = KL, where
L= @SM. It is clear that L = {z € G : 8(z) = z for § € B}. This
completes the proof. i

Definition 4.1. Let G be a locally compact group. Then G is said
to have property C or G € [C] if for every nontrivial characteristic
subgroup H of G, Cg(H) is compact.

Lemma 4.2. If G € [C], then Gy is compact.

Proof. Let @ be a maximal compact normal subgroup of Gy. Then
Q@ is a characteristic subgroup of G and Gy = QCg,(Q). Now
Cea,(Q) C Ce(Q) and Cg(Q) is compact. It follows that Gy is compact.
O

The following theorem resembles Theorem 4.2 of [4].

Theorem 4.3. Let G be a locally compact group which has the prop-
erty that for any compact nontrivial subgroup M, Cg(M) is compact.
If G € [C] and Gy € [SIN]g, then G is either compact or totally dis-
connected.

Proof. First we note that Gy € [SIN]g if and only if the canonical
map p : G — Aut (Gy) has relatively compact image. We shall call Gy
stable if Gy € [SIN]q.

Since G € [C], Gy is compact by Lemma 4.2, so we may write
Gy = AS, where A is a compact connected abelian group and S is a
product of compact simple Lie groups. Both A and S are characteristic
subgroups of G. Since G| is stable, both A and S are stable in G. Note
also that either A or S cannot be trivial unless Gy is trivial. Suppose
now that G is not totally disconnected. Then Gy is not trivial. We
consider two cases.
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Suppose that A is not trivial. There exists a compact normal
subgroup N of G such that A/N = T, an n-dimensional torus. Then
Aut (A/N) is discrete. Since the group of automorphisms 53 induced on
A/N by Int (G) is relatively compact, B is finite. Hence, there exists a
closed normal subgroup G of G such that G/G is finite, and B leaves
every point in A/N fixed. Hence, by Theorem 4.1, A = NL, where

L={zcA:gzg!

= z for each g € G1}.

Suppose now that S is not trivial. By the stability of S, there exists
a compact normal subgroup N of S such that S/N = J is a compact
semisimple group. Hence Aut (J) is compact, and there exists a closed

normal subgroup G; of G such that G/G; is compact, and, again, we
have S = NL where L = {x € S : grg~! = x for each g € G1}.

Note that, in either case, L is compact. Hence, Cg(L) is compact by
assumption. Since Cg(L) D G1, Gy is compact, and, consequently, G
is compact.

The following conjecture appears in [6, p. 122]:

If G € [SIN]N[AF]” N[LF]~, then G is either compact or totally dis-
connected. The following example seems to provide a counterexample
to this conjecture.

Example 4.1. Let a;, cj, where j # k, 1,5,k = 1,2,3,..., be
distinct elements subject to the following conditions: a? = C%j = e,
aicjk = CjkGi, Cij = Cji, and a;a; = aja;c; ; for each ¢, 5, k. We shall
embed each c¢; ; in the circle group T; ;. Let Ay = (ax) be the discrete
group generated by ay, and let C = Hi#j T3 ; be the product group

with the product topology.

Let G = {ca;,ai, - a;,, : 91 < i2 < -+ < iy, m a positive integer,
and ¢ € C'}, and let the group operation in G be induced by the product

ci1c2a;aj, =7

C1€2C4,jGj05, ©F£ ]

(@) = {

Denote by Ay the direct sum with the discrete topology and, with
obvious identification, endow G with the relative topology of the
product space C' x X Ai. Then G is a locally compact group in which
C is open and central in G.
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For any two elements z = a;,a;, -+ a;,,, 11 < t2 < :+-+ < %y, and
Y =085, a5, j1 <Jo <+ <jn,in G, we may write

ry = (aj,ai, -+ - @i, )(aj,a5, - - - aj, )

— allal2 Seeqy

(*)
1

m+n

by shifting the aj, a;, --- into the position where Iy < ly < -+ < ly4np
by using the property that aqag = agaqcq,g for 8 < a. Similarly, we
may write

yz = (aj,a5, -~ aj,) (@i ai, -~ - a;,,)

= allalZ R alm+n02.

(%)

In (%), c; is the product of those c;, c;, where i, > jg, and, in (*x), ¢z is
the product of those c;j,c;, where jg > i,. For example, (a1a3)(azas) =
ajaza3ascs 2, while (azas)(aias) = ajazasasce1¢51653. Hence, if H is
an abelian subgroup of G, every element of H is of the form ca; for
some ¢ € C. Thus, every closed abelian subgroup of G is a closed
subset of C x (wAyg), where A has the product topology, and, hence,
is compact. Hence, G € [AF]™.

Since G contains C' as an open central subgroup, G € [SIN]. It is
clear that G € [LF]~. Hence, G € [SIN] N [AF]” N [LF]~, but G is
neither compact nor totally disconnected. Note that C' is a compact
normal subgroup, and G/C = X.Z, is an infinite discrete abelian group.

Hence, G/C ¢ [AF]~.
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